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Mesenchymal stem cells are immunoregulation cells. IL-22 plays an important role in the pathogenesis of immune thrombocy-
topenia. However, the effects of mesenchymal stem cells on IL-22 production in patients with immune thrombocytopenia remain
unclear. Flow cytometry analyzed immunophenotypes of mesenchymal stem cells; differentiation of mesenchymal stem cells was
observed by oil red O and Alizarin red S staining; cell proliferation suppression was measured with MTS; IL-22 levels of cell-free
supernatants were determined by ELISA. Mesenchymal stem cells inhibited the proliferation of activated CD4+T cells; moreover,
mesenchymal stem cells immunosuppressed IL-22 by soluble cellular factors but not PGE2.These results suggest that mesenchymal
stem cells may be a therapeutic strategy for patients with immune thrombocytopenia.

1. Introduction

Mesenchymal stem cells (MSCs) are multipotent cells and
are able to differentiate into mature mesenchymal cells such
as osteoblasts, adipocytes, and chondroblasts [1]. MSCs can
be obtained from many tissues including adult bone marrow
(BM), adipose tissue (AD), muscle, term placental chorionic
villi (CV), cord blood, and umbilical cord (UC) [2–7]. But
UC-MSCs are a more promising source [8]. Due to their
stronger immunoregulation, MSCs have been widely applied
for treatment of all kinds of diseases, for example, graft-
versus-host disease (GVHD) [9], experimental autoimmune
encephalomyelitis (EAE) [10], Crohn’s disease (CD) [11], and
rheumatoid arthritis (RA) [12].

Immune thrombocytopenia (ITP), also known as idio-
pathic thrombocytopenic purpura, is an autoimmune dis-
ease. Because of antiplatelet autoantibodies in patients,
platelets are destroyed in large numbers and platelet count
is lower obviously in peripheral blood. The etiology of ITP
is not clear. Therefore, the diagnosis of ITP is exclusive, and
there are no specific or sensitive laboratory methods used to
detect these antibodies in clinic [13]. It is known that T cells

abnormalities play an important role in the pathogenesis of
ITP. T cells related cytokine abnormalities are one of the
T cells abnormalities [14, 15]. Many studies found that the
concentration of IL-22 produced by T cell subsets increased
significantly in ITP patients [16–18]. However, the effect of
UC-MSCs on ITP patients remains unclear.

In the present study, our data suggest that UC-MSCs
inhibited the proliferation of CD4+T cells and immunosup-
pressed the production of IL-22 in ITP patients through
soluble cellular factors.

2. Materials and Methods

2.1.The Isolation ofUC-MSCs. Umbilical cordswere obtained
from our hospital’s obstetrical department with informed
consent. Human tissue collection for research was approved
by the Medical Ethics Committee of Anhui Province in
China. Isolation of human umbilical cordmesenchymal stem
cells (UC-MSCs) was performed as described [7].

2.2. Immunophenotype Analysis by Flow Cytometry. UC-
MSCs were stained with PE-conjugated antibody against
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Figure 1: The characteristics of UC-MSCs. (a) Morphology of UC-MSCs; (b) the osteogenic differentiation of UC-MSCs; (c) adipogenic
differentiation of UC-MSCs.

CD11b, CD29, CD44, CD45, CD54, CD73, CD80, CD86,
CD90, CD105, CD106, HLA-DR, nestin, and sox-2 or FITC-
conjugated antibody against CD19, CD31, CD34, and HLA-
ABC. The IgG1-PE and IgG1-FITC were used as negative
controls. Antibodies (BD Pharmingen) were used according
to manufacturer’s protocol and were analyzed by flow cytom-
etry.

2.3. The Differentiation and Staining Assays of UC-MSCs.
2 × 10

4 UC-MSCs were cultured by DMEM/F12 media
containing 10% fetal bovine serum (FBS) in 24-well plates for
24 hours. Then, the media were changed with osteogenic or
adipogenic induction media for 3 weeks; cells were observed
by Alizarin red S or oil red O solution, respectively.

2.4. Preparation of Human CD4+T Cells. Human mononu-
clear cells from patients with ITP were isolated by Ficoll-
Paque (Axis-Shield). Then, CD4+T cells were obtained with
magnetic MicroBead kits (Miltenyi Biotec). The purity of
CD4+T cells was more than 95% (data not shown).

2.5. Coculture Experiment of UC-MSCs and CD4+T Cells.
UC-MSCs irradiated by 30Gy were preplated and were
allowed to adhere for 5 h at 37∘C; CD4+T cells were added
at a ratio of 1 : 10 for 72 h.

2.6. Cell Proliferation Assay. Cell proliferation was measured
with an MTS kit (Promega) according to manufacturer’s
protocol. Absorbance was detected at 490 nm on BioTek
reader (BIO-RAD).

2.7. Total RNA Extraction, Reverse Transcription, and Real-
Time PCR Analysis. CD4+T cell was collected. RNA of
CD4+T cell was extracted with E.Z.N.A. Total RNA Kit I
(OMEGA). cDNA synthesis was done with the MLV RT
kit (Invitrogen). Polymerase chain reaction analyses were
performed by Platinum SYBR Green qPCR SuperMix-UDG

w/ROX on an Applied Biosystems 7300 Real-Time PCR Sys-
tem. The IL-22 mRNA was expressed with ΔΔCt values. The
primer of human IL-22 is 5-ACAACACAGACGTTCGTC-
TCATTG-3 and 5-GAA CAGCACTTCTTCAAGGGTGA-
3.

2.8. Enzyme-Linked Immunosorbent Assay (ELISA) Mea-
sured IL-22 Concentration. IL-22 concentration of cell-free
supernatants was tested by Human IL-22 ELISA assay kits
(Peprotech) according to manufacturer’s protocol.

2.9. Statistical Analysis. The SPSS 17.0 software package ana-
lyzed data. Data are presented as mean ± SD. Comparisons
were performed by one-way ANOVA. 𝑃 < 0.05 was consid-
ered significant.

3. Results

3.1.TheCharacteristics of UC-MSCs. As shown in Figure 1(a),
UC-MSCs isolated from umbilical cord were fibroblast-like
cells. They were induced successfully into osteoblasts and
adipocytes observed by Alizarin red S and oil red O staining
in specific medias (Figures 1(b) and 1(c)). Furthermore,
flow cytometry showed that UC-MSCs were positive for
CD29, CD44, CD54, CD73, CD90, CD105, CD106, HLA-
ABC, nestin, and sox-2 and negative for CD11b, CD31, CD19,
CD34, CD45, CD80, CD86, and HLA-DR (Figure 2, Table 1).

3.2. UC-MSCs Suppressed the Proliferation of CD4+T Cells.
To examine the effect of UC-MSCs on CD4+T cells from
ITP patients, we treated CD4+T cells with UC-MSCs in
the absence or presence of stimuli (CD3/CD28) and found
that CD4+T cells could not proliferate culturing with UC-
MSCs or in the absence of stimuli (Figures 3(a) and 3(c)).
However, CD4+T cells appeared to cluster in the presence
of stimuli (Figure 3(b)). Most important, when cocultured
with UC-MSCs, activated CD4+T cells grew in a spreading
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Figure 2: Continued.
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Figure 2: Immunophenotypes of UC-MSCs. UC-MSCs expressed CD29, CD44, CD54, CD73, CD90, CD105, CD106, HLA-ABC, nestin, and
sox-2 but did not express CD11b, CD14, CD19, CD34, CD45, CD80, CD86, and HLA-DR. This figure shows one of the three independent
experiments’ results.

pattern (Figure 3(d)). MTS was used to evaluate further the
proliferation of CD4+T cells (Figure 3(e)); the result of MTS
was consistent with the proliferation of CD4+T cells alone or
culture with UC-MSC in the absence or presence of stimuli.

3.3. UC-MSCs Inhibited CD4+T Cells Secreting IL-22. We
measured the production and mRNA of IL-22 to inves-
tigate the immunomodulation of UC-MSCs on IL-22. As
shown in Figure 4(a), nonactivated CD4+T cells or CD4+T
cells cocultured with UC-MSCs without stimuli produced
low level of IL-22. But the concentration of IL-22 was
increased enormously in activated CD4+T cells. When acti-
vated CD4+T cells were cocultured with UC-MSCs, higher
levels of IL-22 were reduced again (𝑃 < 0.001). Furthermore,
this phenomenon was also observed in expression of IL-22
mRNA. Thus, UC-MSCs had strong immunosuppression in
CD4+T cells secreting IL-22.

3.4. UC-MSCs Immunomodulated IL-22 by Soluble Cellular
Factors. It is known that MSCs play their immunosuppres-
sive effects by cell-cell contact or soluble cellular factors. To
examine it, we performed coculture experiments using the
Transwell system. Transwell physically separatedCD4+T cells
from UC-MSCs; it only allows for soluble cellular factors to

Table 1: Immunophenotypes of UC-MSCs.

Surface marker Positive rate
CD11b −

CD31 −

CD73 ++++
CD90 ++++
CD80 −

CD106 ++
HLA-ABC ++++
HLA-DR −

Sox-2 ++++
CD19 −

CD44 ++++
CD34 −

CD54 ++++
CD45 −

CD105 ++++
CD86 −

Nestin ++++
− negative, +∼++++ positive, + 1–25%, ++ 25–50%, +++ 50–75%, and ++++
>75%.
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Figure 3: UC-MSCs suppressed proliferation of CD4+T cells. (a) Nonactivated CD4+T cells; (b) activated CD4+T cells; (c) cocultured
nonactivated CD4+T cells with UC-MSCs; (d) cocultured activated CD4+T cells with UC-MSCs; magnification: 40x; (e) proliferation was
evaluated by MTS. Data represent one of the three independent experiments, each performed in triplicate. ∗∗∗𝑃 < 0.001.
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Figure 4: UC-MSCs immunosuppressed IL-22 by soluble cellular factors but not PGE2. (a) UC-MSCs inhibited CD4+T cells secreting IL-22
and the expression of IL-22 mRNA; (b) the immunoregulation of UC-MSCs on IL-22 was mediated by soluble cellular factors; (c) PGE2 did
not involve in the immunoregulation of UC-MSCs on IL-22. Data represent one of the three independent experiments, each performed in
triplicate. ∗∗∗𝑃 < 0.001 and #

𝑃 > 0.05.

permeate. We found that UC-MSCs were also able to inhibit
dramatically the secretion of IL-22 without cell-cell contact
(𝑃 < 0.001). Furthermore, the degree of IL-22 inhibition
by UC-MSCs in coculture separated by Transwell was not
different significantly from those in coculture which was cell-
cell contact (𝑃 > 0.05), indicating that the immunoregulation
of UC-MSCs on IL-22 was mediated by soluble cellular
factors (Figure 4(b)).

3.5. PGE2 Did Not Mediate the Immunomodulation of UC-
MSCs on IL-22. Prostaglandin E2 (PGE2) is one of the
soluble cellular factors mediating the immunoregulation of
MSCs. Therefore, we performed coculture experiments with
indometacin (10mM), the inhibitors of PGE2. We found that
the level of IL-22 decreased by UC-MSCs was not improved
in coculture with indometacin compared to group without
indometacin (𝑃 > 0.05). Together, this data suggests that
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UC-MSCs immunoregulated IL-22 via soluble cellular factors
but not PGE2 (Figure 4(c)).

4. Discussion

In this present study, we have successfully demonstrated
a previously uncharacterized fact that UC-MSCs possessed
strong immunosuppressive capacity on IL-22 in patients with
ITP.

Immunoregulation is one of the biological characteristics
ofMSCs; they canmodulate the function of different immune
cells such as T cells, B cells, neutrophils, natural killer (NK)
cells, and dendritic cells (DC) [19–23]. MSCs block the
division of T cells, preventing irreversible G0/G1 phase arrest
and reducing the secretion of proinflammatory cytokines
such as IFN-𝛾 and TNF-𝛼 [24]. The immunomodulatory
activity of the MSCs is also exerted through the inhibition of
DCdifferentiation andmaturation of antigen-presenting cells
[25]. In addition, we had proved in our previous study that
UC-MSCs suppressed significantly the mRNA expression of
TNF-𝛼, IL-21, IL-22, and IL-26 in CD4+T cells [8].

To our knowledge, IL-22, a newly defined cytokine, is
one member of the IL-10 cytokine family, produced by CD4
cells, Th22 cells, Th17 cells, and NK cells. IL-22 can combine
with its counterpart receptor complex which is composed
of the IL-22R1 and IL-10R2, and its signal intracellularly is
mediated by transcription factor JAK/STAT [26]. In different
circumstance, IL-22 may play a protective or a pathogenic
role. For instance, Liang and colleagues reported that IL-22
inhibited the development of bleomycin-induced pulmonary
fibrosis [27]. However, IL-22 plays a pathogenic role in ITP
[18]. The effects of MSCs on IL-22 in patients with ITP
are unclear. In this study, we found that UC-MSCs had
ability to immunoregulate IL-22 in patients with ITP. They
decreased the IL-22 level of cell-free supernatants in vitro. In
general,MSCs exert immunomodulatory effects through cell-
cell contact or soluble cellular factors.We also found thatUC-
MSCs downregulated IL-22 when UC-MSCs were separated
from CD4+T cells by Transwell. We come to conclusion
that UC-MSCs suppressed the secretion of IL-22 by soluble
cellular factors. Soluble cellular factors include NO, TGF-
𝛽1, PGE2, IDO1, HGF, IL-6, IL-10, and HLA-G [11, 28–34].
PGE2 is derived from the cyclooxygenase metabolism of
arachidonic acid and is generated in large quantities by both
macrophages and neighboring epithelial cells [35, 36]. PGE2
as an important regulator of the immune response shifts the
balance towards a T helper type 2 response and promotes
memory cell formation [37]. Our colleagues demonstrated
that PGE2 is involved in the immunoregulation effect of
MSCs [29, 38].However, we added indomethacinwhich is the
blocker of PGE2 into the group of UC-MSCs cocultured with
CD4+T cells and found that indomethacin did not reverse the
immunosuppressive effect of UC-MSCs on IL-22.

In summary, this study reports for the first time that UC-
MSCs downregulate IL-22 of ITP patients through soluble
cellular factors but not PGE2.
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