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The Scaling of Human Contacts 
and Epidemic Processes in 
Metapopulation Networks
Michele Tizzoni1, Kaiyuan Sun2, Diego Benusiglio1,3, Márton Karsai4 & Nicola Perra2

We study the dynamics of reaction-diffusion processes on heterogeneous metapopulation networks 
where interaction rates scale with subpopulation sizes. We first present new empirical evidence, 
based on the analysis of the interactions of 13 million users on Twitter, that supports the scaling 
of human interactions with population size with an exponent γ ranging between 1.11 and 1.21, as 
observed in recent studies based on mobile phone data. We then integrate such observations into a 
reaction- diffusion metapopulation framework. We provide an explicit analytical expression for the 
global invasion threshold which sets a critical value of the diffusion rate below which a contagion 
process is not able to spread to a macroscopic fraction of the system. In particular, we consider the 
Susceptible-Infectious-Recovered epidemic model. Interestingly, the scaling of human contacts is 
found to facilitate the spreading dynamics. This behavior is enhanced by increasing heterogeneities 
in the mobility flows coupling the subpopulations. Our results show that the scaling properties of 
human interactions can significantly affect dynamical processes mediated by human contacts such as 
the spread of diseases, ideas and behaviors.

The network of social interactions between individuals in a community represents the main substrate for 
a number of spreading phenomena such as the diffusion of infectious diseases, ideas and behaviors1–3. In 
the past fifteen years network science has developed a wide range of mathematical tools to study and 
model such dynamical processes3–5. In particular, building upon a long research tradition in ecology6, 
the theoretical framework of reaction-diffusion (RD) processes on metapopulation networks has been 
proved to be extremely valuable for describing contagion phenomena in spatially structured systems7. In 
this framework, individuals are represented by particles that reside in nodes of a network and migrate 
along the connections between them. Each node describes a subpopulation, i.e. a city or a town, while 
each link represents a travel route. Inside each node, particles react according to the rules of the process 
under study. Such modeling approach has been widely used to describe the dynamics of a number of real 
world complex systems8–10. Its most successful application, though, has been the modeling of the spread 
of infectious diseases in structured populations11–24. A common assumption in RD metapopulation mod-
els is that particles interact in each node with the same contact rate, constant and equal for any given 
size of the subpopulation. In mathematical epidemiology, such assumption corresponds to the 
frequency-dependent transmission rate25. However, in the past years, considerable efforts have been 
devoted to quantitatively measure human mixing patterns in a variety of settings, from small spatial and 
temporal scales26 to country wide studies27. This has been possible thanks to the availability of new 
emerging technologies28, such as RFID sensors26, mobile phones29 and social media30. A recent study 
based on the analysis of large mobile phone datasets31 has shown evidence that the per capita social 
connectivity scales with the subpopulation size. In particular, the authors of31 found that the cumulative 
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number of social contacts of individuals in a city scales as γN  where γ > 1 and N is the city’s population. 
This finding is consistent with a number of scaling properties observed in cities such as wages, crime 
rates, infrastructure per capita32,33 and with theoretical models of urban development34,35.

In this work, we first present new empirical evidence, based on the analysis of human interactions 
on Twitter that supports the contacts scaling hypothesis. Then, we integrate such observation into a RD 
metapopulation framework characterized by realistic heterogeneities in the distribution of the number 
of connections per node and in traffic flows. In particular, we study a Susceptible-Infectious-Recovered 
(SIR) epidemic dynamics inside each subpopulation36. We provide an explicit analytical expression for 
the global invasion threshold that sets a critical value of the diffusion/mobility rate below which a con-
tagion process is not able to spread to a macroscopic fraction of the system17. We show that the scaling 
of interaction rates with subpopulation size significantly alters the contagion dynamics leading to a lower 
critical value of the mobility rate. Interestingly, such variations are enhanced by increasing heterogenei-
ties in mobility patterns coupling the subpopulations.

Results
The scaling of human contacts on Twitter.  We analyze the interactions between users of the 
micro-blogging platform Twitter in several countries. We considered two different geographical aggre-
gations (see Material and Methods for more details). The first maps about 13 millions Twitter users into 
2,371 census areas centered around major transportation hubs12 in 205 countries. Such aggregation level 
has been used to model pandemic spread at the global scale13,24. The second maps about 4.6 million 
Twitter users into 1,344 metropolitan areas, across the USA and 31 European countries.

To extract the relation between contacts and population size, we follow the methods used by Schläpfer 
et al.31. In both aggregation levels we build the communication network through Twitter mention inter-
actions (see Material and Methods). In our analysis, a link is placed between users A and B within a given 
census area if and only if A mentioned B and vice versa at least once. We calculate the cumulative degree 
= ∑ =C ci

S
i1 , where ci is the degree of user i and S is the number of users within a census area, and rescale 

it by the users’ coverage S
N

 to obtain =C Cr
N
S

, where N is the total population of a census area obtained 
from official sources37–39. The rescaling procedure corresponds to an extrapolation of the observed aver-
age nodal degree, =c C

N
r , to the entire population of the census area31, and effectively reduces fluctua-

tions due to variations in coverage from city to city.
To test the scaling hypothesis, we fit the rescaled cumulative degree Cr to a power-law function of the 

population of the census area, in the form γ= +C Nln lnr , and compare the result against a null 
model, represented by a linear function of the population, = + ˆC Nln lnr , where  and ̂ are con-
stant. In all cases the power-law function is found to be a better fit to the data than the linear regression, 
based on the adjusted R2, and the difference between the exponent γ > 1 and the simple linear regres-
sion is statistically significant (p <  1.001, details in the Supplementary Information file). More specifically, 
we find, consistently with Schläpfer31, that the rescaled cumulative degree Cr is characterized by a 
power-law relation with the population of the census areas, ∝ γC Nr  with exponent γ = . ± .1 11 0 01 
considering basins and γ = . ± .1 20 0 02 considering metropolitan areas (see Fig. 1). We also restrict our 
analysis of the Twitter dataset to the two aggregation levels in the USA and Europe. We find that the 
scaling behavior still holds, with the exponent γ in the same range, i.e. γ = . ± .1 15 0 01 in the USA and 
γ = . ± .1 21 0 04 in Europe considering census areas, and γ = . ± .1 16 0 02 in the USA and 
γ = . ± .1 18 0 02 in Europe considering metropolitan areas.

Similar results are obtained considering also the connections of a user in the whole network. In par-
ticular, when the total number of Twitter interactions C is calculated by assuming ci to be the degree of 
user i in the entire network, ci is no longer confined within the basin/metropolitan area boundary and 
the interactions between user i and users from other basin/metropolitan areas or users that are not 
geo-mappable are also taken into account (see Fig. S2 in the Supplementary Information file). In this 
case, we find γ = . ± .1 11 0 01 in the US, γ = . ± .1 06 0 01 in Europe and γ = . ± .1 11 0 01 when con-
sidering all the basins in the world. For the case of metropolitan areas, we find γ = . ± .1 07 0 01 in the 
US, γ = . ± .1 09 0 03 in Europe and γ = . ± .1 08 0 02 when combining all the metropolitan areas of the 
US and Europe together. In Table 1 we report a complete summary of the values of γ computed at all 
scales and aggregation levels.

Global invasion threshold and numerical simulations.  To study the effect of the scaling of contact 
rates in RD processes, we consider a metapopulation network of V nodes, and N individuals. Each node 
i has degree ki, and population size Ni(t). The degree describes the number of subpopulations connected 
to it. We adopt a degree-block approximation, assuming all the subpopulations of degree k to be statis-
tically equivalent15–17. We denote the degree distribution of the network as P(k). To describe the diffusion 
of individuals, we assume that the rate at which individuals leave a subpopulation is independent of its 
degree and equal to p. However, to reproduce the properties of real transportation networks40, we con-
sider heterogeneous distributions of degree and traffic flow. In particular, the diffusion rate of individuals 
between two nodes of degree k and ′k  is =

ω
′

( ′ )θd pkk
k k
T k

0 , where Tk provides the necessary normalization, 
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and ω0 is a system dependent constant that rescales the diffusion rates between nodes. Without lack of 
generality we set ω0 =  1. It is possible to show that, under such conditions, the population of a node of 
degree k, ( )N tk , at equilibrium is given by =

θ

θ

+

+

–N Nk
k
k

1

1
, where = ∑ ( )–N P k Nk k

17. As a consequence, 
the exponent θ, which modulates the heterogeneity of the mobility flows, also regulates the heterogeneity 

Figure 1.  (A) Rescaled cumulative degree Cr against population N, measured between 13129406 Twitter 
users distributed across 2371 basins in 205 countries. (B) Rescaled cumulative degree against population, 
measured between 4606444 Twitter users in 1344 metropolitan areas in 31 countries. We normalized 
the values of Cr and N by their average to compare the results across different countries. Insets show the 
dependency of Cr on N restricted to the Twitter users in the US and Europe.

Geographical aggregation Scaling exponent γ

Basins (internal connections only) 1.11 ±  0.01

Basins (all connections) 1.11 ±  0.01

Metro areas (internal connections only) 1.20 ±  0.02

Metro areas (all connections) 1.08 ±  0.02

Basins in US (internal connections only) 1.15 ±  0.01

Basins in US (all connections) 1.16 ±  0.02

Metro areas in US (internal connections only) 1.16 ±  0.02

Metro areas in US (all connections) 1.09 ±  0.03

Basins in Europe (internal connections only) 1.21 ±  0.04

Basins in Europe (all connections) 1.06 ±  0.01

Metro areas in Europe (internal connections only) 1.18 ±  0.02

Metro areas in Europe (all connections) 1.08 ±  0.02

Table 1.   Summary of the scaling exponents γ measured on the Twitter dataset. Error intervals 
correspond to the standard error of the slope in the regression fit. When referring to Europe, the following 
31 countries are taken into consideration: Belgium, France, Bulgaria, Bosnia Herzegovina, Croatia, Germany, 
Hungary, Finland, Denmark, Netherlands, Portugal, Latvia, Lithuania, Luxembourg, Romania, Poland, 
Greece, Estonia, Italy, Albania, Czech Republic, Cyprus, Austria, Ireland, Spain, Macedonia, Slovakia, Malta, 
Slovenia, United Kingdom, Sweden.
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of the subpopulations size distribution. We model the reactions, taking place in each node, as a stochastic 
SIR epidemic process where individuals are partitioned according to their health status: susceptibles (S), 
infectious (I) and recovered (R). The SIR dynamics are defined by two transitions: the infection process 
+ →S I I2 , regulated by the transmissibility λ , and the recovery process →I R, tuned by the recovery 

rate μ2.
Here, we investigate the case in which the infection dynamics is dependent on the local population 

size. More precisely, inside each node, we consider an homogeneous mixing approximation where the 
average contact rate scales with the population size as ∼ ηc Ni . The values of the exponent γ measured 
in real social networks correspond to η γ= − 1 ranging between 0.11 and 0.2. The value of is η meas-
ured by Schläpfer et al.31 is η =  0.12, 95% CI: [0.11− 0.15]. Without lack of generality we focus on the 
case η >  0 in our analytical treatment, then we consider the range η ∈ − .[0 0 48] for the numerical solu-
tions of the system’s equations and η ∈ − .[0 0 12] for Monte Carlo simulations. The case η =  0 corre-
sponds to the classic SIR model with frequency-dependent transmission rate while η =  1 corresponds to 
the density-dependent case. The immediate consequence of the scaling of contacts is that the basic repro-
ductive number R0, i.e. the average number of newly infected individuals generated by an infectious one 
in a fully susceptible population36, depends on the population size as (see Material and Methods for the 
complete derivation):


µ µ

( ) =
λ

=
λ

= .
( )

η η
θ η

θ η
ξ

( + )

+

–R k N N k
k

k
1

k0

1

1

In this expression  =
µ
λ η

θ η+

–N
k1

 is a constant that depends on the characteristics of the disease and 
the metapopulation structure. It is immediate to see from Eq. 1 that R0(k) will significantly vary from 
one location to another, depending on the degree of each node and on the exponent ξ θ η= ( + )1 , 
which combines the heterogeneity of the traffic flows and of the contact rates.

The necessary and sufficient condition for the local spreading of the disease in nodes of degree k is 
given by the local epidemic threshold, i.e. ( ) >R k 10 . It is important to notice that this may not be 
satisfied in all the subpopulations. Such situation is realistic for a number of epidemic scenarios where, 
due to specific characteristics of the local population, the value of the basic reproductive number varies 
across locations41. The crucial question in metapopulations systems is evaluating the conditions under 
which a local epidemic outbreak leads to a global outbreak. This implies defining an invasion threshold 
R* for the whole system17. In order to find an analytical expression for R*, we describe the epidemic 
invasion as a branching process11,14,15,17,42 relating the number of subpopulations of degree k that have 
been reached by the epidemic at generation n, Dk

n, with −Dk
n 1:

∑= ( ′ − ) ( ′)( − ( ) )




−





.

( )′
′
− −λ

−
′D D k P k k R k

D
V

1 1 1
2

k
n

k
k
n k

n

k

1
0

1
k k

The term ′ −k 1 considers that each diseased subpopulation of degree ′k  and generation n −  1, ′
−Dk

n 1, 
can seed all the connected nodes but the one from which it received the infection. The term ( ′)P k k  
describes the probability that nodes of degree ′k  are connected with nodes of degree k. We consider 
uncorrelated networks where this conditional probability does not depend on ′k  and ( ′) = ( )/P k k kP k k . 
The term − ( )−λ ′R k1 0

k k defines the probability that, given λ ′k k infectious individuals seeding a node of 
degree k, the subpopulation will experience a local outbreak43. This number can be estimated as:

µ
δλ =

( ′) −

( ′)
× × × ( ′) .

( )
′ ′ ′

R k
R k

N d R k2
1 1 [ ]

3
k k k k k

0

0
2 0

Indeed, the total number of infected individuals generated at the source can be approximated as 
( ′) −

( ′) ′N2 R k
R k k

10

0
2

17: infectious individuals recover, on average, after μ−1 time steps, and the diffusion rate 
between the two degree classes is ′dk k. It is important to notice that such approximations are valid only 
for ( ′) >R k 10 . Indeed, if this condition is not satisfied the disease will not be able to spread locally in 
any subpopulation ′k . To address this issue, we introduce a step function:

δ ( ′) =






′ ( ′) >

′ ( ′) < . ( )
R k

k R k
k R k

[ ]
1 for 1
0 for 1 4

0
0

0

Finally, the last term in Eq. 2 represents the fraction of subpopulations of degree k that are not yet 
infected. By plugging all these terms in Eq. 2, it is possible to solve it analytically and find an explicit 
expression for the global epidemic threshold:
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See Material and Methods for more details and the Supplementary Information file for the complete 
derivation. All the moments denoted by a star are calculated over a subset of degree values. More spe-
cifically, we define the general starred degree moment as δ= ∑ ( ) ( )⁎k R k k P k[ ]x

k
x

0 . The function   
describes the dependence of the threshold on the properties of the network, the mobility patterns, the 
scaling of contacts, and the details of the disease. Interestingly, the denominator factor θ+k1 2

 is related 
to the mobility between subpopulations and not to the spreading dynamics within nodes, therefore the 
corresponding moment of the degree distribution is calculated over all the values of k.

The expression of the global invasion threshold defines the range of parameters for which a global 
outbreak is possible, corresponding to the solutions of the equation R* =  1. For R* <  1 an outbreak seeded 
in any subpopulation will eventually die, while for R* >  1 the contagion process will eventually reach a 
finite fraction of the system with non-zero probability. The transition between the two regimes is typi-
cally continuous15. In order to isolate the effects introduced by heterogeneous contact rates, we study the 
system dynamics for different values of η compared to the case η =  0 that has been previously studied15,17. 
Indeed, from Eq. 5 it is possible to see that, by setting η =  ξ =  0, we consistently recover the same expres-
sion of R* derived in the case of a constant contact rate across subpopulations17. In particular, we compare 
the value of the critical mobility rate pc, corresponding to the solution of R* =  1 ( )= µ −

–pc N2
1 , in the 

two cases: η >  0 and η =  0. The introduction of a scaling contact rate in every subpopulation, modifies 
the result of ref. 17 by increasing the overall heterogeneity of the metapopulation system and, eventually, 
by reducing the critical value of p. More specifically, values of η >  0 as observed from empirical social 
networks, alter the spreading dynamics by accelerating the contagion process and thus increasing the 
value of R*. This implies that, for a given set of parameters describing the mobility network, the metap-
opulation system and the transmissibility of the infectious agent, the critical mobility value will be lower 
for larger values of η. Figure 1A shows the invasion region in the plane ( , λ)⁎R p  for η =  0 and η =  0.12, 
with the latter clearly displaying a larger portion of the phase space in the global spreading regime. In 
particular, the scaling of contacts with subpopulation sizes allows the global spreading of diseases char-
acterized by significantly smaller values of transmissibility λ . As η increases, the difference in the mobil-
ity threshold pc grows smaller with constant λ , while the critical transmissibility λ c decreases continuously 
for a given value of p (see Fig. S5 of the Supplementary Information file).

We confirm our analytical findings through extensive numerical simulations performed considering 
uncorrelated scale-free networks with V =  105 nodes, and exponent γ =  2.1 44. In Fig.  2B, we compare 
the global attack rate, i.e. the final fraction of subpopulations that experienced a local outbreak, for two 
identical metapopulation structures and different values of η (η =  0.06, 0.12). The results of 2 ×  103 Monte 

Figure 2.  (A) Phase diagram defined by the threshold condition R*(p, λ ) =  1, corresponding to the solid 
lines, for η =  0 and η =  0.12. We consider uncorrelated scale-free networks of V =  105 nodes, and P(k) ~ k−2.1. 
We set θ =  0.5, =–N 103, and μ =  0.3. (B) Simulated global attack rate D∞/V as a function of the mobility 
rate p for different values of the contact scaling exponent η =  0, 0.06, 0.12 and λ  =  0.35. Vertical lines 
indicate the critical threshold value pc calculated by setting R* =  1 in Eq. 5. Each point is averaged over at 
least 2 ×  103 simulations. Error bars correspond to the standard error of the mean.
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Carlo simulations per point show a very good agreement with the theoretical threshold calculated from 
Eq. 5.

Overall, the global epidemic threshold is determined in a non-linear way, through the exponent ξ, by 
the interplay between the contact rate heterogeneity, tuned by the exponent η, and the heterogeneity of 
the mobility patterns, tuned by the exponent θ. The latter can be changed to counterbalance the effect of 
the contact scaling on the spreading process. In Fig. 3, we show that considering uncorrelated scale-free 
networks and constant η =  0.12, higher values of θ correspond to a lower critical mobility rate and a 
larger invasion regime phase space. On the other side, by assuming a negative value of θ, thus a more 
homogeneous distribution of the mobility flows across the network, the global spreading regime is sup-
pressed. In both cases, it is remarkable that the numerical simulations show a very good agreement with 
the theoretical value of the threshold (black solid line in Fig. 3), on the full (p −  λ ) parameter space. Also 
in this case we considered uncorrelated scale-free networks with V =  105 nodes, and exponent γ =  2.1. 
Each point is averaged in 2 ×  103 Monte Carlo simulations. In the Methods Section, we report the full 
details of the numerical simulations.

It is worth to notice that the value of the global threshold R*, and, by extension, the value of pc, 
depends explicitly on the size of the system, through the moments of the degree distribution of the net-
work. In the regime of large network size and for a range of parameters γ, θ and η that encloses those 
measured in real systems, it is possible to show that the critical mobility value pc scales as ( ) ∝

γ−
p V Vc

1
2  

(see the Supplementary Information file for the full derivation). Interestingly, the threshold vanishes for 
→ ∞V , and its trend explicitly depends only on the exponent γ regulating the heterogeneity of the 

metapopulation network. Beside the dependence of the global threshold on the network size, our ana-
lytical treatment is based on a number of assumptions that may not be satisfied in small size systems. 
Consequently, by reducing the network size we might expect the numerical invasion threshold to deviate 
from our theoretical predictions. To test the limits of our treatment, we performed numerical simulations 
on networks of decreasing size (V =  104 and V =  103). Simulation results, shown in Fig. S8 of the 
Supplementary Information file, indicate that the theoretical predictions are accurate down to the size 
V =  103, where finite size effects become more evident.

Discussion
In the present work, prompted by empirical findings, we derived a general framework to study spreading 
processes in metapopulation systems where the individual contact rates scale with subpopulation sizes.

The scaling properties of social interactions have been derived here and elsewhere31 from on-line 
sources and telecommunication datasets. It is not straightforward to assume that such properties would 

Figure 3.  Simulated global attack rate D∞/V as a two-dimensional function of the mobility rate p 
and the transmissibility λ for different mobility network structures characterized by θ = 0.5 (A) 
and θ = −0.4 (B). Black solid lines indicate the analytical predictions for the critical values of p and λ  
corresponding to R* =  1. Here the network parameters are the same as in Fig. 2 and η =  0.12. Each point 
of the phase-space is averaged over 2 ×  103 simulations. To facilitate the visual comparison between the 
simulations and the analytical solutions we plot the z-axis considering the negative log10 of D∞/V.
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be observed by the analysis of a large-scale contact network of physical interactions. To date, empiri-
cal measures of physical contact networks have been limited to relatively small samples of individuals 
which do not allow to directly test the scaling hypothesis26. There is, however, evidence that a number of 
properties observed in on-line and telecommunication social networks can be mapped onto the corre-
sponding physical contact network. The correlation between networks inferred by communication plat-
forms and face-to-face interactions has been recently measured in mobile phone data45,46. Also, a recent 
study of contact networks between high-school students found that 67% of the links of their face-to-face 
contact network, measured with proximity sensors, is present in their Facebook network47. Moreover, 
links of the face-to-face network with aggregate duration larger than a certain threshold correspond all 
to contacts between Facebook friends47. In the case of Twitter, a similar direct empirical comparison is 
still missing, but recent studies have shown that Twitter mentions reproduce relevant features of real 
social and mobility networks30,48–51. For example, on Twitter individuals devote the large fraction of their 
communications to a small fraction of ties, i.e. strong ties, and the remaining to occasional contacts, 
i.e. weak ties49. Furthermore, strong ties are statistically localized within the same city48,51. Overall, such 
observations provide indirect evidence supporting the use of Twitter data as a proxy of real social ties 
relevant for contagion processes. Eventually, it will be important to further confirm the scaling behavior 
of social contacts by the analysis of additional on-line datasets and, where possible, using real large-scale 
contact networks.

The effects of local properties of the subpopulations in RD processes, including different local mixing 
patterns, have been studied in previous works52–58, but they were generally limited to simplified assump-
tions on the local contact structure, such as considering only two different contact rates54,57,58, and by 
always assuming a constant diffusion rate53,56,58. Some recent papers have also considered a power-law 
distribution of the infectious rates in a metapopulation model53,59. However, a comprehensive framework 
that takes into account the interplay between the heterogeneities of both mobility flows and contact rates 
was still missing. We have shown that the heterogeneity of the contact rates, introduced by the scaling 
behavior, promotes the epidemic spreading and such effect is enhanced when the distribution of the 
mobility flows between subpopulations is heterogeneous, as observed in real mobility networks. Our 
results represent the first step towards a better analytical understanding of contagion processes in struc-
tured subpopulations. The proposed framework can be also extended to include behavioral changes, at 
the population level, triggered by concerns of infection that might induce a reduction in the contact rates.

Material and Methods
Reciprocal mention interaction (RMI) network of Twitter users.  The Twitter dataset was 
obtained from the raw Twitter Gardenhose feed60. The Gardenhose is an unbiased sampling of about 
10% of all tweets from Twitter. We considered only Twitter users that were active during an observation 
period of 8 months, from January 01 2014 to August 31 2014, and built a reciprocal mention interaction 
(RMI) network between pairs of users, defined as follows: a link is placed between users A and B if and 
only if user A mentioned user B in one of his/her tweets and user B mention user A back during the 
observation period.

Geographical mapping of Twitter users.  A few percentage of the tweets available through the 
Gardenhose is provided with GPS information. Based on GPS coordinates, we map a tweet into a geo-
graphical area using the following procedure. Typically, an active Twitter user would have a sequence of 
tweets with GPS information within a given time window. We generate the sequence of locations visited 
by every Twitter user of our dataset, then we mapped every Twitter user into one geographical area based 
on his/her most frequently visited location – but only if this represented more than 50% of all locations. 
For example, let’s imagine the Twitter user i tweeted sequentially in city A, A, A, B, A, C, A, A, A and 
D. In this case, city A has the highest probability of appearance = = % > %f 70 50a

7
10

. We therefore 
mapped user i into city A and call user i a geo-mappable user. In a different case, a user j tweeted sequen-
tially in city A, A, B, C, D. Although city A has the highest frequency among the locations visited, the 
relative probability is = = % < %f 40 50a

2
5

 and no city really dominates the geographic distribution 
of locations visited by user j, thus we do not consider j as a geo-mappable user.

In our work, we mapped the Twitter users into two different types of geographical aggregations: the 
metropolitan areas of United States and Europe combined (referred to as “metropolitan areas”) and the 
geographical census areas centered around IATA airports13 (referred to as “basins”). The United States 
metropolitan areas are defined by the year 2014 United States urban area/urban cluster shapefile from 
the TIGER/Line database37. The European metropolitan areas are defined by the year 2000 morphological 
zones shapefile (with population larger than 50000). The shapefile can be obtained from the European 
Union Open Data Portal38.

The geographical census areas centered around IATA airports are defined13 by assigning cell of 
15′  * 15′  to the closest airport within the same country. The assigning procedure follows a Voronoi-like 
tessellation61 with a cut-off scale for the tassels size of 200 km2. After the geo-mapping process, we obtain 
two subset of users: metropolitan mappable users (MMU) in which each user can be assigned to a met-
ropolitan area in United States or Europe as defined above, or basin mappable users (BMU) in which 
each user can be assigned to a basin as defined above.
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For a given basin/metropolitan area, N is the population, S is the total number of geo-mappable users 
within the area. The total number of Twitter interactions is = ∑ ∈C ci S ig

, where ci is the degree of user i 
in the subgraph Sg of the entire RMI network. In one case, we compute ci as the number of interactions 
of user i confined within the boundary of basin/metropolitan area in the other case, ci is assumed to be 
the degree of user i in the entire RMI network. Since the coverage of Twitter user s =  S/N differs from 
one basin/metropolitan area to another, the volume of interaction Cr is rescaled as = / =C C s Cr

N
S

.

Introducing the scaling of contacts into the SIR model.  The SIR is a compartmental model 
which describes the evolution of a contagious disease in a closed population. The three compartments 
( )S t , ( )I t , ( )R t  represent respectively the number of susceptible, infectious and recovered people and the 

total population = ( ) + ( ) + ( )N S t I t R t  is constant over time.
We assume homogeneous mixing in the population, which means everyone interacts with equal prob-

ability with everyone else. Usually it is assumed that the average number of contacts c per individual 
and unit of time is a constant, c =  c0 and does not depend on the population size, then, every susceptible 
individual has c0 contacts per unit of time and we define g as the probability of successful disease trans-
mission following a contact. Therefore is convenient to define the transmission rate λ  of the disease as2:

λ = − ( − ) ( )c glog 1 60

In this framework, it is easy to show that an outbreak of the disease can occur only if µλ > , where 
μ the recovery rate of the disease. It is a common practice to define the Basic Reproductive Number of 
the disease as =

µ
λR0 , which has to be greater than 1 for the probability of an outbreak to be larger than 

0. In our work, we assumed that the total number of contacts = ∑ ∈C ci S i scales super linearly with the 
population size N:

γ∝ > . ( )γC N where 1 7

So the average per capita contacts rate can be defined as:

η γ≡ = = = − . ( )
γ η−c C

N
c N c N where 1 80

1
0

Consequently the transmission rate will be a function of N:

λ ≡ − ( − ), ( )η ηN c N glog 1 90

thus also R0 will be a function of N:

µ
( ) =

λ
.

( )
ηR N N

100

Branching process.  Equation 2 describes the infection dynamics at the level of subpopulations, as a 
Levins-type process. It can be solved by introducing three main assumptions: the network substrate is 
uncorrelated, i.e. ( ′) = ( )/P k k kP k k , at the early stage of the epidemic the probability that a subpop-
ulation is not already seeded is almost one, i.e. ( )−

−

1 1D
V
k
n

k

1
, and, finally, that ( ) − R k 1 10

17.
In this case, Eq. 2 can be written as:

∑=
( )
( ( ) − ) ( ′ − )λ .

( )′
′
−

′D
kP k

k
R k D k1 1

11k
n

k
k
n

k k0
1

In our framework, it is worth to notice that R0(k) may be smaller than for some values of k. Therefore, 
it is reasonable to assume that in a subpopulation with R0(k) <  1 the probability for an outbreak to occur 
is zero and its contribution to the number of traveling infected individuals, λ ′k k, will be zero. This trans-
lates into defining λ ′k k as:

δ α
µ

λ = ( ′) ( ′) ,
( )′ ′ ′R k k N d[ ] 1
12k k k k k0

where δ ( ′)R k[ ]0  is the Heaviside function of Eq. 4 and the quantity α ( ′) ′k N k  denotes the total number 
of infected individuals during the evolution of the epidemic in subpopulation ′N k . The value of α ( ′)k  is 
dependent on the details of the disease, in particular in the case of ( ′) ∼R k 10 :
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α ( ′)
( ( ′ − ))

( ′)
.

( )
k

R k
R k

2 1
[ ] 13

0

0
2

thus leading to the definition of Eq. 3. By recalling the definition of the diffusion rate, =
ω

′
( ′ )θ

′
d pk k

k k
T k

0 , 

and the stationary value of Nk at equilibrium, 
θ

θ

( + )

+

–Nk
k

1

1
, we eventually can write Eq. 11 as:

∑µ
= ( ( ) − )

( ) ( ( ′) − )

( ′)
( ) ′ − ( ′) .

( )

θ

θ

θ θ
+

+ ′
′
− +

–
D

pN
R k

k P k

k
D

R k
R k

k k2 1
1

[ ]
[ ]

14
k
n

k
k
n

0

1

1 2
1 0

0
2

1

Invasion threshold.  To solve the recursive Eq. 14, it is convenient to define the auxiliary function 
Θ n as:

∑Θ =
( ( ′) − )

( ′)
( ) ′ − ( ′) .

( )
θ θ

′
′

+D
R k

R k
k k

1
[ ]

[ ]
15

n

k
k
n 0

0
2

1

In this way Eq. 11 can be conveniently written in the iterative form:

∑µ
Θ =

( ( ) − )

( )
− ( )Θ .

( )θ

θ θ

+

+ + −
–pN

k

R k
R k

k k P k2 1 1
[ ]

[ ]
16

n

k

n
1 2

0
2

0
2

2 2 1 2 1

By expanding the term in ( )R k0 :

( ( ) − )

( )
= −

( )
+

( )
.

( )

R k
R k R k R k

1
[ ]

1 2 1
[ ] 17

0
2

0
2

0 0
2

and plugging the explicit form ( ) = ξR k k0 , with ξ θ η= ( + )1 , we have:





µ
Θ = Θ







− − −

+ −





.

( )

θ

θ θ θ ξ θ ξ

θ ξ θ ξ

−

+

+ + + − + −

+ − + −

–pN

k
k k k k

k k

2 1 2 [ ]

1 [ ]
18

n n 1
1 2

2 2 1 2 2 2 1 2

2
2 2 2 1 2 2

From this equation it is immediate to define the the Global Invasion Threshold R* as described by Eq. 
5 and find the threshold condition on the mobility rate:

 

µ
≥







− − − + −





.
( )

θ

θ θ θ ξ θ ξ θ ξ θ ξ

+

+ + + − + − + − + −
−

–pN k

k k k k k k

2
2 [ ] 1 [ ]

19

1 2

2 2 1 2 2 2 1 2
2

2 2 2 1 2 2
1

Simulation Methods.  In all our simulations we consider uncorrelated scale-free networks generated 
with the UCM algorithm62. In particular, we study networks formed by = , ,V 10 10 103 4 5 nodes, and 

degree distribution ( ) ∼ − .

=

=
P k k

k

k V
2 1

2min

max . Each simulation is started by assigning to each subpopulation 

the population value at equilibrium Nk, while keeping the average over the whole system constant, 
=–N 103. Furthermore, we seed a randomly selected subpopulation among those with = =k k 2min  with 

10% of infected individuals. We run the spreading process until the number of infected individuals in 
the system reaches 0. We consider as diseased any subpopulation in which we observed at least a sec-
ondary infection, i.e. an infected seed generates another infected individual. Finally, each simulation 
point is averaged over 2 ×  103 independent simulations. In order to avoid biases associated to specific 
network structures each simulation is run over a randomly selected network over 60 independent reali-
zations of the UCM algorithm.
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