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Abstract

We identified dynamic changes in recruitment of neural connectivity networks across three phases 

of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, 

rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed 

pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one 

stimulus, and received feedback. Subjects were informed that the correct choice was determined 

by a simple unidimensional rule, for example “choose the blue letter.” Once each rule had been 

learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or 

visual cues to switch to learning a new rule. Task performance was divided into three phases: 

Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through 

the last error trial), and rule application (correct responding after the rule was learned). We used 

both univariate analysis to characterize activity occurring within specific regions of the brain, and 

a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to 

investigate how distributed regions coordinate to subserve different processes. As hypothesized, 

switching was subserved by a limbic network including the ventral striatum, thalamus, and 

parahippocampal gyrus, in conjunction with cortical salience network regions including the 

anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with 

switching regardless of how switching was cued; visually cued shifts were associated with 

additional visual cortical activity. After switching, as subjects moved into the hypothesis testing 

phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal 

attention, and salience networks) increased in activity. This network was sensitive to rule learning 

speed, with greater extended activity for the slowest learning speed late in the time course of 

learning. As subjects shifted from hypothesis testing to rule application, activity in this network 

decreased and activity in the somatomotor and default mode networks increased.
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The ability to flexibly change cognitive strategies and learn new rules to guide behavior is at 

the center of human cognitive control and is reliant on intact frontoparietal systems. One of 

the best clinical measurements of frontal lobe damage is the Wisconsin Card Sort Task 

(WCST) (Berg, 1948), which involves both rule switching and rule learning components. 

People with damage to the prefrontal cortex tend to perseverate on a learned rule despite 

negative feedback, and do not switch to and test an alternative strategy. In this study we 

combined univariate methods with multivariate functional connectivity analysis to test the 

hypothesis that switching in tasks like the WCST is subserved by a corticostriatal salience 

network including the ventral striatum. We also tested whether the method of informing 

subjects that they need to switch, through negative feedback or through a visual cue, affects 

activity in these neural systems. Finally, we characterized how cognitive control networks 

were dynamically recruited across different task phases.

1.1 Hypothesis testing, rule application, and switching

In our study we used a continuous task which involved hypothesis testing, rule application, 

and switching to a new rule. Previous studies using rule learning tasks have found that 

hypothesis formation and testing are associated with neural activity in a prefrontal-parietal-

striatal network. A large number of prefrontal regions are typically recruited, including 

dorsolateral, inferior frontal / anterior insula, anterior prefrontal, and medial frontal regions 

(Crescentini et al., 2011; Hartstra et al., 2010; Landmann et al., 2007; Lie et al., 2006; 

Konishi et al., 1999; Seger and Cincotta, 2006). Parietal activity is typically widespread but 

particularly prominent in inferior parietal and intraparietal sulcus regions (Crescentini et al., 

2011). Prefrontal and parietal region activity typically increases during rule learning, and 

then decreases after subjects have learned the rule and are correctly applying it to new 

stimuli. During rule application, other neural systems increase in activity including regions 

associated with the default network (Crescentini et al., 2011), the hippocampus and medial 

temporal cortex (Seger and Cincotta, 2006), the bilateral insula (Seger and Cincotta, 2006) 

and motor regions (Crescentini et al., 2011). Within the striatum, Seger and Cincotta (2006) 

reported that activity in the anterior caudate increased sharply at the beginning of each rule 

learning task whereas posterior caudate showed a flatter time course in which activity 

persisted across rule learning and into the rule application phase.

Most previous rule learning studies have trained subjects using discrete rule learning 

problems, and have not examined how subjects dynamically switch between rules. Studied 

that have examined switching have often reported activity in the basal ganglia and regions of 

the inferior frontal cortex and anterior cingulate sometimes termed the cingulo-opercular or 

salience network. Within the basal ganglia, switching is particularly strongly associated with 

ventral regions of the striatum, including nucleus accumbens and ventral caudate and 

putamen (Monchi et al., 2001;Simard et al., 2011). Seger and Cincotta (2006) reported 

activity in a discrete rule learning task in the ventral striatum that rose suddenly at the 

Liu et al. Page 2

Neuropsychologia. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



beginning of each rule learning task, indicating a potential role in shifting to the new 

problem. The ventral striatum has also been associated with switching across species in 

reversal learning tasks, in which the organism has only two stimuli to choose from and must 

switch to choosing the other stimulus (Robbins and Roberts, 2007; Dalton et al., 2014). The 

salience network has been associated with many of the functions necessary for switching, 

including shifting attention in a bottom-up fashion to behaviorally relevant stimuli and 

relaying this information to control systems (Sridharan et al., 2008; Uddin, 2015). 

Dosenbach et al (2006) found that the salience network was the only cortical area whose 

activity spiked at the beginning and end of instructed tasks, indicating an important role in 

implementing task sets and shifting to new sets. Sestieri et al (2014) found that this region 

had both task-general sustained activity along with increased transient activity in response to 

behaviorally relevant task events.

1.2 Resting state neural networks

In addition to testing hypotheses concerning neural systems underlying switching, an 

additional goal of our study was to characterize how regions recruited during rule learning 

interact during task performance, both in order to identify patterns of functional connectivity 

and to be able to relate these networks to those that have been identified on the basis of 

intrinsic connectivity during the resting state. Because of our interest in frontoparietal and 

striatal contributions to rule learning and shifting, we focus on intrinsic connectivity 

networks involving these regions. Although the exact number of networks and borders 

between them depend on the parcellation methods, there is general agreement on at least five 

frontoparietal networks (Buckner et al., 2013; Menon, 2011;Power et al., 2011;Shirer et al., 

2012; Yeo et al., 2011): the default mode network (ventromedial frontal and posterior 

cingulate), sensorimotor (primary motor and somatosensory cortex), dorsal attention 

(premotor, frontal eye fields, and superior parietal regions), cognitive (or executive) control 

(lateral prefrontal and parietal) and salience (anterior insula / inferior frontal and anterior 

cingulate).

Most of these networks were identified on the basis of cortical interactions; in addition there 

is evidence that different regions of the basal ganglia interact with each of these networks as 

well, consistent with known anatomical connections (Choi et al., 2012). Frontal regions have 

a topographic projection to the basal ganglia: corticostriatal projection neurons originating 

along a gradient from orbitofrontal cortex to motor cortex terminate in the striatum along a 

gradient beginning at the ventromedial striatum and progressing dorsally, laterally and 

posteriorly to the posterior putamen (Haber, 2003; Verstynen et al., 2012). Consistent with 

this gradient, the salience network (inferior frontal / anterior insula region and anterior 

cingulate) correlates with ventral striatal regions, whereas the cognitive control network 

(dorsolateral prefrontal regions) correlates with more dorsal regions of the caudate (Choi et 

al., 2012).

An emerging area of research focuses on how intrinsic connectivity networks interact with 

each other, and how these interactions underlie task performance (Gordon et al., 

2012;Nomura et al., 2010). Cole and colleagues (2013) argue that the cognitive control 

network is more highly interactive than other networks, and should be thought of as a hub; 
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these connections are consistent with this network's role in flexible control of cognitive 

functions (Duncan, 2001). A number of studies have identified anticorrelated patterns 

between the default network and frontoparietal network (Chen et al., 2013; Dang et al., 

2012; Vanhaudenhuyse et al., 2011). The mechanism underlying this anticorrelated pattern 

is unclear; some studies find that it is mediated by the salience network (Sridharan et al., 

2008; Uddin, 2015) and others find that the frontoparietal network mediates antagonistic 

processing between default and dorsal attentional (Spreng et al., 2013). Another open 

question is how these networks identified during resting state conditions are recruited during 

task performance, and the degree to which active task performance changes the connectivity 

patterns. Krienen and colleagues (2014) found that there was substantial commonality in 

coupling patterns across states, reflecting perhaps an anatomically constrained functional 

core, along with dynamic patterns of shifting connectivity in response to task demands.

1.3 Overview of the study

We examined neural network recruitment associated with learning, rule application, and 

switching using both traditional univariate analysis and multivariate connectivity analysis 

using constrained principal component analysis for fMRI (fMRI-CPCA; Woodward et al., 

2013; Metzak et al., 2011, 2012). Subjects performed a continuous task in which they chose 

one of two stimuli differing on four dimensions (color, letter identity, size, and location), 

and received feedback as to whether their choice was correct or not. Performance was 

monitored so that after subjects had learned the rule they had the opportunity to apply the 

rule for several trials, after which they were cued to switch to a new rule. The rule learning 

and application portions were similar to our previous study (Seger and Cincotta, 2006), and 

as in that study we predicted that univariate analyses would identify frontal regions and 

parietal regions along with head of the caudate as being active during rule learning but less 

active during rule application. We further predicted that multivariate analyses would find 

that these regions demonstrate correlated activity during rule learning.

We compared three different types of switch cueing. In the feature cued condition, we 

changed the salient visual features associated with two dimensions of the stimuli: the letters 

and colors. In externally cued the color of the rectangle surrounding the stimuli was 

changed; the stimulus features remained the same. Finally, in feedback cued, both the 

stimulus features and surrounding rectangle color remained the same, but subjects were 

given feedback consistent with a new rule. Similarly to the classic WCST, subjects began to 

receive negative feedback and cueing was only provided via feedback. The WCST 

instructions specifically tell the administrator to avoid any other cue to the subject for 

switching, including any given by facial expression or tone of voice (Berg, 1948). Monchi 

and colleagues (Monchi et al., 2001;Simard et al., 2011) found that activity in the caudate 

and ventrolateral prefrontal cortex was important for planning a set shift, and in the putamen 

and posterior parietal cortex for executing it.

For multivariate analysis, we used fMRI-CPCA (Woodward et al., 2013; Metzak et al., 

2011, 2012) to identify functionally interconnected networks during task performance across 

the switching, rule learning and rule application phases. Univariate and multivariate analyses 

each have their own strengths and limitations and provide complementary results. Because 
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most fMRI studies use univariate methods they allow for easy comparison with previous 

research. However, univariate methods are best for identifying individual active regions, not 

distributed networks. In contrast, components identified in multivariate methods like, fMRI-

CPCA reflect a pattern of task-related variance derived from all voxels in the brain and can 

provide information about how distributed regions cooperate to subserve a particular 

function. Data driven approaches like fMRI-CPCA can help segregate and characterize task-

related processes that might not have been predicted by the experimenter, but are less well 

suited for testing specific hypotheses about specific regions; whereas univariate analyses 

allow for traditional significance testing. In the present paper, we used univariate analyses to 

test hypotheses about activity occurring within specific regions of the brain, and used fMRI-

CPCA to investigate how distributed regions coordinate during different cognitive functions.

We first hypothesized that switching would recruit attentional and task set implementation 

mechanisms subserved by the salience network (anterior cingulate and inferior frontal / 

anterior insula) and interconnected regions of the basal ganglia, particularly the ventral 

striatum (Choi et al., 2012). For the univariate analysis, we predicted greater activity in these 

regions when comparing switching with other task phases. For the multivariate analyses, we 

predicted that these regions would be assigned to a common component, indicating 

functional connectivity, and that activity in this component would be highest in the 

switching phase of the task.

With regard to our switch cueing manipulation, we hypothesized that the ventral striatum 

would play a role in switching in our task no matter how the switch was cued. For visually 

cued switching, including feature and externally cued, we predicted additional visual cortical 

activity. The comparison of externally cued and feature cued was intended to separate the 

mere presence of a visual cue from an intrinsic change in the nature of the stimuli being 

processed; we made no a priori predictions concerning how these two conditions would 

differ.

In the overall analyses across all task phases we predicted that univariate analyses would 

identify similar regions as those found in Seger and Cincotta (2006) when comparing rule 

learning with rule application: broad recruitment of fronto-parietal-striatal executive control 

regions. We expected that multivariate analyses would provide additional insight into how 

these regions were functionally connected during task performance, and that activity within 

these extended networks would correlate with task phase. Specifically, we predicted that the 

executive control regions would be assigned to a common component, and that activity in 

this component would correlate with task phase, with highest activity in the hypothesis 

testing phase. We further predicted that regions of the default mode network would show an 

opposite pattern of result: decreased activity during hypothesis testing, and increased 

activity during rule application.

Materials and Methods

Subjects

A total of 12 adults participated in the study, 4 male and 8 female, with an average age of 

24.0 years (range: 19-35). Subjects met criteria for magnetic resonance imaging (MRI) 
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scanning (no metallic implants, no claustrophobia) and were neurologically healthy (no 

known neurological or psychiatric injury or disease, not taking any psychoactive medication 

or drugs).

Rule Learning and Switching Task

The rule learning task was based on a task developed by Levine (1975) and previously 

studied using fMRI by Seger and Cincotta (2006). In the rule task subjects completed a 

series of multi-trial rule learning problems. In each problem, subjects were presented with 

pairs of letters, one on the left side of the screen and one on the right side, and had to choose 

one of them by pressing the response button corresponding to the side of the screen that the 

correct letter appeared on. The letters differed on 4 dimensions: letter, color, size and 

position. Letters were selected from all 26 upper-case letters of the alphabet and colors from 

a set of 8 different easily named colors (red, orange, yellow, blue, green, turquoise, purple, 

and brown); for each rule learning problem, 2 of the letters and 2 of the colors were selected 

randomly. For size, there were two options: small (25 points) or large (45 points), and for 

location there were two positions: left or right. Each stimulus feature appeared in one of the 

two letters on each trial, but the pairings of features were randomized across trials, as shown 

in Figure 1. On each trial, subjects viewed two stimuli and selected one via a key 

corresponding to its location (left or right). After making a response, subjects received either 

positive (“Correct!” in green) or negative (“Wrong” in red) feedback. Subjects were told that 

the correct rule would be based on a single feature and dimension (i.e., “choose the red 

item” or “choose the small item”). Each stimulus pair was presented for 2 s, during which 

the subject made their response. Stimuli remained on the screen for the full time regardless 

of the subject's response time. The interval between stimuli and feedback was a random 

interval varied between 0 and 1 s. Feedback was presented for 1 s, for a total trial length of 

3-4 s. In addition, there was a 0 to 1 s randomly jittered intertrial interval between feedback 

and the presentation of the stimulus for the next trial.

After subjects had successfully learned each rule (as indicated by a sequence of 4-7 correct 

responses, varied randomly) one of three shift conditions randomly occurred in the task. (1) 

feature cued: new color and letter features were selected for the objects. In this condition the 

cueing was visual, but intrinsic to the stimulus displays. (2) externally cued: Subjects were 

signaled by an external cue (change in the color of the box surrounding the stimuli) that they 

should shift to a new rule. Stimulus features were not changed. (3) feedback cued: subjects 

received negative feedback and had to begin hypothesis testing again. In all conditions 

feedback immediately changed to be based on the new rule, and therefore subjects received 

negative feedback in all conditions. Subjects completed a practice session before scanning

Image Acquisition

Images were obtained with a 3.0 Tesla MRI scanner (Siemens TIM Trio) equipped with a 

12-channel head coil at the Intermountain Neuroimaging Consortium (Boulder, CO). 

Structural images were collected using a T1-weighted rapid gradient-echo (MPRAGE) 

sequence (256 × 256 matrix; FOV, 256; 192 1-mm slices). Functional images were 

reconstructed from 28 axial oblique slices obtained using a T2* -weighted EP2d sequence 

(TR, 1500ms; TE, 25ms; FA, 75; FOV, 220-mm, 96 × 96 matrix; 4.5-mm thick slices; no 
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inter-slice gap). The first three volumes, which were collected before the magnetic field 

reached a steady state, were discarded.

Image analyses: Univariate General Linear Model

The primary conditions were compared using BrainVoyager QX 2.8 (Goebel et al., 2006). 

Image preprocessing in Brain Voyager involved slice time correction, 3D motion correction, 

temporal filtering to correct for signal drifts (components with a frequency of less than 3 

cycles across each 20 minute scan), spatial normalization, and spatial smoothing with a 6 

mm FWHM Gaussian kernel. Rule learning and rule application conditions were defined 

individually for each rule learning problem on the basis of the subject's behavioral 

performance, as in Seger and Cincotta (2006). The rule learning epoch began at the first trial 

of the problem and extended through the trial of last error. The first trial of each rule 

learning problem was defined for the externally and feature cued conditions as the trial in 

which the visual change was made (color of surrounding box, or stimulus features, 

respectively). For the feedback cued condition, the first trial of the rule learning problem 

was defined as the first trial on which negative feedback was received by the subject, 

avoiding the possibility that a subject might respond correctly at the beginning of the 

problem by chance, and not receive the negative feedback cue indicating switch was 

necessary until later in the rule learning problem. The rule application epoch began on the 

trial following the trial of last error and extended through the trial preceding the switch. 

Within the rule learning epoch we defined two additional epochs, the switching epoch and 

hypothesis testing epoch. The switching epoch included the first 2 TRs (3 s) of each 

problem, roughly corresponding with the first trial. The hypothesis testing epoch began on 

the 3rd TR and continued through the trial of last error. The switching conditions were 

further divided into feature, externally, and feedback cued conditions. For each contrast 

between conditions, we generated maps corrected for multiple comparisons using the cluster 

level threshold implemented in Brain Voyager; this procedure uses a Monte Carlo process to 

estimate the minimum cluster size required for a particular alpha level based on the 

smoothness and number of activated voxels in each individual map. Coordinates presented 

in the Tables were converted from Talairach space to Montreal Neurological Institute (MNI) 

space using BrainMap Ginger ALE 2.3 (Brainmap.org) to allow for easier comparison with 

the FMRI-CPCA results in MNI space.

Constrained Principal Component Analyses for fMRI

To investigate task-related differences across functional networks, we used fMRI-CPCA 

using a finite-impulse response (FIR) model, as implemented in the fMRI-CPCA toolbox 

(available free of charge at www.nitrc.org/projects/fmricpca). FMRI-CPCA combines 

multivariate regression and principal component analysis to identify multiple functional 

networks associated with a given task. It is particularly appropriate for experimental 

paradigms extending across multiple trials, as in the present study (Whitman et al., 

2013;Woodward et al., 2013;Metzak et al., 2011; Braunlich et al., 2015). FMRI-CPCA 

allows one to estimate changes in the BOLD response across peristimulus time within each 

functional network, and also allows statistical inference. For this analyses, preprocessing 

was performed using SPM 8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8). 

Preprocessing involved correction of slice time acquisition differences (images were 
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adjusted to the 14th slice), motion correction of each volume to the first volume of the first 

run using 3rd degree spline interpolation, coregistration of the functional to the structural 

data, normalization to the MNI template, smoothing (with a 6 mm Gaussian kernel), and 

temporal filtering (with a 128 s high-pass filter).

FMRI-CPCA uses two matrixes, Z, which contains the BOLD time course of each voxel, 

with one column per voxel and one row per scan, and the design matrix, G which contains a 

finite impulse response (FIR) model of the BOLD response related to the event onsets. Z is 

regressed onto G, yielding a matrix, GC, of predicted scores. As a result, GC contains the 

variance in Z, that is accounted for by the design matrix, G. Components are extracted from 

the variance in GC via singular value decomposition, yielding U, a matrix of left singular 

vectors, D a diagonal matrix of singular vectors, and V, a matrix of right singular vectors. 

VD was rescaled by square root of [number of rows in Z – 1] and orthogonally (varimax) 

rotated prior to display. Varimax rotation maximizes the sum of the variances of the squared 

loadings so that coefficients are either large or near zero, with few intermediate values. This 

allows each variable to be associated with at most one factor, which simplifies the results in 

that factors are divided to as great a degree as possible into disjoint sets. Varimax rotation in 

fMRI-CPCA has been used in several previous studies (e.g., Braunlich et al., 2015; Metzak 

et al., 2012; Metzak et al., 2011). The advantages for fMRI are that individual brain regions 

are more likely to be assigned to single components after varimax rotation, and the results 

are therefore easier to interpret. However, there is currently no way of evaluating which 

rotation method, if any, is most likely to reveal “true” patterns of connectivity. The 

assumption underlying the choice of varimax rotation, that it is preferable to assign regions 

to single components, may not be appropriate in all situations. In order to ensure that 

varimax rotation did not lead to misleading patterns of results, we examined both the 

unrotated and rotated versions. Overall, for both fMRI-CPCA analyses, rotation made no 

difference in the first components of each analysis, either to the percentage of variance 

accounted for or for the regions assigned to the components. Varimax rotation appeared to 

primarily shift variance accounted for from component two to the other components. This 

allowed for a clearer division into multiple components. For example, after 

orthogonalization in CPCA 1 the motor systems remains in Component 2, and the default 

mode network is in Component 3. This is useful for interpretation in that these two networks 

did show different time courses in the rotated version that did correspond with hypothesized 

networks.

These rescaled values of VD were overlaid on a structural image to visualize the functional 

networks. We included the top 10% of the loadings in the Tables and Figures; we chose a 

relatively lenient threshold in order to provide as complete a description as possible of all 

regions participating in individual components. We verified that using a stricter (5%) 

threshold reduced the size of the clusters, but did not change the pattern of reported results 

substantially. For each component we graphed the predictor weight timecourse across all the 

voxels, time locked to the switch trial. We did not adjust predictor weights at time 1 to zero 

because recent studies have shown that this can lead to misleading results if conditions differ 

at time 1 (Lavigne et al., 2015) For each combination of peristimulus time-point, condition 

and subject, fMRI-CPCA estimates a set of predictor weights (P), which are the values that 
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relate the design matrix, G, to the networks associated with each component, such that U = 

G × P. The predictor weights therefore indicate the importance of each condition to each 

component across peristimulus time. For individual components, we subjected these 

predictor weights to analysis of variance in order to identify main effects and interactions 

between condition and time-point. If a condition by time point interaction was observed, we 

performed post hoc tests to identify time points at which conditions significantly differed.

We performed two fMRI-CPCA analyses. In one, we divided problems by switch cueing 

condition, resulting in three conditions: feedback cued, externally cued, and feature cued. 

The goal of this analysis was to identify functional connectivity networks across the time 

course of learning, and to identify any differences in networks between switching conditions 

when variance was constrained by switching condition. In the other, we used the 

spontaneously occurring differences in length of the rule learning period and grouped 

problems by number of trials to learn (final error trial); the mean learning rate (as described 

in Results, below) was 5 trials. This resulted in 5 conditions with sufficiently many trials to 

include in the analysis including problems learned in 3 trials, 4 trials, 5 trials, 6 trials, and 7 

or more trials. The number of problems included in each condition were roughly equal, with 

the exception of those learned in 7+ trials which had a higher number of problems included. 

The few problems in which subjects learned in fewer than 3 trials were excluded from this 

analysis. Manipulating the length of time in particular phases of a task is particularly helpful 

for isolating processes in tasks in which the processes must occur in the same sequence. For 

example, Woodward et al. (2013) manipulated the length of a memory maintenance period 

in a working memory task in order to identify functional networks associated with encoding, 

maintenance, and retrieval. In our task, switching, hypothesis testing, and rule application 

always occur in the same order A network associated with functions specific to rule 

hypothesis testing should show a rise and fall at earlier time points when the rule is learned 

quickly (e.g., 3 or 4 trials) than when it is learned more slowly (e.g., 6 or 7 trials).

Results

Behavioral results

The primary measure was the number of trials required to learn, which was operationally 

defined as the trial of last error. Overall, subjects required a mean of 5.0 trials. Performance 

was calculated separately for the three switching conditions: subjects reached criterion 

significantly faster in the feature cued condition (M = 4.1, SD = 1.6) than the feedback cued 

(M = 5.8, SD = 1.3; t(11)=2.460, p<0.05); neither condition differed significantly from the 

externally cued (M = 5.3, SD = 1.6). We also examined learning time and reaction time for 

the different rule features. Overall, color rules were learned most quickly (M = 4.4; SD = 

1.8), and position rules most slowly (M=5.7, SD =2.3), with letter (M=5.1; SD = 2.1) and 

size (M=5.1, SD = 1.7) rules intermediate. Only the difference between color and position 

was significant (t(11)=2.377, p<0.05). Although the position rules were learned most slowly, 

the mean reaction times for position rule based decisions were the fastest (M=647 ms), 

significantly more so than color (M=704 ms), letter (M=733 ms) and size (M=722 ms), ts 

(11) = 3.9, 4.3, 4.0, respectively, ps < 0.05. No other pairwise difference reached 

significance.

Liu et al. Page 9

Neuropsychologia. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Univariate Imaging results

Rule Learning versus Rule Application—Rule learning (combination of Switching 

and Hypothesis Testing epochs) activated a wide fronto-parietal-striatal network, as 

described in Table 1 and depicted in Figure 2. Frontal regions included the bilateral anterior 

insula/inferior frontal region, bilateral dorsolateral prefrontal cortex, bilateral anterior 

prefrontal cortex, and medial frontal regions. Parietal regions were centered along the 

intraparietal sulcus bilaterally. Basal ganglia activity extended bilaterally across the head of 

the caudate and anterior putamen. Overall, the results were consistent with those reported in 

Seger and Cincotta (2006), despite the methodological differences: that study did not require 

switching because individual multi-trial rule learning problems were separated by a control 

task. For rule application, areas of greater activity in comparison with rule learning were 

found in the left parahippocampal gyrus and in regions of medial frontal and parietal cortex 

often associated with the default mode network.

Effects of Switching—We first identified common regions of activity for rule switching 

by comparing activity at the time of switch cue with rule application and with hypothesis 

testing. As shown in Figure 2 and Table 2, the contrast of switching in comparison with rule 

application revealed that the ventral striatum (left ventral putamen) and left 

parahippocampal cortex were active during switching, along with right lateral prefrontal and 

bilateral medial parietal cortex. We followed up with a conjunction analysis across the three 

individual contrasts of each switching condition versus rule application (feedback cued > 

rule application, externally cued > rule application, feature cued > rule application), which 

identified a single common region of activity: the left ventral putamen.

When switching was compared with hypothesis testing, regions of the ventral striatum 

extending into the dorsal caudate nucleus were again more active during switching. In 

addition, cortical regions of the salience network (inferior frontal gyrus / anterior insula) and 

motor regions were more active for switching than hypothesis testing. In contrast, there was 

greater activity for hypothesis testing than switching in the bilateral middle and superior 

frontal gyri, and in more dorsal and posterior regions of the caudate.

We then compared activity related to type of switch cue. Our first comparison was between 

the two visually cued conditions and feedback only cued switching (feature cued + 

externally cued > feedback cued). This contrast resulted in a number of regions across the 

occipital and temporal lobe visual areas. There were also bilateral regions of activity in the 

anterior striatum extending to both caudate and putamen; these regions held an intermediate 

position between the relatively ventral regions active across all switching conditions (in the 

switching > rule application contrast), and the relatively dorsal regions active in rule 

learning (in the rule learning > rule application contrast). No regions were more active for 

the feedback cued condition in this contrast, possibly due to the fact that subjects began to 

receive negative feedback in all conditions following rule switch. Finally we directly 

compared the two visual conditions (externally cued > feature cued), which revealed a 

number of regions more active for externally cued. These regions were the bilateral 

parahippocampal gyri, visual cortical regions, and a portion of the supplementary motor 

area.

Liu et al. Page 10

Neuropsychologia. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fMRI-CPCA functional networks, constrained by wwitching conditions

Our first fMRI-CPCA analysis focused on identifying networks with variance constrained 

by the design matrix representing the Switching conditions (feedback cued, externally cued, 

feature cued). We chose to extract 5 components, consistent with visual inspection of the 

scree plot indicating a salient reduction in the variance accounted for by a greater number of 

components. The 5 components in order accounted for 27.19%, 10.33%, 6.61%, 4.29%, and 

3.11% of variance after varimax rotation. Allowing for the slow nature of the hemodynamic 

response (typically peaking at 6 seconds post-activity), activity associated with the 

switching trial (trial 1) should be reflected in immediate changes in the first 6 seconds; 

activity associated with hypothesis testing (on average trials 2-5, lasting an average of 12.5 

seconds) with subsequent changes, and activity associated with rule application beginning 

between trials 4 to 6 (seconds 10 to 15) and extending through the end of the problem. For 

each component we determined overlap with intrinsic connectivity networks by comparison 

with Yeo et al. (2011).

Component 1—As shown in Table 3 and Figure 3A, Component 1 consisted of a large 

frontal, parietal, striatal and cerebellar network. Regions of the frontal lobe included 

dorsolateral prefrontal cortex (middle and superior frontal gyri), the relatively posterior 

region of the anterior prefrontal cortex, and the bilateral inferior frontal / anterior insula 

region. Parietal lobe activity extended bilaterally along the intraparietal sulcus. This 

component included regions of the salience network (inferior frontal / anterior insula, and 

anterior cingulate), dorsal attentional (intraparietal sulcus), and cognitive control network 

(dorsolateral prefrontal) (Buckner et al., 2013; Menon, 2011; Power et al., 2011; Shirer et 

al., 2012; Yeo et al., 2011). The cerebellum also participated in this component, in particular 

medial and lateral regions of the cerebellar cortex that Buckner and colleagues (2011) found 

to be correlated with the cognitive control frontoparietal network. This component also 

included regions of the head of the caudate found to correlate with the frontoparietal 

network by Choi and colleagues (2012).

The time course of this component shows a pattern of increasing activity at the beginning of 

each switch, that continues across the time of hypothesis testing and into early rule 

application. This time course pattern is consistent with univariate GLM analyses that found 

most of these areas were significantly more active in rule learning than during rule 

application (compare with Table 1, rule learning > rule application contrast). An ANOVA 

carried out on the predictor weights revealed a significant main effect of time point, F (15, 

165) = 13.8, p < .001, η2=.56. There was no main effect of switch condition or interaction 

between condition and time point, ps > .05.

Component 2—Component 2 consisted of primarily motor regions, including the bilateral 

pre and postcentral gyri, and the motor cingulate (see Table 4 and Figure 3B). This network 

overlaps to a large degree the somatomotor networks identified in resting state studies 

(Power et al., 2011; Yeo et al., 2011). In addition, some regions of the occipital lobe and 

cuneus participated in this network. The combination of motor and visual regions in this 

component may reflect similarities in relative timing of visual demands and motor demands 

during trials across the task. The time course of this component showed an increase at the 
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end of rule learning and the beginning of rule application, consistent with previous studies 

showing a shift to motor system reliance during learning (Crescentini et al., 2011) and 

reliance on motor regions for simple abstract rule learning (Kayser and D'Esposito, 2013). 

An ANOVA carried out on the predictor weights revealed a main effect of time point, F(15, 

165) = 1.8, p < .05, η2=.14. There was no main effect of switch condition or interaction 

between condition and time point, ps > .05.

Component 3—Components 3 and 5 were the only ones of the components that had both 

positive and negative (e.g., negatively correlated with the time course) loadings. The 

positive loadings in component 3 were much larger than the negative, and as shown in 

Figure 3C (red overlay) and Table 4 included regions of the bilateral medial frontal cortex, 

bilateral posterior cingulate, and the left angular gyrus. These regions are commonly 

associated with the default mode network (Andrews-Hanna et al., 2010), and match the 

specific regions previously identified in whole brain network parcellations (Power et al., 

2011; Yeo et al., 2011). The time course of component 3 showed a gradual decrease in 

activity during the rule learning phase, followed by a plateau during the rule application 

phase. This pattern is consistent with the default network being anticorrelated with 

frontoparietal cognitive control networks (Hellyer et al., 2014), and having generally higher 

activity during tasks requiring less time or effort (as is true of rule application in comparison 

with rule learning). These regions also were active in the rule learning > rule application 

univariate contrast (compare with Table 1). An ANOVA carried out on the predictor weights 

revealed a significant main effects of time point, F(15, 165) = 2.3, p < .01, η2=.17, and 

interaction between time point and switch condition, F(30, 330) = 1.8, p < .01, η2=.14.but 

no significant main effect of switch condition, F(2,22) = 2, p > .05, η2=.02, Visual 

inspection of the time course indicates that the interaction was driven by higher early 

activity for externally cued during switching and rule learning, followed by higher activity 

for feedback cued during rule application. Post hoc pairwise comparisons showed that 

externally cued was significantly higher than feature cued at 3 and 5 s (t(11) = 4.3, p < .01, 

t(11) = 2.8, p < .05) and significantly higher than feedback cued at 3 s, t(11) = 2.9, p < .05. 

Feedback cued was significantly higher than feature cued at 13 s, t(11) = 3, p < .05.

The negative loadings consisted of small, highly localized clusters located bilaterally in the 

intraparietal sulcus, and in left lateral prefrontal cortex (see Table 5, and Figure 3C green 

overlay). In the univariate GLM analysis these regions were active in rule learning in the 

rule learning > rule application contrast (compare with Table 1). It is possible that these 

regions were clustered in component 3 rather than component 1, along with the majority of 

the frontoparietal regions, due to the slightly different time course. For these negatively 

loaded component 3 regions, activity would have increased gradually across rule learning, 

and decreased in rule application to a greater degree than was characteristic of component 1.

Component 4—Component 4 consisted primarily of limbic regions including the bilateral 

ventral striatum (ventral putamen), dopaminergic midbrain, thalamus, and bilateral 

parahippocampal gyrus (see Table 5 and Figure 3D). The time course of this component 

shows a sharp increase at the beginning of switching that rapidly decreases, before rule 

learning is complete. This pattern is consistent with functions related to detecting the need 

Liu et al. Page 12

Neuropsychologia. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for a switch and initial execution of the switch, rather than the hypothesis testing. These 

areas are similar to those identified in the switching > rule application and switching > 

hypothesis testing contrast in the univariate analyses (compare with Table 2). An ANOVA 

carried out on the predictor weights revealed a significant main effect of time point, F(15, 

165) = 4.7, p < .001, η2=.3, and interaction between time point and switch condition, F(30, 

330) = 1.8, p < .01, η2=.14, but no significant main effect of switch condition F(2,22) = 1.5, 

p >.05, η2=.12. The interaction appears to be driven by differences between the shift 

conditions at the initial time point as well as in the hypothesis testing and rule application 

phases, but not during the switch phase (seconds 2-6). Post hoc pairwise comparisons 

showed that externally cued was significantly higher than feature cued and feedback cued at 

1 s (t(11) = 3, p < .05, t(11) = 2.8, p < .05). Feedback cued was significantly higher than 

externally cued at 9 and 15 s (((t(11) = 3, p < .05, t(11) = 4, p < .01) and feature cued at 16 s, 

t(11) = 4, p < .01; feature cued was significantly higher than externally cued at 15 s, t(11) = 

3.9, p < .01.

Component 5—Component 5 also had positive and negative loadings, described in Table 

7 and Figure 3E. The positive loadings were primarily visual cortical regions that extended 

across large portions of the extrastriate visual cortex. The negative loadings were in medial 

parietal cortex, and small regions of lateral parietal and inferior frontal cortex. Observation 

of the predictor weight graph indicates a flat time course across conditions, but with 

generally highest activity for externally cued conditions and lowest for feedback cued. This 

observation is supported by the ANOVA carried out on the predictor weights which revealed 

a significant main effect of switch condition, F(2,22) = 4.4, p < .05, η2=.28, but no effect of 

time point or interaction between time point and switch condition, ps > .1. These results are 

consistent with the univariate results shown in Table 2 in which there was greater occipital 

and parietal activity for externally cued shifts in comparison with feature cued.

fMRI-CPCA Functional networks, constrained by number of learning trials

The second fMRI-CPCA analysis focused on identifying networks with variance constrained 

by the design matrix including number of learning trials (3, 4, 5, 6, or 7+). The goal of this 

analysis was to use the differences in time spent in the rule learning phase to better isolate 

components implementing functions specific to rule learning, similar to the approach taken 

in Woodward et al., 2013. We chose to extract 3 components, consistent with visual 

inspection of the scree plot. The 3 components in order accounted for 27.2%, 10.8%, and 

8.8% of variance after rotation.

Component 1—Component 1 involved regions of the cognitive control network similar to 

that in Component 1 of the switch condition constrained fMRI-CPCA analysis. These 

regions extended across bilateral intraparietal sulcus and superior parietal lobe, middle 

frontal gyri, inferior frontal / anterior insula, anterior cingulate, caudate, and cerebellum. An 

ANOVA on the predictor weights revealed a main effect of time-point F(15, 165) = 11.8, p 

< .001, η2=.52, and a significant interaction between condition and time-point F(60, 660) = 

1.61 p < .01, η2=.13, but no main effect of number of learning trials, F(4,44) = .81, p > .05, 

η2=.07. Conditions in which learning was faster (3, 4, and 5 trials) generally had a steeper 

slope, and had a higher and earlier peak in activity than those in which learning was slower 
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(6 and 7+ trials). Post hoc pairwise comparisons found that condition 3 was significantly 

higher than condition 6 at 8 s, t(11)=2.2, p < .05, and condition 4 was significantly higher 

than condition 6 at 9 s, t(11)=2.79, p < .05. The slowest learning condition, 7+, was 

associated with a late rise, remaining elevated as the other conditions decreased. Post hoc 

pairwise comparisons showed that condition 7 was significantly higher than condition 6 at 

10 and 12 seconds (t(11) = 2.24, p < .05, and t(11) = 2.6, p < .05, respectively), and 

significantly higher than condition 5 at 15 and 16 s (t(11) = 2.9, p < .05, and t(11) = 2.5, p 

< .05, respectively), and significantly higher than condition 4 at 15 s and 16s (t(11) = 3.7, p 

< .05, and t(11) = 3.7, p < .05, respectively). These patterns of recruitment are consistent 

with component 1 subserving functions associated specifically with rule learning.

Component 2—Component 2 included regions of medial frontal, medial parietal regions 

often associated with the default mode network, along with portions of superior temporal 

cortex, somatomotor cortex, and cerebellum associated with the sensorimotor network. The 

overall trend of activity in this component was a decrease during hypothesis testing followed 

by an increase during rule application. For component 2, an ANOVA on the predictor 

weights revealed a main effect of time-point F(15, 165) = 4.7, p < .001, η2=.3, and a 

significant interaction between condition and time-point F(60, 660) = 1.69, p <.05, η2=.13 

but no main effect of condition, F(4,44) =2.13, p > .05, η2=.16,. Post hoc tests showed 

overall patterns consistent with faster learning (lower number of trials) resulting in less 

activity reduction. Condition 3 was significantly higher than condition 7 at 8, 10, 12, and 13 

s ((t(11) = 2.3, p < .05, t(11) = 2.7, p < .05, t(11) = 2.4, p < .05; t(11) = 2.4, p < .05) and 

condition 4 was significantly higher than condition 7 at 10, 11, 12, 13, and 15 s (t(11) = 3.9, 

p < .05, t(11) = 4.3, p < .05, t(11) = 3.0, p < .05; t(11) = 3.2, p < .05, t(11) = 3.7, p < .05). In 

addition, at 11 s, 4 was also higher than 3, 5, and 6 (t(11) = 2.8, p < .05, t(11) = 2.8, p < .05; 

t(11) = 2.2, p < .05), and at 10 s 4 was higher than 3 (t(11) = 2.5, p < .05). This is consistent 

with an earlier shift to the default network when the rule was learned more quickly, and 

correspondingly a smaller overall decrease in activity in the default network.

Component 3—Component 3 showed both positive and negative loadings. As shown in 

Table 10 and Figure 4, the positive loadings included bilateral inferior parietal and lateral 

inferior frontal gyrus regions along with regions of the ventral striatum and brainstem. The 

negative loadings included medial frontal regions extending through the bilateral head of the 

caudate to the insula and superior temporal gyri. The ANOVA on the predictor weights 

revealed a main effect of time-point F(15, 165) = 3.8, p < .001, η2=.26, but no main effect of 

condition, F(4,44) = .74, p > .05, η2=.06, and no interaction between condition and time-

point F(60, 660) = .78, p >.05, η2=.06. Although there was a significant effect of time point, 

there was no clear trend of increase or decreased activity across time point; overall activity 

in this component was fairly consistent, indicating that functions associated with this 

network might be required across the time course.

Discussion

In this study we combined univariate and multivariate analyses to test hypotheses 

concerning recruitment of neural networks across different phases of a rule learning, 

application, and switching task. We hypothesized that switching would recruit the cortical 

Liu et al. Page 14

Neuropsychologia. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



salience network and the ventral striatum; univariate analyses found activity in ventral 

striatum across all switching conditions, accompanied by dorsal basal ganglia and visual 

cortical recruitment when switches were cued visually. Multivariate analyses found 

recruitment of a transient ventral striatal and limbic network at the time of switch and a 

separate visual network recruited for Externally cued switches (Figure 3 D and E). We also 

examined large scale activity patterns across phases of the task. Univariate comparisons 

found cognitive control and dorsal attention networks were active during rule learning in 

comparison with rule application; these regions were largely assigned to single components 

in the multivariate analyses (Component 1 in both analyses). Activity in these components 

increased steadily and maintained their activity across the hypothesis testing process (Figure 

3A), and were differentially affected by learning speed, with an earlier peak for faster 

learning, and a more delayed plateau for the slowest learning speed (Learning trial number 

Figure 4A). During the rule application phase, activity in this component decreased, whereas 

there was a relative increase in activity in components related to somatomotor function 

(Figures 3B and 4B) and the default mode network (Figure 3C)

Recruitment of frontoparietal cognitive control networks in rule learning and application

Component 1 in both fMRI-CPCA analyses accounted for the largest proportion of variance. 

These components included regions characteristic of three different intrinsic networks 

defined in resting state studies: the cognitive control network (particularly the dorsolateral 

prefrontal, anterior prefrontal, and lateral parietal regions), the dorsal attention network 

(particularly the intraparietal sulcus) and the salience network (particularly the inferior 

frontal / anterior insula region and anterior cingulate). These networks often work together, 

and have sometimes been termed the “task active” network (Buckner et al., 2009) in contrast 

with the default network. The time course of component 1 in both fMRI-CPCA analyses 

showed a gradual increase and maintenance across the rule learning phase, followed by a 

decrease during rule application. Importantly, in the second fMRI-CPCA analysis 

component 1 was sensitive to length of the rule learning epoch, supporting its role in 

functions specific to rule learning.

The cognitive control network may play a number of roles in rule learning. One is as a hub 

(Cole et al., 2013), flexibly coupling with other networks. Another is through control 

mechanisms underlying working memory maintenance and manipulation; in the rule 

learning task, individual rules must be maintained, and manipulated to keep track of which 

have been tested and which have not. Previous studies have especially implicated similar 

regions of parietal and dorsolateral prefrontal cortex in working memory manipulation and 

maintenance for verbal information (Champod and Petrides, 2010; Marvel and Desmond, 

2012).

The dorsal attention network is important for attention to external stimuli, in particular 

spatial processing, and for connections between stimuli and motor control (Szczepanski et 

al., 2013; Cieslik et al., 2011). Our task included spatial demands and conditional motor 

responses to the left or right side depending on the rule. The salience network is involved in 

detecting and orienting to salient external and internal stimuli and events (Menon, 2011; 

Power and Petersen, 2013; Power et al., 2011). These detection and orienting processes have 
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both stimulus-specific and task general components; the later resulting in extended activity 

across task performance (Dosenbach et al., 2006; Olsen et al., 2013; Sestieri et al., 2014). 

This common pattern of extended activity across task performance may be one reason that 

the salience network and cognitive control network were identified as being in the same 

component.

It is important to note that our task is likely to recruit a number of cognitive functions, and 

thus recruitment of these networks cannot be associated with any one unique function. For 

example, the hypothesis testing phase likely demands that subjects generate hypotheses, 

maintain the current and previously tested hypotheses in working memory, and process 

negative feedback. Any of these factors might underlie differences between the hypothesis 

testing phase and the rule application phase, in which a single rule is maintained in working 

memory and negative feedback is not encountered.

The role of the ventral striatum and limbic network in switching

Several of the analyses indicate a special role for the ventral striatum in switching. In the 

univariate analysis, ventral striatum was the sole region identified in a conjunction analysis 

as being recruited for all three types of switching. The ventral striatum along with a number 

of other limbic regions, notably the parahippocampal gyrus, dopaminergic midbrain, and 

thalamus formed clusters in components identified in both fMRI-CPCA analyses. In the first 

fMRI-CPCA analysis looking at task related variance related to the three switching 

conditions this was component 4; in all three switching conditions, activity peaked sharply 

at the time of switching and then dropped down to baseline. In the second fMRI-CPCA 

analysis examining variance related to learning speed, the ventral striatum and brainstem 

were parts of the positively weighted loadings in component 3 and maintained a similar time 

course across time in these conditions. It should be noted that across all analyses the ventral 

striatum also showed a significantly different pattern of activity from more dorsal regions of 

the head of the caudate which were active across rule learning and participated in 

component 1 with lateral frontal and parietal cognitive control regions in both fMRI-CPCA 

analyses.

Previous studies have also found switching related activity in the ventral striatum. 

Researchers studying the WCST report activity in the caudate in preparing to shift, and the 

putamen in first trial after the shift (Monchi et al., 2001;Simard et al., 2011). Although they 

identified these loci of activity as being in the dorsal striatum, the reported coordinates fall 

around z = 0, near the (arbitrary) border of dorsal and ventral striatum near z = 0, and quite 

close to the region identified in our study centered at z = -8. Similarly, regions of the head of 

the caudate reported by Seger and Cincotta (2006) that rose suddenly at the beginning of 

each rule learning task were also near z = 0 and overlapped with this ventral striatal region. 

The ventral striatum has also been associated with switching in reversal learning tasks, in 

which the organism has only two stimuli to choose from and must switch to choosing the 

other stimulus. Animal studies have found that reversal learning requires orbitofrontal cortex 

and the ventral striatum (Robbins and Roberts, 2007; Dalton et al., 2014), though reversal 

learning also affects activity in striatal and lateral prefrontal regions (Pasupathy and Miller, 

2005). Human neuroimaging studies have identified a reversal learning neural network that 
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includes ventral striatum along with a cortical regions including ventrolateral PFC / anterior 

insula, anterior cingulate, parietal cortex, and dorsolateral prefrontal cortex (Cools et al., 

2002; D'Cruz et al., 2011; Freyer et al., 2009; Xue et al., 2008). Technically, our task was 

not a reversal learning task (in which reinforcement to the exact same stimuli is reversed), 

but rather an extradimensional shift task (in which subjects shift to making discriminations 

on a new stimulus dimension). The latter has been widely used in animal research, but only 

one functional imaging study of humans has been published (Rogers et al., 2000) which 

found extradimensional shifts were associated with greater frontal lobe recruitment, whereas 

reversals were associated with caudate recruitment. However, it used a block design and did 

not compare each condition to a neutral baseline, so it is impossible to determine regions 

(such as ventral striatum) that might potentially be shared across tasks.

Although the ventral striatum is clearly associated with switching, it is unclear what specific 

function related to switching it carries out. The best studied task to elicit ventral striatal 

activity, reversal learning, is deceptively simple. It includes a large number of potential 

cognitive functions, including prediction error associated with unexpected receipt of 

negative feedback and attending to and assessing new behavioral options, as well as 

functions related to learning (and unlearning) new approach (and avoidance) behaviors 

(Greening et al., 2011). Our task includes a number of these processes as well. However, the 

time course of the activity in the ventral striatum (sharp increase at the first switch trial) 

implies that its contributions to task performance are elicited immediately, rather than 

extending over multiple trials, as would be expected for learning related functions. This idea 

that the ventral striatum is not involved in rule learning is consistent with studies by Cools 

and colleagues (Cools et al., 2004; Dang et al., 2012) that found ventral striatum activity in a 

task in which subjects had to switch between objects but were not required to learn a new 

rule. What then are potential switching functions elicited on the very first trial? One role 

could be related to prediction error elicited by the negative feedback in the first switching 

trial; prediction error is likely to be large because it comes at the end of the string of positive 

feedback trials that characterizes the rule application period. The ventral striatum has been 

associated with prediction error in many studies (Seger et al., 2010; Garrison et al., 2013). 

However, prediction error is present throughout the rule learning phase, albeit to a lower 

degree.

Another possibility is that the ventral striatum contributes to identifying behaviorally or 

motivationally important stimuli, in our task the switch cues. The basal ganglia are sensitive 

to novelty and surprise (Redgrave et al., 2013; Schiffer et al., 2012). On a cortical level, 

identifying these stimuli is generally associated with medial frontal and inferior frontal / 

anterior insula regions of the salience network (Seeley et al., 2007). The ventral striatum has 

been associated in previous studies with the salience network, and previous studies of the 

ventral striatum typically find that limbic regions in general (Seeley et al., 2007), and the 

ventral striatum in particular (Choi et al., 2012), coactivate with cortical regions in the 

salience network. Furthermore, connectivity within this network has been associated with 

individual differences in anxiety and impulsivity within the midbrain (Seeley et al., 

2007;Jung et al., 2014).
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In our study the primary cortical regions of the salience network (anterior cingulate and 

fronto-insular cortex) showed a complicated pattern of association. In the univariate analysis 

these regions were more active for switching than for hypothesis testing, but were also more 

active overall during rule learning (switching and hypothesis testing combined) than rule 

application. In the multivariate analysis, these regions correlated with both the executive 

control network (fMRI-CPCA1 and 2 components 1) and with the ventral striatum and 

limbic regions (fMRI-CPCA 1 component 4; fMRI-CPCA 2 component 3). These activity 

patterns may reflect the multiple functions of the salience network in both responding to 

individual stimuli (e.g., in our task, the switch cues and/or negative feedback) and searching 

or monitoring for potentially important stimuli across task (Olsen et al., 2013;Sestieri et al., 

2014).

Visual versus feedback cued switching

We also manipulated the visual indicators that a rule switch is necessary. In all cases 

subjects received feedback consistent with the new rule, and therefore began to receive 

negative feedback. In the feedback cued condition, no visual cue was given. In the feature 

cued condition switching the cue was a combination of salient feature changes in the stimuli 

(change in color and letter dimensions), whereas in the externally cued condition it was a 

change in a nearby part of the display not inherent to the stimuli itself. Visual regions were 

more active for both visually cued conditions in comparison with the feedback only 

condition, and greater for the externally cued condition than the feature cued condition. 

Visual regions were also involved in Component 5, which revealed a complementary pattern 

of activity across shifting and rule learning time courses, with greatest activity in externally 

cued and lowest in feedback cued, with intermediate in feature cued. It is unclear why the 

two visual conditions differed, and why activity associated with the externally cued 

condition was greater than the feature cued condition, even though the latter involved more 

visual changes overall. One possibility is that the externally cued condition required broader 

spatial attention. Frontostriatal regions overall were also more active for the visually cued 

conditions than feedback only, including a region of the caudate and putamen just superior 

to the ventral region recruited by all three conditions, and dorsolateral prefrontal and 

parietal. All these regions participated in Component 1, and the time course there is 

consistent in that higher total activity was reached for the visually cued conditions than the 

feedback only condition.

Univariate versus multivariate results

In this study we utilized both univariate with multivariate analyses, which each allow for 

different types of inferences. Univariate analyses provide information about activity 

occurring within specific regions. The multivariate method we used, fMRI-CPCA, identifies 

components that each reflect a pattern of task-related variance derived from all voxels in the 

brain. The maps derived from fMRI-CPCA analyses, therefore, provide information about 

regions that cooperate to subserve a particular function. Furthermore, univariate analyses 

make specific assumptions about the relationship between the design matrix and the BOLD 

response, whereas fMRI-CPCA uncovers patterns of task-related variance in a data-driven 

manner. fMRI-CPCA is not able to directly measure effective connectivity; instead, it 

demonstrates task related coactivation, which could be driven by influence of other regions, 
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including top-down influence and stimulus-evoked influences (e.g., see Woodward et al., 

2013; Al-Andros and colleagues, 2012)

In the present paper, we used univariate analyses to characterize activity within specific 

neural regions, and fMRI-CPCA to investigate how distributed regions coordinate to 

subserve different processes. Overall, the results were complementary. Both univariate and 

multivariate indicated a role for a frontoparietal cognitive control network in rule learning; 

univariate indicated activity was greater during rule learning than application, whereas 

fMRI-CPCA indicated that these areas showed correlated patterns of activity that were 

condition related, increasing in activity during the rule learning phase, and sensitive to 

number of trials for learning. For switching, both univariate and multivariate supported an 

important role for the ventral striatum; univariate found greater activity in all switching 

conditions, and fMRI-CPCA found that ventral striatum and other limbic regions showed 

correlated increases in activity at the time of switch when variance was constrained by 

switching condition. There were a few small but interesting discrepancies. The univariate 

analysis did not identify cerebellar activity in the rule learning > rule application analysis, 

but the multivariate analyses found functional connectivity between the cerebellum and 

regions within the cognitive control network (Components 1 in both fMRI-CPCA analyses). 

There were also interesting contrasts between the two fMRI-CPCA analyses potentially due 

to the differences in the aspect of task related conditions that constrained the variance. For 

the ventral striatum, when variance was constrained by switch condition, there was a spike 

in activity at the time of switch, whereas activity did not change across time point in a 

regular manner when variance was constrained by conditions defined on the basis of 

learning speed.

Summary and conclusion

We identified a pattern of dynamic recruitment of different frontoparietal networks during 

an continuous rule learning and switching task. Detecting the need to switch to a new rule 

was associated with the ventral striatum along with other regions in a limbic network. As 

subjects performed hypothesis testing within the rule learning phase, activity increased in 

frontoparietal cognitive control and attention networks. After the rule was learned the 

cognitive control networks decreased in activity, accompanied by a relative increase in the 

default mode and sensorimotor networks.
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Highlights

• Univariate and multivariate identification of networks in rule learning and 

switching

• Learning was associated with a fronto-parietal-striatal cognitive control network

• Rule application was associated with default mode and somatosensory networks

• Switching was associated with a ventral striatal limbic network
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Figure 1. 
Diagrammatic representation of problem structure showing consecutive stimulus displays. 

After subjects applied a learned rule correctly for 4-7 trials, the rule was switched. Subjects 

were cued that it was time to switch in one of three manners: Feedback cued: there was no 

visual indication that subjects should switch in the stimulus displays; subjects merely began 

to receive negative feedback. Externally cued: the color of the box surrounding the stimuli 

changed color to indicate that subjects should switch rules. However, the stimuli continued 

to used the same color and letter features. Feature cued: The color and letter features of the 

stimui were changed.
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Figure 2. 
Regions identified via univariate general linear model contrasts. Top row: rule learning 

versus rule application. Red-orange color map: rule learning > rule application. Blue color 

map: rule application > rule learning. Second row: Switching (all conditions) versus rule 

application. Third row: Conjunction analysis showing common region of activity in ventral 

putamen across all three switching conditions in comparison with rule application. Fourth 

row: Switching (all conditions) versus hypothesis testing. Red-orange color map: Switching 

> hypothesis testing. Blue color map: hypothesis testing > switching. Fifth and sixth rows: 

contrasts between switching cue conditions: Feature cued + Externally cued > Feedback 

cued, and Externally cued > Feature cued, respectively. All contrasts are shown overlaid on 

the subjects' average normalized high resolution anatomical image.
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Figure 3. 
Components identified in the Switch Condition fMRI-CPCA analysis, in which variance 

was constrained by switching cue condition. Regions within each component are illustrated 

as a colored overlay on the MNI brain template in MRIcron. Components 1 (A), 2 (B), and 4 

(D) had only positive loadings. In Component 3 (C), positive loadings are shown in red and 

negative in green; in Component 5 (E) positive loadings are shown in yellow and negative in 

blue. Graphs for each component show the estimated hemodynamic response across all 

voxels with positive loadings within the component for each condition across the first 16 

seconds of each rule learning problem, beginning with the switch trial. Error bars show 

standard error. Bottom right (F) images show all components overlaid on the same rendered 

brain for comparison purposes. Colors follow those used in each individual component 

images.
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Figure 4. 
Components identified in the Trial Number Condition fMRI-CPCA analysis, in which 

variance was constrained by length of the rule learning epoch. Regions within each 

component are illustrated as a colored overlay on the MNI brain template in MRIcron. 

Components 1 (A) and 2 (B) had only positive loadings. In Component 3 (C), positive 

loadings are shown in red and negative in green. Graphs for each component show the 

estimated hemodynamic response across all voxels with positive loadings within the 

component for each condition across the first 16 seconds of each rule learning problem, 

beginning with the switch trial. Error bars show standard error. Bottom right (D) images 

show all components overlaid on the same rendered brain for comparison purposes. Colors 

follow those used in each individual component images.
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Table 1
Regions associated with Rule Learning and Rule Application

Condition x y z mm3

Rule Learning > Rule Application

 Frontal

  L. Middle Frontal Gyrus and Medial frontal 43 26 36 25631

  R. Middle and Superior Frontal Gyrus -32 12 59 2726

  R. Middle Frontal Gyrus -55 11 22 8278

  R. Inferior Frontal / Anterior insula 49 13 3 1945

  L. Inferior Frontal / Anterior insula -33 18 -6 1967

  L. Anterior Prefrontal -39 59 10 1269

  R. Anterior Prefrontal 26 56 -17 5539

 Basal ganglia

  R. Caudate Head / Anterior Putamen 10 7 5 2191

  Caudate Head / Anterior Putamen -16 -2. 16 4295

 Parietal and temporal

  R. Intraparietal Sulcus / Superior Parietal 30 -57 44 15650

  L. Intraparietal Sulcus / Superior Parietal -38 -57 49 13918

  L. Lateral Occipital Lobe -42 -60 -21 5222

Rule Application > Rule Learning

  R. Superior Temporal Gyrus 68 -6 2 1128

  B. Posterior Cingulate / Medial Parietal -6 -53 19 13112

  B. Medial Prefrontal 0 50 -16 18396

  L. Middle Temporal Gyrus -49 18 -39 7102

  L. Parahippocampal Gyrus -26 -19 -26 3483

Note: Corrected for multiple comparisons using the cluster level threshold simulator, voxelwise threshold p < .001, alpha = .05, cluster size = 36 

voxels (288 mm3). x, y, z: MNI coordinates. mm3: Size of cluster in cubic millimeters.
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Table 2
Regions associated with Switching

Condition x y z mm3

Switching > Rule Application (29 voxels / 232 mm3)

 R. Middle Frontal Gyrus 52 40 14 785

 R. Medial Parietal / Posterior Cingulate 29 -57 7 5045

 L. Medial Parietal / Posterior Cingulate -19 -59 22 2555

 L. Parahippocampal Gyrus -22 -49 -6 1557

 L. Ventral Putamen -19 9 -8 1878

Conjunction (25 voxels / 200 mm3.)

 L. Ventral Putamen -16 9 -9 723

 Switching > Hypothesis Testing (36 voxels / 288 mm3)

 R Medial Frontal Gyrus 8 15 52 13662

 L. Medial Frontal Gyrus -8 6 59 15417

 R. Middle Frontal Gyrus 60 11 35 2646

 L. Precentral Gyrus -47 2 54 19440

 L. Precentral Gyrus -63 -2 45 12582

 R. Postcentral Gyrus 70 -13 54 297

 R. Precuneus 24 -67 30 20088

 R. Precuneus 28 -53 48 5292

 L. Precuneus -27 -67 34 4833

 L. Inferior Frontal Gyrus -50 10 30 14472

 R. Inferior Frontal Gyrus 33 42 -12 8208

 R. Inferior Frontal Gyrus 30 36 -34 2025

 L. Inferior Frontal Gyrus -32 39 -37 2700

 R. Inferior Frontal Gyrus 27 35 -14 3645

 L. Insula -41 17 6 2133

 R. Cerebellum 43 -46 -23 7074

 L. Fusiform Gyrus -47 -58 -10 837

 R. Cuneus 37 -86 34 14067

 R. Lingual Gyrus 27 -62 9 13824

 L. Hippocampus -24 -40 4 4779

 R. Ventral Putamen and Caudate 20 19 -9 23247

 R. Caudate Head 14 20 8 10152

 L. Ventral Putamen -15 4 -4 15579

 Hypothesis Testing > Switching

 L. Middle Frontal Gyrus -44 53 -18 20655

 L. Superior Frontal Gyrus -14 44 49 3699

 R. Superior Frontal Gyrus 30 70 19 243

 L. Inferior Frontal Gyrus -41 41 -10 9963

 R. Middle Temporal Gyrus 69 -2 -34 2106
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Condition x y z mm3

 R. Superior Temporal Gyrus 69 20 -30 7047

 R. Fusiform Gyrus 59 -46 -26 2160

 B. Cerebellum 1 -95 -21 2403

 L. Cerebellum -54 -75 -25 2295

 L. Parahippocampal Gyrus -31 -28 -34 2916

 L. Caudate Body -18 3 27 4050

 R. Caudate Tail 24 -26 19 540

Feature cued + Externally cued > Feedback cued (threshold: 15 voxels / 120 mm3)

 R. Fusiform Gyrus 55 -60 -20 593

 R. Occipital Lobe 23 -89 -20 2142

 R. Fusiform Gyrus 36 -66 -19 548

 R. Fusiform Gyrus 35 -41 -25 525

 L. Inferior Temporal Gyrus, Occipital Lobe -55 -59 -8 10764

 R. Supplementary Motor Area 21 18 60 5248

 L. Middle Frontal Gyrus -33 58 4 1679

 L. Premotor Cortex -34 2 63 678

 L. Middle Frontal Gyrus -49 40 16 3794

 L Supplementary Motor Area -22 21 57 3776

 R. Caudate / Putamen 10 9 -2 739

 L. Caudate / Putamen -3 7 5 2371

Externally cued > Feature cued (threshold: 28 voxels / 224 mm3)

 R. Parahippocampal Gyrus 20 -46 -4 2528

 L. Parahippocampal Gyrus 0 -59 -6 3216

 B. Occipital Lobe 17 -95 18 2939

 L. Lateral Occipital Lobe -39 -90 5 3534

 R Middle Temporal Gyrus 71 -3 -2 1105

 R. Medial Frontal / Supplementary Motor area 14 -20 61 815

 B. Medial Parietal / Precuneus -9 -49 64 5229

Note: All contrasts were individually corrected for multple comparisons using the cluster level threshold simulator, voxelwise threshold p < .005, 
alpha = .05. The resulting cluster threshold for each contrast is indicated in parenthesis next to the contrast name. The conjunction analysis was a 
conjunction of three contrasts: feedback cued > rule application, feature cued > rule application, and externally cued > rule application. x, y, z: 

MNI coordinates. mm3: Size of cluster in cubic millimeters.
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