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AMPK Promotes Aberrant PGC1[3 Expression To Support Human
Colon Tumor Cell Survival
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A major goal of cancer research is the identification of tumor-specific vulnerabilities that can be exploited for the development of
therapies that are selectively toxic to the tumor. We show here that the transcriptional coactivators peroxisome proliferator-
activated receptor gamma coactivator 13 (PGC1f3) and estrogen-related receptor o (ERRw) are aberrantly expressed in human
colon cell lines and tumors. With kinase suppressor of Ras 1 (KSR1) depletion as a reference standard, we used functional signa-
ture ontology (FUSION) analysis to identify the y1 subunit of AMP-activated protein kinase (AMPK) as an essential contributor
to PGC1 expression and colon tumor cell survival. Subsequent analysis revealed that a subunit composition of AMPK
(a232+1) is preferred for colorectal cancer cell survival, at least in part, by stabilizing the tumor-specific expression of PGC1f.
In contrast, PGC1f and ERRa are not detectable in nontransformed human colon epithelial cells, and depletion of the AMPKvy1
subunit has no effect on their viability. These data indicate that Ras oncogenesis relies on the aberrant activation of a PGC13-
dependent transcriptional pathway via a specific AMPK isoform.

Athird of all human cancers, including a substantial percentage
of colorectal, lung, and pancreatic cancers, are driven by ac-
tivating mutations in Ras genes. Activating K-Ras mutations are
present in 35 to 40% of colon tumors and are thought to be both
drivers of tumorigenesis and determinants of therapeutic regi-
mens (1). Therapeutic disruption of Ras function has been clini-
cally ineffective to date, but investigation of Ras pleiotropy con-
tinues to yield a diversity of downstream effectors with obligate
roles in the maintenance and adaptation of Ras-driven tumors to
changing environments. The Raf—-MEK-extracellular signal-reg-
ulated kinase (ERK) signaling pathway is essential for the onco-
genic properties of mutated K-Ras (2). However, numerous po-
tent and specific MEK inhibitors have been developed yet have
failed to demonstrate single-agent efficacy in cancer treatment (3).
As amolecular scaffold of the Raf-MEK-ERK kinase cascade (4, 5),
kinase suppressor of Ras 1 (KSR1) is necessary and sufficient for
Ras¥'?*-induced tumorigenesis (4), mouse embryo fibroblast
(MEF) transformation (5, 6), and pancreatic cancer growth (7)
but dispensable for normal development (4). KSR1 is overex-
pressed in endometrial carcinoma and is required for both prolif-
eration and anchorage-independent growth of endometrial can-
cer cells (8). Except for minor defects in hair follicles, KSR1
knockout mice are fertile and develop normally (4).

This observation predicts that small molecules targeting KSR1
and functionally related effectors should preferentially target Ras-
driven tumors while leaving normal tissue largely unaffected.
More generally, this observation demonstrates that tumor cells,
while under selective pressure to adapt to inhospitable environ-
ments and proliferate without constraint, will adopt strategies
that, while advantageous to that singular purpose, create vulner-
abilities that can be exploited by targeted therapies.

We sought to detect and exploit those vulnerabilities in human
colon tumor cells using functional signature ontology (FUSION)
(9) to identify functional analogs of KSR1. A validated functional
analog of KSR1 is required for the survival and tumorigenic prop-
erties in Ras-driven cancer cells but is dispensable for survival in
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normal cells. Applying FUSION analysis to a small interfering
RNA (siRNA) screen of genes encoding kinases, phosphatases,
and related proteins, a gene expression signature characteristic of
KSRI disruption identified PRKAGI, the gene encoding the y1
subunit of AMP-activated protein kinase (AMPK), as a compo-
nent of colon tumor cell survival. Further characterization re-
vealed that a complex of a trimeric AMPK incorporating the a2
and 2 subunits along with the y1 subunit was critical to human
colon tumor cell survival. RNA interference (RNAi)-mediated
disruption of these AMPK subunits killed human colon tumor
cells without appreciable effect on nontransformed colon epithe-
lial cells. The action of KSR1 and AMPK was linked to the action of
transcriptional regulators PGC1{/estrogen-related receptor o
(ERRa), whose overexpression is evident in metastatic human
colon tumors and whose action is critical in colon tumor cell sur-
vival. These results demonstrate the feasibility of using
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FUSION to identify molecular targets of tumor-specific pathways
in K-Ras-driven oncogenic signaling.

MATERIALS AND METHODS

Immunoblotting. For a complete list of the cell lines, antibodies, and
reagents, see the supplemental material. Cells were lysed in cytoplasmic
lysis buffer containing 0.5% NP-40, 25 mM HEPES, 5 mM KCl, and 0.5
mM MgCl,, pH 7.4, and a nuclear lysis buffer containing 40 mM Tris-
HCI, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, and 0.25% sodium
deoxycholate, pH 7.4, with protease and phosphatase inhibitors. Proteins
were resolved using SDS-PAGE and transferred to nitrocellulose mem-
branes, blocked in Odyssey blocking buffer (Li-Cor), hybridized with pri-
mary and secondary antibodies in Tris-buffered saline (TBS)-0.1%
Tween 20, and detected using an Odyssey imaging system (Li-Cor).

Plasmids and shRNA constructs. A lentiviral p201-green fluorescent
protein (GFP) empty construct was a kind gift from Manabu Furukawa.
Flag-tagged KSR1 was cloned into this p201 vector, and both the empty
vector and Flag-tagged KSR1 were transfected into 293T cells using Lipo-
fectamine 2000 transfection reagent in serum-free medium. Medium was
changed after 24 h, and virus was collected at 48 and 72 h posttransfection.
Subconfluent HCT116 cells were infected with the virus with 8 pg/ml
Polybrene for 48 h. Expression of Flag-tagged KSR1 expression was ana-
lyzed by Western blotting. pLKO.1-puro constructs carrying short hair-
pin RNAs (shRNAs) targeting KSR1 and PGC1 and pGIPZ vectors car-
rying ERRa shRNA were transfected into HCT116 cells using 10 pl of
Lipofectamine 2000 transfection reagent and 4 g of DNA in serum-free
medium. The cells were selected with 10 ug/ml puromycin. Colonies were
picked after sterile glass rings were placed around individual colonies.
Sequences of shRNAs are provided in Table S1 in the supplemental ma-
terial. Lentiviral vectors plenti 6 and plenti 6-CA-PGCI1 were a kind gift
from Donald McDonnell (Duke University). These vectors were trans-
fected into 293T cells using a translentiviral packaging system (Thermo
Scientific). Virus was collected and cells were infected as described above.
Populations of cells expressing the empty or CA-PGC1f vector were se-
lected using 10 g/l puromycin.

siRNA transfection. All siRNAs and Dharmafect 4 reagent were pur-
chased from Dharmacon (GE-Dharmacon). Individual siRNA duplexes
were tested for target knockdown. Validated siRNAs were pooled for fur-
ther experiments. siRNAs at 50 nM were introduced into HCT116 cells
(432,000 cells/35-mm dish) by reverse transfection using Dharmafect 4
transfection reagent in antibiotic-free medium. SW480 cells (600,000
cells/35-mm dish) and SW620 cells (500,000 cells/35-mm dish) were
transfected with 100 nM siRNA using 10 pl of RNAIMAX transfection
reagent (Invitrogen). Human colonic epithelial cells (HCECs; 250,000
cells/60-mm dish) were transfected with 10 nM siRNA using 4 pl of
RNAIMAX. Sequences of siRNAs are provided in Table S2 in the supple-
mental material.

Gene expression analysis. Microarray analysis was performed on an
Affymetrix chip (HG_U133 Plus 2.0 arrays). Detailed methods are pro-
vided in Materials and Methods in the supplemental material.

Quantitative real-time PCR. Total RNA was isolated by TRI reagent
using an RNeasy kit (catalog number 74106; Qiagen). One microgram of
RNA was reverse transcribed into cDNA using iScript Reverse Transcrip-
tion Supermix (170-8840; Bio-Rad). Reverse transcription-quantitative
PCR (RT-qPCR) was performed using 50 ng of cDNA/per reaction mix-
ture using SYBR green reagent (catalog number 172-5265, SsoAdvanced
SYBR green Supermix; Bio-Rad) in an Mx3000P qPCR System (Agilent
Technologies). The sequences of the primers are given in Table S3 in the
supplemental material. Data are shown as the means of three replicates ==
95% confidence intervals.

ISH. In situ hybridizations (ISH) of PGC1@8 and ERRa in human
colon tumor tissues were performed using a ViewRNA fluorescent RNA
in situ hybridization kit (QVT0012; Affymetrics) according to the manu-
facturer’s instructions. Experiments were performed with Institutional
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Review Board (IRB) approval. Additional details are provided in the sup-
plemental materials.

Anchorage-independent growth in soft agar. A total of 5 X 10°
HCT116 cells/35-mm dish was used to perform anchorage-independent
growth assays according to protocols of Kortum and Lewis (5). Colo-
nies greater than 100 wm in diameter were counted, and representative
photomicrographs were taken after 14 days of incubation in 37°C and
5% CO,.

Anchorage-independent growth in poly(HEMA)-coated plates.
Ninety-six-well plates were coated in poly-2-hydroxyethyl methacrylate
[poly(HEMA)] by evaporating 200 wl of a 10 mg/ml solution in 95%
ethanol from each well. Cells were plated in complete medium on poly-
(HEMA)-coated wells at a concentration of 3.5 X 10* cells/100 .l at 48 h
posttransfection. Cell viability was measured by the addition of 100 pl
of CellTiter-Glo reagent (Promega) and determining luminescence
(POLARSstar Optima plate reader).

Cell cycle analysis using propidium iodide staining. Cells were
treated as indicated in the figures and their legends for 72 h. Cells were
collected, washed with 1X phosphate-buffered saline (PBS), and then
fixed with 70% ice-cold ethanol at —20°C for 1 h to overnight. Cells were
pelleted and rehydrated with 1X PBS at 37°C. Cells were again pelleted
and mixed with Telford reagent (1% Triton X-100, 33.6 mg/liter EDTA,
26.8 mg/liter RNase A, and 50 mg/ml propidium iodide in 1X PBS) and
stored overnight at 4°C before flow cytometry analysis.

Xenograft tumor studies. A total of 1 X 10° HCT116 cells carrying
various shRNA constructs were injected subcutaneously into the left flank
of athymic BALB/c nude (nu/nu) female mice. Tumor volume was calcu-
lated using the following formula: volume (mm?) = length X (width)? X
0.5. Survival was defined by the percentage of mice with tumor volumes
less than the maximally allowed 500 mm®. All studies were completed
following TACUC guidelines and with TACUC approval.

Statistics. Significance was calculated using analysis of variance
(ANOVA) (for the data in Fig. 1E, G,and H; 3A, C, E, and F; 7C and D; and
8B and E) or an unpaired, two-sided t test (for Fig. 3D). Significance in the
xenograft studies was calculated using a survival curve comparison based
on a log rank (Mantel-Cox) test (n = 10) (for Fig 11, 8C, and 8F).

Microarray data accession number. Raw CEL and processed RES files
were deposited in the NCBI Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/projects/geo/) under accession number
GSE65351.

RESULTS

KSR1 regulates anchorage-independent growth and tumor
maintenance. KSR1 regulates the oncogenic potential of activated
Ras (5). We analyzed the expression of KSR1 in colon tumor cells
and compared its expression to that in human colonic epithelial
cells (HCECs). Immunoblotting and qPCR analysis revealed that
KSR1 is overexpressed at both the protein (Fig. 1A) and mRNA
(Fig. 1B) levels in the colon tumor cell lines tested compared to its
expression in HCECs. To assess the feasibility of targeting KSR1 in
colorectal cancer therapy, we compared the roles of KSR1 in colo-
rectal cancer cells and HCECs. HCECs were isolated from normal
human colon and immortalized with CDK4 and human telome-
rase reverse transcriptase (hTERT). HCECs maintain wild-type
adenomatous polyposis coli (APC) protein, K-RAS, and TP53 and
form crypt-like structures in three-dimensional culture. However,
HCECs are incapable of anchorage-independent growth or tumor
formation in nude mice (10). RNAi of KSR1 did not significantly
affect the survival of HCECs but induced significant apoptosis in
HCT116 cells (Fig. 1C to E). Further, to determine the role of
KSRI in human colon tumor cell maintenance, we stably depleted
KSRI protein in HCT116 cells with shRNAs that targeted two
different sequences of KSR1 or a nontargeting shRNA (Fig. 1F).
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FIG 1 KSR1 regulates anchorage-independent growth and tumor maintenance in colon cancer cell lines. (A) Immunoblot of KSRI protein expression in
multiple colon tumor cell lines compared to expression in HCECs. (B) qPCR analysis of mRNA levels of KSR1 in colon cancer cell lines relative to levels in HCECs
normalized relative to glyceraldehyde-3-phosphate dehydrogenase. (C) Validation of individual siRNA duplexes targeting KSR1. (D and E) Immunoblot of KSR1
and analysis of apoptosis following siRNA-mediated depletion of KSR1 in HCECs and HCT116 cells. (F) Immunoblots of HCT116 cells following shRNA-
mediated depletion of KSR1. (G) Quantification of anchorage-independent HCT116 cell growth in soft agar following KSR1 RNAi. Representative bright-field
pictures are shown (bottom panel). (H) Immunoblots of KSR1 protein expression (top) and quantification of anchorage-independent HCT116 cell growth in
soft agar (bottom) following stable knockdown of KSR1 with a rescued phenotype shown after hairpin-resistant mouse Flag-tagged KSR1 was reintroduced. (I)
Xenograft tumor growth of HCT116 cells. ***, P < 0.001; ****, P < 0.0001.

Cells depleted of KSR1 were unable to form colonies when reintroduced shRNA-resistant mouse KSR1 (mKSR1) cDNA in
grown under anchorage-independent conditions in soft agar HCT116 cell clones depleted of KSR1. Reintroduction of KSR1
(Fig. 1G). To determine whether loss of anchorage-indepen- rescued the ability of KSR1-depleted clones to grow in soft agar
dent growth was indeed a specific effect of KSR1 depletion, we  (Fig. 1H). To evaluate the importance of KSR1 for in vivo tu-

3868 mcb.asm.org Molecular and Cellular Biology November 2015 Volume 35 Number 22


http://mcb.asm.org

AMPK and PGC1B Support Human Colon Tumor Cell Survival

A
Gene Set Nom P-value | FDR!
Hypoxia <0.001 <0.001
Glycolysis <0.001 0.012
P53 cis binding element <0.001 0.133
'FDR, false discovery rate
B . 20000~
—
& -
c
(]
+
£ 15000
=
5 Hl shControl
Q 3 KSR sh #1
8 10000+ [ KSR1 sh #2
(@]
=]
T
g 50001
o]
()
>
PPllB LOXL2 ACSL5 NDRG1 ALDOC BNIP3L BNIP3
D
1.0 \
Lq-;%(Nas\Bq;) g A — P =0.01
E 0.5
0
0O
=
3
S 0.0
S
©
> [0
E 5-0.54
-§ (¢}
% -1.04
siRNA (rank ordered, N = 817)

- SiRNA (N

NP oK

6 reporter genes

FIG 2 Selection and validation of reporters for FUSION analysis. (A) Hypoxia, glycolysis, and p53 cis binding element gene sets were identified as being
downregulated in the HCT116 cell line following stable knockdown of KSR1. (B) Reporters were chosen based on KSR1-dependent changes in expression. (C)
Unsupervised hierarchical clustering of reporter gene expression for siRNA gene depletions. The region with a cluster of siRNAs targeting KSR1 is enlarged. (D)
Pearson correlation plot of ranked FUSION results with a cutoff P value of 0.01.

mor development, a xenograft study was completed that These data demonstrate that KSR1 is required for human colon
showed that depletion of KSR1 was sufficient to suppress the tumor cell survival and tumor maintenance but superfluous for
growth and increase the latency of tumor formation when nontransformed colonic epithelial cells survival.

HCT116 cells with or without shKSR1 were grafted into immu- FUSION identifies AMPK as a functional analog of KSR1.
nocompromised mice (Fig. 11). Using a gene expression signature that reflected the loss of KSR1,
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FIG 3 The relative importance of AMPK subunits on colon cancer survival. (A) Viability of HCT116 cells under anchorage-independent conditions was assessed
following RNAi of KSR1 or AMPKy]1. (B) Validation of individual siRNA duplexes targeting AMPKy1. (C) Immunoblotting and apoptosis in HCECs and
HCT116 cells following RNAi of AMPKy1. (D to F) Immunoblotting and apoptosis in HCT116 cells following RNAi of AMPKala2 (D), AMPKal or AMPKa2
(E), and AMPKR1, AMPKB2, or AMPKB1RB2 (F). ****, P < 0.0001. RLU, relative light units.

we developed a high-throughput screen using FUSION (9) to
identify novel effectors of signaling pathways activated by onco-
genic Ras. Gene set enrichment analysis (GSEA) (11) of gene ex-
pression profiles from HCT116 cells with or without shRNA-me-
diated depletion of KSRI1 revealed a finite set of pathways
regulated by KSR1 (Fig. 2A). From these gene sets, the differential
expression of 10 candidate genes was confirmed using multi-
plexed branched DNA (bDNA) signal amplification (Quantigene,
version 2.0; Affymetrix). Six genes (LOXL2, ACSL5, NDRGI,
ALDOC, BNIP3L, and BNIP3) demonstrated the most consistent
downregulation at 48 and 72 h after siRNA-mediated depletion of
KSR1 in HCT116 cells and were selected to represent the loss of
the KSR1 phenotype (Fig. 2B). Two invariant housekeeping genes,
hypoxanthine phosphoribosyltransferase (HPRT) and peptidyl-
prolyl isomerase B (PPIB), were added to create an eight-probe
panel, permitting the normalization of each sample.
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To identify functional analogs of KSR1, we chose to interrogate
all the known human kinases using an siRNA library (siGenome;
Dharmacon/GE Healthcare, Lafayette, CO, US) containing known
kinases, phosphatases, and kinase-related genes (“kinome”). We
targeted KSR1 or each gene individually (n = 817) using pooled
siRNAs and collected gene expression signatures that represent
the loss of each gene. Unsupervised hierarchal clustering of the
average gene expression signature of the siRNA targeting KRS1
(siKSR1) and each of the 817 kinome siRNAs was performed and
demonstrated the tight clustering of positive-control siKSR1-con-
taining wells (Fig. 2C), demonstrating the ability of FUSION to
associate independent biological replicate samples based solely on
gene expression signatures. The samples were then sorted by their
Pearson correlation coefficients, and a 1% P value threshold was
used to further identify candidate genes (Fig. 2D).

Anchorage-independent growth on poly(HEMA)-coated tis-
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sue culture plates (12, 13) was used to validate hits from FUSION
with KSR1-like properties. RNAi of KSR1 significantly decreased
the viability of HCT116 cells plated on poly(HEMA)-coated tissue
culture plates compared to that of cells transfected with a nontar-
geting siRNA (Fig. 3A).

5" AMP-activated protein kinase (AMPK) is a cellular en-
ergy sensor that phosphorylates serine/threonine substrates to
increase available energy in response to an increased intracel-
lular AMP concentration. KSR1 and KSR2 physically interact
with AMPK in nonneoplastic settings to control metabolism
(14). AMPK is a trimeric holoenzyme that requires regulatory
B and -y subunits for the kinase activity of the a subunit to
function efficiently (15, 16). FUSION identified AMPKy1 as a
candidate gene that, similar to KSR1, should be essential for
tumor cell survival but is not required for the survival of non-
transformed cells. To validate AMPK+yl, HCT116 cells were
depleted of AMPKy1 with a pool of confirmed siRNAs with
different sequences than those used in the FUSION analysis
(Fig. 3B) and plated in poly(HEMA)-coated wells to assess an-
chorage-independent growth. RNAi-mediated knockdown of
AMPK1 significantly decreased viability in a manner compa-
rable to KSR1 depletion (Fig. 3A).

The a2f32y1 isoform of AMPK promotes colorectal cancer
cell survival. To determine the feasibility of using AMPK+1 as
a selective target in human colorectal cancer cells, AMPK+y1
was knocked down in HCT116 cells and in HCECs (Fig. 3C).
RNAi of AMPKyI induced significant apoptosis in HCT116
cells but did not affect survival in the HCECs (Fig. 3C). The vy
subunit of AMPK stabilizes the catalytic a subunit and is re-
quired for effective holoenzyme activity (17). Similar to loss of
AMPK+y1, combined RNAi-mediated depletion of AMPKal
and AMPKa?2 isoforms also decreased the viability of the colon
tumor cell line HCT116 (Fig. 3D). To further to examine which
isoform of the a subunit is responsible for maintaining viabil-
ity of colorectal cancer cells, we targeted AMPKal and
AMPKa2 subunits separately by RNAi (Fig. 3E). Depletion of
AMPKa2 but not AMPKal was sufficient to induce apoptosis
(Fig. 3E) in HCT116 cells. These data demonstrate the depen-
dency of colorectal cancer cells on AMPK signaling for their
survival. The B subunit of AMPK interacts with both the o and
v subunits and helps in complex formation. To investigate the
potential role of AMPK subunits in maintaining colon tumor
cell viability, we performed RNAi of both AMPKB1 and -2
(Fig. 3F). Depletions of AMPKB2 and AMPKB1B2 induced
similar levels of apoptosis in HCT116 cells, while depletion of
AMPKP1 did not significantly induce apoptosis (Fig. 3F), dem-
onstrating the cancer cells’ increased dependency on AMPK{32
compared to the requirement for AMPKR1.

PGCI1 and ERRa« are key downstream effectors of K-Ras,
KSR1, and AMPK<y1. We previously defined the role of PGCla
and ERRa as downstream effectors necessary to support anchor-
age-independent growth of H-Ras"'?-transformed mouse em-
bryo fibroblasts (MEFs) (6). PGCla and PGC1B (PGCla/B) and
ERRa/B/7yisoforms interact in several combinations to form tran-
scriptional coactivator and transcription factor complexes that
regulate hundreds of genes and promote a diverse variety of phe-
notypes (18, 19). Interestingly, we detected PGC1[ but no PGCla
in human colon tumor cell lines. To assess the ability of KSR1 and
oncogenic K-Ras to modulate PGC1 and ERRa expression in
colon cancer cell lines, we inhibited the expression of either
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FIG 4 PGCI1B and ERRa are key downstream effectors of K-Ras and KSR1
and are regulated through an ERK-independent mechanism. (A) Immuno-
blots of PGC1B, ERR«, phospho-MEK1/2 (pMEK1/2), total MEK1/2, and
phospho (pERK1/2)- and total ERK1/2 in HCT116 cells following RNAI of
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lowing siRNA-mediated depletion of ERK1/2 alone or together (B) or inhibi-
tion of MEK activity with 20 pM U0126 or PD0325901 (C) in HCT116 cells.

protein by RNAi in HCT116 cells. Depletion of K-Ras and
KSR1 decreased the expression of both MEK1/2 and ERK1/2 in
addition to reducing the expression of both PGC1f and ERRa
(Fig. 4A). This observation demonstrates that the effector
pathway used by KSR1 and oncogenic K-Ras to control tumor-
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following siRNA-mediated depletion of AMPKy1 in SW480 and SW620 cell lines. (C) Immunoblot of PGC1f and ERRa protein expression following
siRNA-mediated depletion of AMPKal or AMPKa2 in HCT116 cells. (D) Phosphorylation of AMPK at threonine 172 and AMPKa protein expression in
HCT116 cells following K-Ras, KSR1, or AMPKy1 depletion. (E) Phosphorylation of AMPK at threonine 172 in a panel of colon tumor cell lines.

igenesis by regulating PGC1 and ERRa expression in a model
system is intact in human cancer cell lines. To evaluate if KSR1
and K-Ras modify the expression of PGC1 and ERRa by mod-
ulating MEK and ERK activation, we targeted these down-
stream effectors individually. siRNA-mediated depletion of
ERK1 and ERK2, either alone or in combination (Fig. 4B), or
treatment with the MEK inhibitor U0126 or PD0325901 (Fig.
4C) did not decrease the protein expression of PGC1p and
ERRa, indicating a MEK/ERK-independent role of KSR1 in the
regulation of PGCIB and ERRa.

Similar to depletion of KSR1, RNAi of AMPKy1 decreased the
protein expression of PGCIf and ERRa in HCT116 (Fig. 5A),
SW480, and SW620 cells (Fig. 5B). Further depletion of AMPKa2
but not the AMPKal subunit decreased PGCIB and ERRa in
HCT116 cells (Fig. 5C). However, unlike RNAi of K-Ras or KSR1
(Fig. 4A), RNAi of AMPK+y1 had no effect on MEK/ERK phos-

3872 mcb.asm.org

Molecular and Cellular Biology

phorylation (Fig. 5A), indicating that its effects on PGC1{ and
ERRa are independent of the MEK/ERK pathway. To assess
whether the phosphorylation of AMPK is dependent on K-Ras
and KSR1 expression, we individually depleted HCT116 cells of
K-Ras, KSR1, or AMPKvy1 by RNAI. As expected, depletion of
AMPK+y1 decreased phosphorylation of AMPK at Thrl72,
likely because the AMPK+y1 subunit is required for AMP bind-
ing and activation of the kinase (20). While inhibition of K-Ras
did not affect AMPK phosphorylation, inhibition of KSR1 de-
creased AMPKwy1 levels, which in turn led to a decrease in
AMPK activation (Fig. 5D). To assess the levels of AMPK acti-
vation in colon tumor cells compared to activation in human
colonic epithelial cells, we performed immunoblot analysis for
phosphorylation of AMPK at threonine 172 of cytoplasmic ly-
sates prepared from a panel of colon tumor cell lines and com-
pared its level to that observed in HCECs. The level of AMPK
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phosphorylation at threonine 172 was variable in different cell
lines (Fig. 5E).

PGCI1f and ERR« are overexpressed in colon cancer and are
required for colon cancer survival both in vitro and in vivo. To
assess the role of PGC1B and ERRa in colorectal cancer, we deter-
mined their expression levels in seven colorectal cancer cell lines
and HCECs. Although no PGCla was detected, all seven colorec-
tal cancer cell lines that were examined showed elevated expres-
sion levels of PGC1@ and ERRa proteins in contrast to the unde-
tectable levels in HCECs (Fig. 6A). mRNAs encoding PGC1 (Fig.
6B) and ERRa (Fig. 6C) were significantly higher in all colorectal
cancer cell lines than in HCECs.

To determine the extent to which PGC1B and ERRa expres-
sion levels are elevated in colorectal cancer, we used in situ
hybridization (ViewRNA; Affymetrix) to detect the mRNAs for
PGCI1p and ERRa in normal colon epithelia, primary colorec-
tal cancer, and liver metastases. In situ hybridization demon-
strated that PGC1B and ERRa mRNAs were present at low
levels in tissues from normal colonic mucosa, but each tran-
script was increased in both primary and metastatic colorectal
tissue samples (Fig. 7).

To determine the importance of PGC1 and ERRa to the tu-
morigenic properties of human colon tumor cells, we depleted
PGC1 and ERRa using RNAi in the human colon tumor cell line
HCT116. Three shRNAs targeting different regions of the PGCI3
transcript and two shRNAs targeting different regions of the
ERRa transcript were used to stably deplete PGC1f and ERRa
protein expression in HCT116 cells. shRNA targeting PGC1(3
(Fig. 8A) resulted in a reduction in PGCI1f3 protein expression, a
concomitant reduction in ERRa protein expression, and sup-
pressed anchorage-independent growth in soft agar (Fig. 8B).
shRNA-mediated depletion of ERRa (Fig. 8D) also suppressed
anchorage-independent growth (Fig. 8E), suggesting that mainte-
nance of ERRa expression by PGC1f is contributing to the tu-
morigenic properties of colon cancer cells. RNAi-mediated deple-
tion of PGC1B or ERRa also suppressed tumor formation of
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HCT116 cells grafted into immunodeficient mice (Fig. 8C and F).
However, a constitutively active form of PGCIp (CA-PGCIp)
expressed from an exogenous promoter robustly increased ERRa
expression (Fig. 9A) but was unable to rescue the effects of K-Ras,
KSR1, and AMPKy!1 depletion in an anchorage-independent cell
viability assay (Fig. 9B and C). These results reveal that although
PGCI1p and ERRa play a central role in colon tumor cell growth
and tumor maintenance, transient overexpression of CA-PGCI1f3
is insufficient to rescue the loss of cell viability observed following
K-Ras, KSR1, or AMPKvy1 depletion.

PGC1p and ERRa are key downstream effectors of
AMPKvy1. To investigate the potential mechanism of regulation
of PGCIB by AMPK, we quantified the mRNA levels of PGCIf3
and ERRa after RNAi of AMPK+yl. qPCR analysis suggests that
depletion of AMPK does not affect the mRNA levels of PGCIf3
and ERRa, indicating that the regulation is posttranscriptional
(Fig. 10A and B). To investigate this mechanism, HCT116 cells
were treated with the translational inhibitor cycloheximide
(CHX) in the presence or in the absence of the proteosomal in-
hibitor MG132. Treatment with CHX decreased the protein level
of PGC13, which could be rescued with MG132 (Fig. 10C). These
data suggest that PGC1f is modified at the posttranscriptional
level and is degraded through the proteosome. To investigate the
possible role of AMPK in this process, RNAi of AMPKy1l was
performed for 72 h, after which cells were treated for 6 h with
either a dimethyl sulfoxide (DMSO) control or MG132. Depletion
of AMPKvy1 decreased the protein levels of PGCI[3, which was
rescued by the addition of the proteosomal inhibitor MG132 (Fig.
10D). Similar to AMPK+y1 depletion, RNAi of K-Ras also de-
creased the PGC1 protein level, which could be rescued upon
MGI132 treatment (Fig. 10E). The effect of KSR1 depletion on
PGC1 protein levels is consistent with K-Ras and AMPK+y1 de-
pletion; however, the restoration of PGCI protein levels with
MG132 treatment in KSR1-depleted cells is modest (Fig. 10F).
These data suggest that AMPK, K-Ras, and, to a lesser extent,
KSRI regulate the stability of PGCI1, revealing a distinct Ras-
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driven and KSR1-dependent signaling pathway in human cancer
cells that is also modulated by AMPK.

DISCUSSION

In human colon tumor cells dependent upon oncogenic Ras,
KSRI is required for anchorage-independent proliferation, sur-
vival, and in vivo growth. In nontransformed human colon epi-
thelial cells (HCECs), KSR1 is dispensable for survival, consistent
with the observation that KSR1 is not required for normal devel-
opment (4). Transient depletion of KSR1 results in about 30% cell
death in Ras-driven cancer cells. Additionally, cells that survive
KSR1 knockdown lose their ability to form anchorage-indepen-
dent colonies in soft agar. These in vivo and in vitro analyses dem-
onstrate that tumor-specific pathways are activated by oncogenic
Ras in a KSR1-dependent manner.

With KSRI1 as a reference standard, we used FUSION (9) to
identify AMPKvy1 as a gene that is required for human colon tu-
mor cell survival. Subsequent analyses showed that the a2 isoform
of the AMPK kinase subunit and the B2 isoform of the AMPK
regulatory subunit are also essential components. This observa-
tion suggests that a specific composition of the trimeric enzyme
regulates effector pathways critical to tumor cell survival.

November 2015 Volume 35 Number 22

Molecular and Cellular Biology

AMPK has been shown to both support and inhibit the trans-
formed phenotype (21-23), and one of its activating kinases,
LKB1, is a well-known tumor suppressor (24, 25). However, LKB1
has multiple targets (26) that may contribute to tumorigenesis.
Indirect evidence supporting a tumor-suppressive role for AMPK
comes from the inverse correlation of cancer rates with the use of
the antidiabetic drug metformin, an electron transport complex I
inhibitor that indirectly activates AMPK via suppression of elec-
tron transport-driven ATP synthesis. Metformin was associated
with a 30% reduction in solid cancer incidence compared to re-
sults with other diabetic treatments (27). However, metformin
may inhibit cancer susceptibility via its general effect on mito-
chondrial function (28) or through other mechanisms of action
distinct from its effect on AMPK (29). On the other hand, disrup-
tion of the AMPKa1 subunit inhibits aerobic glycolysis and sup-
presses lymphomagenesis (23). Further, AMPK has additional ef-
fects that potently impair cell growth and proliferation. AMPK has
been reported to phosphorylate B-Raf, impairing its interaction
with KSR1 and the subsequent activation of MEK and ERK (30).
AMPK promotes cell cycle arrest through phosphorylation of p53,
and inhibition of the mTORCI complex through phosphoryla-
tion of the TSC2 complex and Raptor (31-33). AMPK activation
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of HCT116 cells following depletion of K-Ras, KSR1, or AMPKvyl. (A) Immu-
noblot showing ERRa protein levels with either an empty vector control (V)
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PGCI1 levels (B) corresponding to the viability data in control (V) and CA-
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inhibits fatty acid and cholesterol synthesis, which is essential to
meet the increased demand in tumor cells for lipid membranes
(34, 35).

Recent evidence, however, has pointed to the tumor-promot-
ing role of AMPK under certain circumstances. Ras"'*-activated
AMPKa1/a2 null MEFs are resistant to tumor formation in vivo,
with increased susceptibility to anoikis (36, 37), and KSR2-depen-
dent MEF transformation requires AMPK activation (38). AMPK
activity is increased in early stages of gliomas (39). AMPK sustains
lung cancer cell viability under conditions of cellular and meta-
bolic stress by maintenance of NADPH homeostasis (40). In these
lung carcinoma cells, AMPK stimulates fatty acid oxidation by
phosphorylating and inhibiting acetyl coenzyme A (acetyl-CoA)
carboxylase to maintain NADPH homeostasis, which is required
for anchorage-independent survival of the tumor cells (40). This
observation mirrors our observation that the depletion of a spe-
cific AMPK subunit composition impairs anchorage-independent
survival of HCT116 colon cancer cells. This observation is also
consistent with the suggestion that the contribution of AMPK to
tumor maintenance may be a function of tumor stage (41). Ad-
ditionally, recent evidence has demonstrated the dichotomy in the
apparent role of the al and a2 AMPK subunits. AMPKal '~
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mice have a normal metabolic phenotype, while AMPKa2 ™/~
mice demonstrate a phenotype similar to that of type II diabetes
(42). These apparent differences suggest that the potential for
AMPK to act as a tumor suppressor or oncogene may be, at a
minimum, a function of the « catalytic subunit.

While FUSION did not identify AMPKa2, FUSION is limited
by the efficacy of the siRNAs present in the library and was de-
signed to limit false positives preferentially over false negatives. It
is likely other KSR1-like genes were not identified. The selective
dependence of HCT116 cell survival on the AMPKa?2 catalytic
subunit suggests that pathways promoting tumor cell survival pre-
fer trimeric AMPK enzymes containing the a2 subunit. The ex-
pression and activity of specific AMPK subunits in cell prolifera-
tion and cancer have been recognized recently. An RNAi screen
demonstrated that in prostate cancer the AMPKB1 subunit was
required for tumor maintenance and found that it was elevated in
metastatic tissues compared to levels in the primary tumor (43). A
chemical genetic screen detected 28 novel substrates for AMPKa2,
several of which were essential for mitotic progression (44). A
careful examination of AMPK substrates may yield insight into
AMPK-dependent pathways that are selectively required for Ras-
driven tumor cell survival.

Our data reveal a previously unreported function of AMPK to
support the expression of PGC1 and ERRa and confer a survival
advantage to colon tumor cell lines. We previously identified
PGCla and ERRa as genes upregulated by KSR1 in an H-Ras"'2-
dependent manner (6). Here, we show K-Ras-mediated and
KSR1-dependent upregulation of PGC1p and ERRa in colon tu-
mor cells and tissues. Our data indicate a previously unappreci-
ated role of KSR1 and oncogenic K-Ras in promoting the expres-
sion of PGC1f and ERRa in human colorectal cancer. These data
also indicate that AMPK confers a growth advantage to colon
tumor cell lines by signaling through metabolic regulators PGC1f
and ERRa. I situ hybridization shows that PGC1{ and ERRa are
expressed at very low levels in primary human colon epithelial
cells but markedly elevated in colorectal cancer metastases. Fur-
thermore, suppressing PGCI and ERRa expression decreased
colon tumor cell viability and anchorage-independent growth and
delayed tumor formation in nude mice, making them potential
targets in cancer therapy. PGC1 and ERRa have been studied
extensively as metabolic regulators that promote tumorigenesis in
breast cancer (45-49). Breast cancer has a low incidence of acti-
vating Ras mutations but are often driven by the overexpression of
ERBB2, which signals through Ras (50). Thus, pathways regulat-
ing the expression of PGC1 isoforms and ERRa are of increasing
relevance to the etiology of cancer in general.

Very little is known about the posttranslational modifications
of PGCIB. PGC1 proteins undergo extensive posttranslational
modification, which has been well documented for PGCla.
PGCla has been shown to be phosphorylated by AMPK at T177
and S538, which increases the activity of PGCla at its own pro-
moter, inducing its transcription (51). Recent evidence indicates
that the E3 ligase synoviolin ubiquitinates and targets PGC1 for
degradation (52). We demonstrate that not only AMPK but also
K-Ras and, to a lesser extent, KSR1, stabilize PGC1f protein,
which, based on its rescued expression in the presence of a pro-
teosomal inhibitor (Fig. 10), appears to be degraded by the pro-
teosome. Further studies will define the mechanisms that lead to
AMPK-dependent effects on PGC1 stability. Further, it will be
interesting to see whether the stability of PGCIp as conferred by
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K-Ras and KSR1 is dependent or independent of AMPK. The
modest rescue of PGC1p in the presence of the proteasomal in-
hibitor in KSR1-depleted cells may point toward a broader role
played by KSR1 in the regulation of PGC13, potentially at the level
of PGC1p posttranscriptional modification or translation.

The degree to which the aberrant expression of PGCIP and
ERRa persists in additional tumors bearing oncogenic Ras alleles
will reveal the importance of these transcriptional regulators in
the creation of tumor cells and the promotion of their survival.
Elucidation of the detailed mechanisms that control their expres-
sion and their action may expose novel vulnerabilities in Ras-
driven tumors, creating new avenues for therapy in a broad spec-
trum of cancers.
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