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Abstract

We compare the performance of maximum likelihood (ML) and simulated method of moments 

(SMM) estimation for dynamic discrete choice models. We construct and estimate a simplified 

dynamic structural model of education that captures some basic features of educational choices in 

the United States in the 1980s and early 1990s. We use estimates from our model to simulate a 

synthetic dataset and assess the ability of ML and SMM to recover the model parameters on this 

sample. We investigate the performance of alternative tuning parameters for SMM.

1 Introduction

Economic science uses economic theory to guide the interpretation of economic data and to 

shape policy. Kenneth Wolpin is a model economic scientist who integrates theory and data 

in a rigorous fashion. He summarizes his philosophy toward empirical research in Wolpin 

(2013). He is a major contributor to structural econometrics with particular emphasis on the 

study of dynamic discrete choice models. His contributions are both methodological and 

empirical. His methodological research focuses on promoting methods to increase the 

reliability of algorithms for structural estimation (Eckstein and Wolpin, 1989; Keane et al., 

2011) and developing techniques to simplify their empirical implementation. His research 

on interpolation methods to solve dynamic discrete choice models with a large state space 

(Keane and Wolpin, 1994) is a prominent example. In his empirical contributions, he 

extensively applies theory-motivated methods to investigate many important issues such as 

educational attainment (Eckstein and Wolpin, 1999; Keane and Wolpin, 1997), the role of 

credit constraints in educational attainment (Keane and Wolpin, 2001), and labor market 

dynamics (Lee and Wolpin, 2006, 2010).

This paper contributes to the literature on estimating dynamic discrete choice models. It 

investigates the empirical performance of widely used versions of simulated method of 

6Weisbrod (1962) was the first to analyze option values in the context of schooling and human capital accumulation.
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moments (SMM), a computationally tractable method for estimating complex structural 

models. SMM estimates parameters by fitting a vector of empirical moments to their 

theoretical counterparts simulated from a structural model (McFadden, 1989). We compare 

its performance against standard maximum likelihood (ML) estimation.1

We estimate a deliberately simplified dynamic discrete choice model of schooling based on 

a sample of white males from the National Longitudinal Survey of Youth (1979) using ML. 

Our model is more restrictive compared to standard dynamic discrete choice models (Keane 

and Wolpin, 1997, 2001) with respect to the number of choices and the timing of decisions 

and outcomes. We restrict agents to binary choices and our model is based on educational 

states. This allows us to evaluate the likelihood analytically, without the need for any 

simulation or interpolation (Keane, 1994), which provides a clean comparison of ML against 

simulation-based estimation methods such as SMM. Using the estimates of model 

parameters, we simulate a synthetic dataset. In a series of Monte Carlo studies we compare 

estimates based on our precisely calculated ML with those from widely used, 

computationally tractable versions of SMM. Because our synthetic sample is derived from 

real data, our analysis provides useful lessons on the performance of SMM for the 

estimation of structural models.2

SMM has been used to estimate models of job search (Flinn and Mabli, 2008), educational 

and occupational choices (Adda et al., 2013, 2011), household choices (Flinn and Del Boca, 

2012), stochastic volatility models (Andersen et al., 2002; Raknerud and Skare, 2012), and 

dynamic stochastic general equilibrium models (Ruge-Murcia, 2012). SMM can be used for 

any model, however complex or difficult to compute the likelihood, as long as it is possible 

to simulate it. Under conditions presented in the literature, the SMM estimator is consistent 

and asymptotically normal (Gouriéroux and Monfort, 1997). If the score vector for SMM 

happens to be correctly specified, then SMM is asymptotically efficient (Gallant and 

Tauchen, 1996; Gouriéroux et al., 1993).3

Implementing any estimation strategy requires numerous choices. In the case of SMM, users 

have discretion in selecting: (1) the moments used in estimation, (2) the number of 

replications used to compute the simulated moments, (3) the moment weighting matrix, and 

(4) the algorithm used for optimization. It is unclear how such choices affect the 

performance of the SMM estimator and how they depend on the structure of the model 

estimated. We propose diagnostic tools to test their validity.

1Alternative estimation methods have been proposed to overcome the rigidities and complexities of ML estimation. Most require the 
analyst to characterize the likelihood function but simplify its computation. One of the most popular methods, simulated ML (SML), 
substitutes the exact likelihood function with a simulated one. An example is the Hajivassiliou-Geweke-Keane (HGK-SML) estimator 
(Geweke, 1989; Hajivassiliou and McFadden, 1998; Keane, 1994) used for multinomial probit estimation. Approximations of the 
dynamic programming problem have often been combined with SML in models with a large state space (Keane and Wolpin, 1994). 
Another popular method is the conditional choice probabilities (CCP) algorithm first proposed by Hotz and Miller (1993) and recently 
extended to allow for unobserved heterogeneity (Arcidiacono and Miller, 2011). Using CCP, a consistent estimator of the model 
parameters can be derived without the need of the full solution of the dynamic programming problem. The CCP method, however, 
restricts the flexibility of the estimable models by imposing assumptions which limit the dependence among successive choices. SMM 
is a more general alternative to ML estimation.
2As in Skrainka (2011), we use simulation experiments in realistic settings to investigate the finite sample behavior of widely-used 
estimators.
3See Nickl and Pötscher (2010) and Gach and Pötscher (2011) for recent additional results.
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We suggest a Monte Carlo procedure that allows SMM users to gain confidence for their 

particular implementation of the algorithm. We present a new optimization algorithm for 

solving derivative-free nonlinear least-squares problems that is well-suited for conventional 

SMM implementations. A benchmarking exercise demonstrates significant speed 

improvements compared to the algorithms commonly used in the literature. Combining state 

of the art optimization methods with parallel computing allows analysts to perform our 

proposed Monte Carlo exercise even in computation-intensive models.

We present our schooling model in Section 2. Section 3 presents baseline results. Section 4 

outlines our Monte Carlo study and compares the performance of ML and SMM estimation. 

Section 5 concludes.

2 Dynamic Model of Educational Choices

This section presents a computationally tractable dynamic discrete choice model of 

education and establishes conditions when it is identified. We specify a model with a simple 

state space by assuming that agents move from one schooling state to the next. Agents are 

assumed to have two choices at each decision node. The value of each state is determined by 

its immediate rewards and costs, and by the expected future value of all feasible states made 

available by a choice. Agents have private information on their own type and form 

expectations about future states with respect to their current information set.

Our simple specification comes at the expense of a less realistic empirical analysis of the 

dynamics of schooling choices compared to those of Keane and Wolpin (1997, 2001) and 

Johnson (2013). We restrict agents to binary choices and our model is based on educational 

states. We make these assumptions because they allow us to evaluate the likelihood without 

any simulation, which provides a clean comparison of ML estimation with simulation-based 

alternatives.

2.1 Setup

Given the current state s ∈  = {s1, …, sN}, let υ(s) ⊆  denote the set of visited states 

and f (s) ⊆  the set of feasible states that can be reached from s. We collect the choice set 

of the agent in state s in Ω(s) = {s′ | s′ ∈ f (s)}. We consider binary choices only, so Ω(s) 

has at most two elements. Ex post, the agent receives per period rewards R(s′) = Y(s′) − C(s′, 

s) defined as the difference between per period earnings, Y(s′) and the costs C(s′, s) 

associated with moving from state s to state s′. The costs combine monetary expenses such 

as tuition and psychic costs (e.g. Cunha et al. (2005)). We can only identify the differences 

in the costs for two alternative states. We thus normalize the cost of one of the exits to zero. 

In the subsequent analysis it is useful to explicitly distinguish between the nonzero (ŝ′) and 

zero cost (s̃′) exits from s. We collect the subset of states with a costly exit in Sc. We assume 

earnings and costs are separable functions of observed covariates X(s) ∈  for earnings and 

Q(ŝ′, s) ∈  for costs. There is a stochastic component (UY(s), UC(ŝ′, s)) to each of them. 

Earnings are expressed as:

(1)
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The costs of going from state s to state ŝ′ are defined by:

(2)

Some variables in Q(ŝ′, s) and X(s′) might be the same. Their distinct elements constitute the 

exclusion restrictions.

We impose a factor structure on the unobservables by postulating that a low dimensional 

vector of latent factors θ is the sole source of dependency among the unobservables of the 

model (Cunha et al., 2005; Hansen et al., 2004):

The individual-specific factors θare known to agents but unknown to the econometrician, 

while the idiosyncratic shocks ε(s) and η(ŝ′, s) are unknown to the econometrician and only 

known by the agents at different stages of the decision process. The idiosyncratic shocks are 

independent but not identically distributed. We thus generalize the i.i.d. innovation 

assumption in Keane and Wolpin (1997). The impact of these traits on earnings and costs is 

given by the factor loadings (αs, φŝ′,s). We allow for unobservable correlations in outcomes 

and choices across states through θ and the loadings vary by states.

Following Carneiro et al. (2003), Cunha et al. (2010), and Heckman et al. (2013), we assume 

access to a J dimensional vector of individual measures M (such as test scores or behavioral 

indicators) proxying individual factors θ. We use the measures as noisy signals of the factors 

θ:

(3)

We assume that ε(s), η(ŝ′, s), and ν(j) are mutually independent for all j, s, ŝ′. In 

measurement system (3), we interpret the unobserved factors as individual specific traits.

We assume that agents are risk neutral and maximize discounted lifetime rewards when 

making their educational choices. When an agent makes his educational choice to proceed 

from state s to s′, he knows the stochastic component of the transition η(ŝ′, s) but not of 

future earnings ε(s′). The assumed timing of the arrival of information is as follows:

The agents know X(s), Q(ŝ′, s), and θ for all s. Under this timeline, we define (s) as the 

information set of the agent in state s by specifying all components known in the state:
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The agents in state s know the costs associated with a transition to any feasible state s′. We 

assume that the agent uses the distributions for the earnings shocks ε(s), denoted by 

FE,s(ε(s)), and for the transition costs shock η(ŝ′, s), denoted by FH,ŝ′,s(η(ŝ′, s)), to form 

expectations about future states. The distributions of the shocks can vary across states.4

We define the agent’s value function at state s, given the available information in s, 

recursively as:

(4)

For future reference we define the continuation value of state s as the second term on the 

right hand side of (4):

(5)

The agent’s policy function determines the optimal transitions. An agent in s chooses his 

next feasible state s′ according to the following rule:

(6)

We now define the returns to schooling and the concept of the option value.

2.2 Returns to Education

We define the ex ante and ex post net returns to schooling. The net return (NR) to schooling 

includes per period earnings and costs associated with each educational choice and the 

option value of future opportunities (discussed in the next subsection). The ex ante net 

returns are defined before the unobservable components of future earnings are realized. 

They depend on agents’ expectations and determine their choices. Standard methods for 

computing rates of return such as Mincer coefficients or internal rates of returns ignore costs 

and option values of future opportunities. They are only interpretable for terminal choices 

and ex post realized earnings streams.5 We define the ex ante net return of ŝ′ over s̃′ for an 

agent currently in state s as:

4We differ from Keane and Wolpin (1997) in our specification of the distribution of the unobserved components. In their 
specification, agents have different initial conditions for each state variable. The distribution of initial conditions is multinomial with 
five components. They assume that there are only four types (values) of initial conditions in the population. Serial dependence is 
induced through the persistence of the initial conditions as determinants of current state variables. In addition, at each age the agent 
receives five shocks associated with the rewards of each choice. The shocks are joint normally distributed, serially uncorrelated, and 
they are assumed to be i.i.d. over time.
In our model, we allow for state dependence in the distribution of the unobservables by letting earnings and cost shocks be drawn 
from normal distributions with different variances at each state and at each transition. Moreover, we allow unobserved portions of cost 
and return functions to be contemporaneously and serially correlated through their common dependence on the factors θ. Our θ are 
normally distributed so we have a continuum of types. The Keane and Wolpin (1997) specification of persistent heterogeneity is a 
version of a factor model in which all factor loadings are implicitly determined (through Bellman iterations) by the parameters of the 
deterministic portions of cost and return functions and the distribution functions of unobserved variables and the sample distribution of 
observables. In our approach, the factor loadings are specified independently of the parameters of the deterministic portions of the cost 
and return functions and the sample distribution of observed variables.
5See Heckman et al. (2006a) for a discussion of conventional methods for estimating rates of return and their economic interpretation.
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(7)

We also define the ex ante gross return (GR) which includes all future earnings, but omits all 

costs related to educational choices. Define the gross value of a state s recursively as:

where state s′ ∈ Ω(s) maximizes the discounted future rewards according to the policy 

function defined in equation (6). Although agents do not base their educational choices upon 

the gross returns, they are important as they are defined in terms of earnings streams only 

and are the focus of much applied work reporting rates of return. We define the ex ante 

gross return of ŝ′ over s̃′ for an agent in s as:

(8)

We formulate the net and gross ex post returns in the same way but use the value functions 

which include the realizations of the earnings shock. The ex post returns can be used to 

evaluate an agent’s regret of his educational choice.

2.3 Option Values of Schooling

Consider a high school enrollee who is contemplating whether to either graduate or drop out. 

Part of his evaluation of the benefits of high school graduation is the option to start college. 

From the perspective of state s the option value of s′ is defined as the difference between the 

value of taking the optimal choice when moving from s′ and the fallback value of the zero 

cost exit s̃ ″. The zero cost exit is usually associated with maintaining the current education 

level, e.g. remaining a high school graduate and not enrolling in college. Then the option 

value6 of feasible state s′ from the perspective of s is:

(9)

We define the option value contribution  as the relative share 

of the option value in the overall value of a state. This component is not reported in standard 

calculations of the Mincer return or the internal rate of return.
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2.4 Identification

Our model is semi-parametrically identified using a straightforward extension of the 

arguments in Heckman and Navarro (2007). The main arguments of the proof, presented in 

Web Appendix A, consist of using: (1) a limit set argument to identify the joint distribution 

of earnings and measurements free of selection (“identification at infinity”), (2) the 

measurement system on the factor structure that facilitates identification of the joint 

distribution of factors, (3) the choice structure and exclusion restrictions to identify the 

distribution of costs in the last choice equation, and (4) backward induction to identify 

relevant distributions in all states showing that the future value function acts as an exclusion 

restriction in current choices. We can identify all of the parameters of the model including 

the discount rate.

3 Baseline Estimates

We fit the model on a sample of 1,418 white males from the National Longitudinal Survey 

of Youth of 1979 (NLSY79) using ML estimation.7 Figure 1 shows the decision tree for our 

model.

All agents start in high school and decide to either drop out or finish. If they finish high 

school, they can enroll in college immediately or remain high school graduates with the 

option to enroll in college later or not at all. Conditional on early or late college enrollment, 

agents can either graduate or drop out. At each decision node, we designate the lower 

transition to be the zero cost exit. Our addition of the distinction between late and early 

enrollment is the only place in the model where time is introduced. We do this to improve 

the fit of the model and incorporate an important feature of the data on education.

For every state s, agents work in the labor market and receive earnings Y(s). When agents 

pursue higher education by transitioning to the costly state ŝ′, they incur cost C(ŝ′, s). Agents 

face uncertainty about components of future earnings and costs when determining the ex 

ante value of each state V(s) given the information available to them. As noted in Section 2, 

we assume that the agent knows his type and all past, present, and future covariates 

including local labor market conditions. His expectations about the distributions of all future 

shocks are assumed to be consistent with their actual realizations.

Following Carneiro et al. (2003) and Heckman et al. (2006b), we assume that the agent’s 

type θ is summarized by cognitive and non-cognitive abilities. We use the scores on the 

Armed Services Vocational Aptitude Battery (ASVAB) as noisy measures on cognitive 

abilities. For non-cognitive skills, we rely on Rotter and Rosenberg 1980 scores and 

indicators of risky behaviors such as drug and alcohol use.

In a state s, we assign each agent a duration D(s) based on the number of periods spent in 

that state. For an agent who spent four years in college, the duration of the college 

enrollment state will be four. We set the duration for an agent’s counterfactual state to the 

median duration among the agents who actually visit that state. Let Y(t, s) denote the 

7See Web Appendix B and Bureau of Labor Statistics (2001) for a description of our sample and the NLSY79.
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observed earnings in the NLSY79 at time t for an agent in state s. We collapse all Y(t, s) 

within state s into one discounted average.

We do the same for time varying covariates in X(s) and Q(ŝ′, s). This setup differs from 

standard dynamic discrete choice models as the timing of earnings within each state does not 

matter. We do not estimate the discount factor r and instead set r = 0.04.8

We discuss the construction of our sample in Web Appendix B. The NLSY79 only has data 

up to approximately age 45. We extend the duration of the terminal states up to age 65 using 

parameters estimated on the available sample to project earnings in unobserved years. The 

high school enrollment state characterizes initial conditions in our model. We assume 

earnings and costs are functions of standard individual characteristics and local economic 

conditions.9

Figure 1 presents the average annual earnings and the number of observations by state. 

Earnings are low during the year of graduation ($7,747). High school graduates earn 

($42,919) which is almost twice as much as high school dropouts ($22,878). Our distinction 

between early and late college enrollment is important. Early enrollees earn much less while 

in college ($11,781) compared to late enrollees ($27,192). Also, early college graduation 

boosts average annual earnings to $74,646 compared to only $48,408 for late graduation. In 

the case of late college enrollment, the difference in earnings among graduates and dropouts 

is minor: $48,408 compared to $48,866. This explains why in our sample the number of late 

college dropouts (95) is actually larger than of late college graduates (77). For the case of 

early enrollment (589), the vast majority graduates (471). The Mincer coefficient is 0.116.10

3.1 Model Fit

Table 1 shows the fit of the model estimated by ML for model fit statistics that are typically 

used in the literature. Average earnings and state frequencies are well fit by our model. 

Small discrepancies show up for terminal states. Terminal states are populated by very few 

agents, which requires us to constrain the outcome and cost parameters of terminal college 

states to be the same for early and late transitions.

Comparing the fit of the model to cross section moments is a weak criterion for a dynamic 

model. A more exacting criterion is to predict sequences of educational choices (Heckman, 

8Heckman and Navarro (2007) and Web Appendix A present conditions under which r is identified.
9In each state, earnings depend on the number of children in the household, parental education (as the maximum between the mother’s 
and father’s education), indicators for the presence of a baby (child less than 3 years old) in the household, marriage status, urban 
residence at age 14, the region of residence (North East, North Central, South, and West), hourly wage and unemployment levels in 
the state of residence for the relevant age group (we use two age groups, younger than 30 years old or older). For the cost equations 
we exclude the indicator for marriage and the regional dummies, adding instead an indicator for whether the family is intact or not, the 
number of siblings, and state level tuitions for public two- and four-year colleges for the transitions to college enrollment states. The 
state representing the conclusion of high school is estimated using only an intercept, the two factors, and an unobservable component. 
All transition and outcome equations also include the cognitive and non-cognitive factor and an idiosyncratic unobserved component.
10Web Appendix C presents additional descriptive statistics and estimates of conventional internal rates of return.
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1981). We follow Heckman and Walker (1990) and Heckman (1984) and use χ2 goodness of 

fit tests to examine our model’s performance. In Table 2 we report the p-value of a joint test 

of the relative share of agents for each state for all realizations of selected covariates.11 For 

most cells the fit is good.

One exception (at a 5% significance level) is Parental Education, where we fail to fit the 

observed patterns for early college enrollment and early college graduation. For Broken 

Home, we overpredict the relative share of individuals from a broken home among high 

school dropouts. For all other variables and states, the p-values indicate that the model is 

consistent with the data. Because tests within covariates across all states are not 

independent, we use a Bonferroni test to evaluate the joint hypothesis that the predicted 

covariate distributions fit at each state. The test is based on the maximum χ2 statistic over all 

states for each covariate. A 5% Bonferroni test is passed by all covariates besides Parental 

Education. Here, the poor prediction for early college graduates leads to an overall rejection.

3.2 Economic Implications

We now present the economic implications of our baseline results. We first discuss the 

impact of unobserved abilities on educational choices and earnings and then turn to the role 

of psychic costs and option values for the net returns to schooling. We conclude with a 

counterfactual policy evaluation.

3.2.1 Impact of Abilities—Figure 2 shows the share of agents in each of the final states 

by deciles of the overall factor distribution. The distributions of abilities differ substantially 

across schooling outcomes. Early college graduates (COEE) are strong in cognitive and non-

cognitive abilities. High school dropouts (HSD) are weak in both. High school graduates 

who never enroll in college (HSG) are weak in cognitive abilities but quite strong in non-

cognitive abilities.

Figure 3 shows the transition probabilities to each state by factor deciles. Higher cognitive 

skills increase the likelihood of continued educational achievement for all choices. The 

effect of non-cognitive abilities is mixed. While they clearly increase the likelihood of 

finishing high school, higher non-cognitive skills decrease the probability of late college 

enrollment (conditional on working after high school graduation). Delay of college 

enrollment is associated with lower levels of non-cognitive skills.

3.2.2 Returns to Education—Figure 4 presents the ex ante net return to schooling by 

factor deciles. The effect of latent skills on returns differs by state. The return of finishing 

high school is strongly affected by the non-cognitive factor. Usually the effect of cognitive 

skills is more pronounced. Nevertheless, our estimates show evidence of strong 

complementarity between abilities and schooling for most states. Figure 4 also presents 

median returns. The median net return for early college enrollment is around zero and the 

return of delayed enrollment even negative (−21%). College dropouts pay the cost of college 

11In the χ2 test, the predicted covariate distributions depends on estimated parameters. We do not adjust the test statistic to account 
for parameter estimation error as suggested by Heckman (1984) because the adjustments are usually slight (Heckman and Walker, 
1990).
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without benefiting from the much larger returns of graduating. The returns from graduating 

late (10%) are much smaller than for those graduating early (50%). We report the difference 

between net and gross returns as part of Figure 4.

Psychic costs are crucial determinants of net returns. For example, the median gross return 

for early and late college enrollment is positive, while the median net return is negative in 

both cases. As only agents with a positive net return choose to continue their education, this 

follows directly from our estimates (and the data) as more than half of the agents that are 

faced with the decision to enroll in college refrain from doing so.

We estimate the overall costs associated with each educational choice. Our estimated costs 

combine monetary expenses such as tuition and psychic costs. Table 3 reports the average 

costs associated with each transition. It reports the second, fifth, and eighth decile of their 

distribution to document their substantial heterogeneity. Costs are key components of the net 

returns, ignoring them results in strongly biased estimates. The largest costs are associated 

with early and late college enrollment. These are the only states with psychic as well as 

monetary costs from tuition. Enrolling early costs the equivalent of $273,000 compared to 

$553,000 for late enrollment. At least 20% of agents have negative schooling costs in most 

states. They experience psychic benefits. For high school graduation, even the average cost 

is negative. Psychic costs play a dominant role in explaining schooling decisions. This is an 

unsatisfactory feature of the models in the literature (see e.g. Cunha et al. (2005), Abbott et 

al. (2013)).

Ex ante and ex post returns do not necessarily agree because agents cannot predict their 

future earnings. Decisions that are optimal for an agent ex ante might be suboptimal ex post. 

For this reason, we calculate the percentage of agents experiencing regret, i.e., those agents 

for whom the ex post and ex ante returns do not agree in sign.12 A substantial share of late 

college enrollees (34%) regret the decision to graduate. For finishing high school, the share 

is much smaller (4%). However, 24% of high school dropouts regret their decision.

3.2.3 Option Values of Schooling—Our structural model allows us to calculate the 

option values of educational choices.13 We defined the option value in equation (9) as the 

difference in the value associated with the optimal continuation of choices versus the 

fallback value. Figure 5 shows the option values conditional on the deciles of the factor 

distributions, their median (OV), and their contribution to the total value of each state 

(OVC). The option values make a sizable contribution to the overall value of the states and 

vary by abilities.

Early college enrollment has the highest option value as graduation yields a large gain in 

earnings compared to dropping out. As the net returns to college graduation increase in 

cognitive and non-cognitive abilities, so does the option value of college enrollment.

12See Web Appendix C for additional results on ex post returns and regret.
13Other models taking into account option values have been proposed by Comay et al. (1973), Cunha et al. (2007), Heckman et al. 
(2014a), and Trachter (2014). See also Cameron and Heckman (1993).
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3.2.4 Policy Analysis—Counterfactual policy analysis is one of the main motivations for 

the estimation of dynamic structural models (Wolpin, 2013). We investigate the impact of a 

50% reduction in tuition cost on agents’ college going decisions. We simulate 50,000 agents 

from our model and compare their educational choices under the baseline regime and the 

policy alternative. Agents are forward-looking and due to the sequential decision tree, 

reducing tuition for college attendance already increases high school graduation rates by one 

percentage point as its option value increases. Overall college enrollment increases by 

roughly ten percentage points as many high school graduates now decide to enroll in 

college. The increase is evenly split between early and late enrollment. However, there are 

considerable differences in graduation rates among those induced to enter into college 

depending on the time of enrollment. About half of the new early enrollees will eventually 

graduate, while only a quarter of the late enrollees will do so as well.

4 Comparison of ML and SMM

We use the baseline estimates of our structural parameters to simulate a synthetic sample of 

5,000 agents. This sample captures important aspects of our original data such as model 

complexity and sizable unobserved variation in agent behaviors. We disregard our 

knowledge about the true structural parameters and estimate the model on the synthetic 

sample by ML and SMM to compare their performance in recovering the true structural 

objects. We first describe the implementation of both estimation procedures. Then we 

compare their within-sample model fit and assess the accuracy of the estimated returns to 

education and policy predictions. Finally, we explore the sensitivity of our SMM results to 

alternative tuning parameters such as choice of the moments, number of replications, 

weighting matrix, and optimization algorithm.

We assume the same functional forms and distributions of unobservables for ML and SMM. 

Measurement, outcome, and cost equations (1) – (3) are linear-in-parameters. Recall that Sc 

denotes the subset of states with a costly exit.

All unobservables of the model are normally distributed:
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The unobservables (ε(s), η(ŝ′, s), ν(j)) are independent across states and measures. The two 

factors θ are independently distributed. This still allows for unobservable correlations in 

outcomes and choices through the factor components θ (Cunha et al., 2005).

4.1 The ML Approach

We now describe the likelihood function, its implementation, and the optimization 

procedure.

For each agent we define an indicator function G(s) that takes value one if the agent visits 

state s. Let ψ ∈ Ψ denote a vector of structural parameters and Γ the subset of states visited 

by agent i. We collect in D = {{X(j)}j∈M, {X(s),Q(ŝ′, s)}s∈S} all observed agent 

characteristics. Then the likelihood for observation i is given by

(10)

where Θ̲ is the support of θ. After taking the logarithm of equation (10) and summing across 

all agents, we obtain the sample log likelihood.

Let ϕσ(·) denote the probability density function and Φσ(·) the cumulative distribution 

function of a normal distribution with mean zero and variance σ. The density functions for 

measurement and earning equations take a standard form conditional on the factors and 

other relevant observables:

The derivation of the transition probabilities has to account for forward-looking agents who 

make their educational choices based on the current costs and expectations of future 

rewards. Agents know the full cost of the next transition and the systematic parts of all 

future earnings and costs (X(s)′βs, Q(ŝ′, s)′ δŝ′,s). They do not know the values of future 

random shocks. Agents at state s decide whether to transition to the costly state ŝ′ or the no-

cost alternative s̃′. Their ex ante valuations T(s′) incorporate expected earnings and costs, 

and the continuation value CV(s′) from future opportunities. Given our functional form 

assumptions, the ex ante value of state s′ is:
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The ex ante state evaluations and distributional assumptions characterize the transition 

probabilities:

Finally, the continuation value of s is:

where we integrate over the conditional distribution of η(ŝ′, s) as the agent chooses the 

costly transition to ŝ′ only if T(ŝ′) − η(ŝ′, s) > T(s̃′).

We compare ML against SMM for statistical and numerical reasons. ML estimation is fully 

efficient as it achieves the Cramér-Rao lower bound. The numerical precision of the overall 

likelihood function is very high with accuracy up to 15 decimal places. This guarantees at 

least three digits of accuracy for all estimated model parameters. We discuss the numerical 

properties of the likelihood and bounds on approximation error in Web Appendix D and E. 

We use Gaussian quadrature to evaluate the integrals of the model.14 We maximize the 

sample log likelihood using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm 

(Press et al., 1992).

4.2 The SMM Approach

We present the basic idea of the SMM approach and the details of the criterion function. 

Then we discuss the choice of tuning parameters. The goal in the SMM approach is to 

choose a set of structural parameters ψ to minimize the weighted distance between selected 

moments from the observed sample and a sample simulated from a structural model. The 

criterion function takes the following form:

(11)

where f̆ represents a vector of moments computed on the observed data and f̂ (ψ) denotes an 

average vector of moments calculated from R simulated datasets and W is a positive definite 

weighting matrix. We define f̂ (ψ) as:

14See Judd and Skrainka (2011) for a comparison of alternative integration strategies.
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The simulation of the model involves the repeated sampling of the unobserved components 

ur = {{ε (s), η(ŝ′, s)}s∈S} determining agents’ outcomes and choices. We repeat the 

simulation R times for fixed ψ to obtain an average vector of moments. f̂r(ur; ψ) is the set of 

moments from a single simulated sample. We solve the model through backward induction 

and simulate 5,000 educational careers to compute each single set of moments. We keep the 

conditioning on exogenous agent characteristics implicit in equation (11).

We account for θ by estimating a vector of factor scores based on M that proxy the latent 

skills for each participant (Bartlett, 1937). The scores are subsequently treated as ordinary 

regressors in the estimation of the auxiliary models. We use the true factors in the simulation 

steps, assuring that SMM and ML are correctly specified.

The random components ur are drawn at the beginning of the estimation procedure and 

remain fixed throughout. This avoids chatter in the simulation for alternative ψ, where 

changes in the criterion function could be due to either ψ or ur (McFadden, 1989).

To implement our criterion function it is necessary to choose a set of moments, the number 

of replications, a weighting matrix, and an optimization algorithm. Later, we investigate the 

sensitivity of our results to these choices.

We select our set of moments in the spirit of the efficient method of moments (EMM), 

which provides a systematic approach to generate moment conditions for the generalized 

method of moments (GMM) estimator (Gallant and Tauchen, 1996). Gallant and Tauchen 

(1996) propose using the expectation under the structural model of the score from an 

auxiliary model as the vector of moment conditions. We do not directly implement EMM 

but follow a Wald approach instead, as we do not minimize the score of an auxiliary model 

but a quadratic form in the difference between the moments on the simulated and observed 

data. Nevertheless, we draw on the recent work by Heckman et al. (2014b) as an auxiliary 

model to motivate our moment choice.15 Heckman et al. (2014b) develop a sequential 

schooling model that is a halfway house between a reduced form treatment effect model and 

a fully formulated dynamic discrete choice model such as ours. They approximate the 

underlying dynamics of the agents’ schooling decisions by including observable 

determinants of future benefits and costs as regressors in current choice. We follow their 

example and specify these dynamic versions of Linear Probability (LP) models for each 

transition. In addition, we include mean and standard deviation of within state earnings and 

the parameters of Ordinary Least Squares (OLS) regressions of earnings on covariates to 

capture the within state benefits to educational choices. We add state frequencies as well. 

Overall, we start with a total 440 moments to estimate 138 free structural parameters.

We set the number of replications R to 30 and thus simulate a total of 150,000 educational 

careers for each evaluation of the criterion function. The weighting matrix W is a matrix 

15If the weighting matrices are appropriately chosen and the auxiliary model is correctly specified, then both approaches are 
asymptotically equivalent to ML (Gouriéroux et al., 1993). The EMM approach requires analytical derivatives for the auxiliary model, 
which is a very time-consuming, error-prone, and tedious task for large and complex models. For this reason, the EMM approach is 
not commonly used to estimate dynamic discrete choice models, but widely applied to fit stochastic volatility models. In the latter 
case, several tractable auxiliary models such as ARCH and GARCH are readily available (Andersen et al., 1999). See Carrasco and 
Florens (2002) for an accessible comparison of EMM to other simulation-based methods and additional references.
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with the variances of the moments on the diagonal and zero otherwise. We determine the 

latter by resampling the observed data 200 times. We exploit that our criterion function has 

the form of a standard nonlinear least-squares problem in our optimization. Due to our 

choice of the weighting matrix, we can rewrite equation (11) as:

where I is the total number of moments, fi denotes moment i, and σ̂
i its bootstrapped 

standard deviation.

Our criterion is not a smooth function of the model parameters. Small changes in the 

structural parameters cause some simulated agents to change their educational choices, 

resulting in discrete jumps in our set of moments (Keane and Smith, 2003). Thus we cannot 

use gradient-based methods for optimization and rely on derivative-free alternatives instead. 

Moré and Wild (2009) show that model-based solvers perform better than standard 

derivative-free direct search solvers used in the existing literature (see Adda et al. (2013, 

2011) and Del Boca et al. (2014) for applications of derivative-free direct search solvers). 

From the class of model-based solvers, we choose the Practical Optimization Using No 

Derivatives for Sums of Squares (POUNDerS) algorithm (Munson et al., 2012). POUNDerS 

exploits the special structure of the nonlinear least-squares problem within a derivative-free 

trust-region framework and forms a smooth approximation model of the objective function 

to converge to a minimum.16

4.3 Results

We compare ML and SMM estimation to learn whether our version of SMM is a good 

substitute for ML. First, we compare basic model fit statistics. Second, we study the 

estimates for the returns to education and perform a counterfactual policy exercise. Finally, 

we explore alternative choices for the set of moments, weighting matrix, number of 

replications, and optimization algorithm.

Model Fit—Table 4 shows the average annual earnings for each state and the conditional 

state frequencies. Overall, both estimation approaches fit these aggregate statistics quite 

well. The model fit for the average earnings among late college graduates and late college 

dropouts is slightly worse than for the other states as the agent count in those states is low. 

This affects the SMM estimates more than ML. The state frequencies are matched very well 

in both cases.

We report the root-mean-square error (RMSE) based on the difference between the 

simulated and observed statistics. There are only minor discrepancies for both estimation 

approaches. Nevertheless, they are slightly smaller for the ML results.

16See Nocedal and Wright (2006) for a discussion of the nonlinear least-squares problem and Kortelainen et al. (2010) for a detailed 
description of the underlying mechanics of POUNDerS.
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We apply χ2 goodness of fit tests (Heckman, 1984; Heckman and Walker, 1990) to the 

estimated and actual probabilities. In Table 5 we report the p-value of a joint test of the 

relative share of agents within each state conditional on all possible realizations of selected 

covariates.17

Overall, the level of p-values is high. For ML estimation, all p-values indicate that our 

model is consistent with the data at the 5% significance level. In the case of SMM, we only 

do not pass the test conditional on Number of Children among early college enrollees. 

Because tests within covariates across all states are not independent, we use a Bonferroni 

test to evaluate the joint hypothesis that the predicted covariate distributions fit at each state. 

The test is based on the maximum χ2 statistic over all states for each covariate. We pass a 

5% Bonferroni test for all covariates and both estimation approaches.

Economic Implications—Table 6 presents the median ex ante gross returns GRa(ŝ′, s̃′, s) 

and net returns NRa(ŝ′, s̃′, s) of pursuing a higher education by transitioning from s to ŝ′. 

Both capture all current and future earnings. However, they differ with regards to current 

and future costs. Their systematic parts are included in the calculation of the NRa(ŝ′, s̃′, s) 

but not the GRa(ŝ′, s̃′, s) as we discussed in Section 2.2.

The estimates for the gross returns GRa(ŝ′, s̃′, s) are very similar for the two approaches and 

close to their true values. However, for the net returns NRa(ŝ′, s̃′, s) only the ML results are 

close to the truth. The SMM results are off by up to a factor of two. For example, the true 

net return of finishing high school is 66%, while SMM estimates 138%. The RMSE is 

roughly one order of magnitude larger for SMM than ML estimation. This difference is 

solely driven by the discrepancies in the net returns.

Table 7 sheds light on the poor performance of our SMM approach in the estimation of the 

net returns. These, in contrast to the gross returns, include the current costs and the 

systematic part of all future costs of educational choices. SMM is unable to detect the 

systematic differences in the cost faced by agents. We overestimate the variance of the 

unobserved component determining choices ση(ŝ′,s). Too much of the agents’ decisions is 

attributed to random cost shocks and not their systematic differences. This translates into an 

excess net return as we underestimate the cost associated with future educational choices. 

Despite encouraging values for model fit criteria, SMM fails to accurately estimate the net 

return to educational choices.

We also explore the impact of a 50% reduction in tuition cost on agents’ college going 

decisions. We simulate 50,000 agents from our model and compare their educational choices 

under the baseline regime and the policy alternative using the results from the two 

estimation approaches. Based on the ML results, all policy predictions line up with the 

underlying truth. This is only partly true for the SMM estimation, where the predicted 

graduation rate for those induced to enroll in college late is too optimistic. Only a quarter 

will actually graduate, while the SMM results forecast about half. The SMM’s failure to 

17In the χ2 test, the predicted conditional distributions depends on estimated parameters. We do not adjust the test statistic to account 
for parameter estimation error as suggested by Heckman (1984) because the adjustments are usually slight (Heckman and Walker, 
1990).
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distinguish between the systematic and unsystematic cost components driving educational 

choices translates into (partly) flawed policy conclusions as well.

We now investigate the poor performance of our application of SMM and start with some 

evidence that we indeed recover a global minimum of our criterion function. Figure 6 shows 

the value of Λ(ψ) around our SMM estimates as we perturb all parameters in a random 

direction in t increments. All perturbations increase the discrepancies between the observed 

and simulated sample. However, Λ(ψ̂) is not zero because of remaining differences between 

estimated and true structural parameters. Even if we set ψ̂ = ψ*, then Λ(ψ*) evaluates at 434 

(horizontal dashed line) due to the random variation in agents’ behaviors and state 

experiences. The moments provide noisy information about the data generating process due 

to the random components. The more variation due to unobservables, the less information is 

contained in the data. As it turns out, the value of the criterion function evaluated at our 

estimates ψ̂ is actually slightly smaller than Λ(ψ*).

Next we consider alternative choices for: (1) set of moments f̂(ψ), (2) number of replications 

R, (3) weighting matrix W, and (4) optimization algorithm.

Set of Moments—We use the sequential schooling model of Heckman et al. (2014b) to 

inform our choice of moment conditions in the spirit of EMM estimation (Gallant and 

Tauchen, 1996). For our baseline, we match a number of conditional moments such as 

parameters of OLS regressions for within state earnings and LP models characterizing the 

state transitions. We explicitly include determinants of future costs and earnings among the 

regressors in the LP models to capture the dynamics of agents’ educational choices. We add 

aggregate statistics of the data such as average earnings and their standard deviations as well 

as state frequencies. In Table 8, we study alternative sets of moment conditions. In 

particular, we specify a cross-sectional version in which we do not include future outcome 

covariates in the models of educational choice. We also study three alternative sets of 

dynamic moments. We increase their number from 440 up to 868, adding moments that 

provide additional information about the observed agent transitions. We thereby hope to 

improve the estimation of the systematic differences in the psychic cost of educational 

choices. We add a dynamic Probit model for each transition (Alt. A) and correlations of state 

outcomes and each covariate (Y(s), X(s)), between outcomes over time (Y(s),Y(s′)), and 

correlations of choice indicators with current cost covariates (G(s′), Q(ŝ′, s)) (Alt. B).

We also report the value of the criterion function at the true structural parameters Λ(ψ*). Its 

difference from zero is solely driven by the presence of the random disturbances ur. The 

final values of our criterion function are always below Λ(ψ*) which gives us further 

confidence that we attained a global minimum in those cases.

We show the implications of alternative moments for the estimated median ex ante gross 

and net returns to education in Table 9.

Once dynamic moments are included in the criterion function, the effect of adding even 

more is rather small. The estimates for the gross and net returns are all very similar. 

However, when using only cross-sectional moments for the criterion function, the 
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performance of SMM deteriorates and its ability to recover the net returns is undermined 

further.

We assess the information content of selected moments f̂i and investigate the effect of 

perturbations around ψ̂. In Figure 7, we perturb the intercept in the structural earnings 

equation for early college graduates in t increments. This has a direct effect on average 

earnings in that state (Figure 7a). However, agents are forward-looking and these changes 

also affect moments associated with earlier decisions such as finishing high school (Figure 

7b). This is true even though the immediate benefits of doing so (Figure 7c) are unaffected. 

Agents change their early educational choices due to the increase in the option value of 

finishing high school, which includes the expected future value of potentially graduating 

from college.

Number of Replications—For a given set of structural parameters, we create multiple 

simulated datasets from which we calculate the moments. Averaging over those moments, 

we reduce the effect of random components determining agents’ choices and state 

experiences. In Figure 8 we show the value of the criterion function at the true structural 

parameters ψ* for different numbers of replications R. The difference from zero is solely 

driven by the random components determining agents’ choices and outcomes. If the model 

is simulated only once, then Λ(ψ*) takes value 825. Initially, increases in R result in a large 

drop of Λ(ψ*). However, this effect levels off after more than 20 replications. Afterwards, 

the value of Λ(ψ*) oscillates around 435. In a finite sample, differences between f̌ and f̂ (ψ*) 

remain even for a very large number of replications. While the random values of (ε(s), η(ŝ′, 

s)) wash out in the simulated moments, their particular realizations remain relevant in the 

finite observed data.18 For our baseline estimates we set R = 30. Further increases do not 

change model fit or economic implications.

Weighting Matrix—Our optimization algorithm is only guaranteed to converge to local 

minimizers. Figure 9 plots the surface of our criterion function around ψ* for two alternative 

choices of W given the true values of ur. Thus, f̌ = f̂ (ψ*) and Λ(ψ*) evaluates initially to 

zero regardless of the weighting matrix used. Then we perturb all the structural parameters 

in a random direction in t increments. We show the surface of Λ(ψ) when either the identity 

matrix (Figure 9a) or the diagonal matrix with the variances of the moments (Figure 9b) is 

used. Choosing the identity matrix for W results in multiple local minima, whereas using the 

variances smoothes the overall surface of the criterion function.

Optimization Algorithm—Because we repeat the SMM estimation many times for our 

Monte Carlo study, we benefit from a fast optimization algorithm. In Figure 10 we compare 

the performance of POUNDerS to the standard Nelder-Mead algorithm (Nelder and Mead, 

1965) applied by Del Boca et al. (2014) and French and Jones (2011) among others. We 

perturb our estimates ψ̂ and run the two algorithms as implemented in the Toolkit for 

Advanced Optimization (TAO) (Munson et al., 2012) to investigate their relative 

performance. Following Moré and Wild (2009) the solvers are tested using their default 

18See Kristensen and Salanié (2011) for a comprehensive statistical analysis of estimation methods, where the objective function is 
approximated through simulation or discretization.
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options.19 Both algorithms are derivative-free, but differ in their search strategy and how 

they exploit the structure of the criterion function. Nelder-Mead applies a direct search 

method, while POUNDerS forms an approximation model within a trust region which 

exploits the special structure of our nonlinear least-squares problem. We show a minute-by 

minute account of the criterion function Λ(ψ) over five hours.

The POUNDerS algorithm attains a lower bound of Λ(ψ) ≈ 385 after about two and a half 

hours and terminates. With the Nelder-Mead algorithm, the criterion function still takes a 

value of Λ(ψ) ≈ 2, 050 after five hours. Even after 36 hours, the Nelder-Mead solution Λ(ψ) 

≈ 1, 126 is still about three times as large as the POUNDerS solution.

We are unable to improve the SMM results by using alternative tuning parameters. Our 

discussion cautions that inspection of model fit statistics alone does not guarantee accurate 

economic implications. For our model, large unobserved variation in educational choices 

translates into a noisy criterion function, which leaves SMM unable to recover the true 

returns to education. The structural variances of the unobserved cost shocks are poorly 

estimated; we are unable to correctly distinguish between the systematic and unsystematic 

cost components of educational choices.

Our results do not discredit SMM as a useful tool for the estimation of complex economic 

models. Our results are highly model dependent, but our diagnostics are not. We now outline 

a Monte Carlo exercise that allows SMM users to build confidence in their particular 

implementation in any applied setting.

Monte Carlo Exercise to Gain Confidence in an SMM Algorithm—Let ℳ (ψ) 

denote the structural model parametrized by y which is fit to the observed data Dobs to 

produce an estimated set of parameters ψ̂obs using SMM.

Step 1 Simulate a synthetic sample Dsyn from ℳ (ψôbs) using the estimated results.

Step 2 Fit ℳ (ψ) on the synthetic sample Dsyn using SMM to produce ψ̂syn.

Step 3 Compare ψ̂obs to the results from the synthetic sample ψ̂syn.

Using the initial estimates as the parametrization for the Monte Carlo exercise ensures that 

important features of the data generating process, in our case the large unobserved 

variability in agent behaviors, are accounted for. In Step 2, it is crucial to follow the same 

estimation approach applied to the original data as closely as possible, e.g. choice of starting 

values. Combining the application of fast state of the art optimization algorithms with 

parallel computing allows for such an analysis even in computation-intensive models.

This exercise showcases the performance of the estimator in a favorable setting as the model 

is correctly specified. If the structural parameters ψ̂syn are successfully recovered, this is 

encouraging but does not provide a definite proof of the performance in the observed data. A 

19We are aware that performance can change for other choices. However, our practical experience throughout this project lines up 
with the results from this stylized presentation. We illustrate the relative performance of the two algorithms using a single processor 
only. Both algorithms allow parallel implementations as well (Lee and Wiswall, 2007; Munson et al., 2012).

Eisenhauer et al. Page 19

Int Econ Rev (Philadelphia). Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



failure, however, offers reason for concern. The algorithm might be improved, for example, 

by varying the set of moments used to test SMM.

5 Conclusion

We compare the performance of simulated method of moments (SMM) and maximum 

likelihood (ML) estimation in dynamic discrete choice models. We estimate a simplified 

dynamic model of educational choices which emphasizes the role of unobserved 

heterogeneity, psychic costs, and option values for the net returns to schooling. The primary 

value of the model comes as input to the simulation study that is the core of this paper.

We estimate our model on a sample of white males from the National Longitudinal Survey 

of Youth of 1979 (NLSY79). We discuss its implications for schooling decisions and 

present estimates of option values by cognitive and non-cognitive factors. Given our 

estimates, we simulate a synthetic sample, creating a realistic setting to compare ML and 

SMM estimation. Our model allows for ML estimation without the need for any simulation 

in the likelihood function, which provides a clean comparison of ML against simulation-

based estimation methods such as SMM. ML and SMM pass standard model fit tests. 

However, while the ML estimates are close to the true structural objects of interest, our 

version of SMM fails to recover the true net returns to education and policy effects. The 

SMM is unable to distinguish between systematic and unsystematic cost components driving 

educational choices.

We investigate alternative tuning parameters for implementing our SMM procedure. We 

specify alternative sets of moment conditions and show how the benefit of additional 

moments depends on the unique information they provide. Moments that capture the 

dynamics of agent behavior are crucial for getting reliable estimates of dynamic models. A 

large replication count in the simulation step reduces the effect of random noise in the 

measurement of the criterion function. An appropriate choice of the weighting matrix 

smoothes the surface of the criterion function and reduces the risk of local minima. Based on 

our analysis, we recommend that more exacting model specification tests and Monte Carlo 

evidence be provided to verify the performance of SMM in any application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Decision Tree

Notes: Ӯ refers to average annual earnings in the state in 2005 $. Obs. refers to the number 

of observations in the state.
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Figure 2. 
Ability Distributions by Final Education

Notes: We simulate a sample of 50,000 agents based on the estimates of the model.
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Figure 3. 
Transition Probabilities by Abilities

Notes: We simulate a sample of 50,000 agents based on the estimates of the model. In each 

subfigure, we condition on the agents that actually visit the relevant decision state.
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Figure 4. 
Ex Ante Net Returns by Abilities

Notes: We simulate a sample of 50,000 agents based on the estimates of the model. In each 

subfigure, we condition on the agents that actually visit the relevant decision state.
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Figure 5. 
Option Values by Abilities

Notes: We simulate a sample of 50,000 agents based on the estimates of the model. In each 

subfigure, we condition on the agents that actually visit the relevant decision state. In units 

of $100,000.
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Figure 6. 
Criterion Function

Notes: Investigation using estimation sample of 5,000 agents with 30 replications.
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Figure 7. 
Parameter Perturbations, Outcome
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Figure 8. 
Role of Replications

Notes: Investigation using estimation sample of 5,000 agents with varying number of 

replications.
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Figure 9. 
Alternative Weighting Matrices

Notes: Investigation using estimation sample of 5,000 agents with one replication and 

alternative weighting matrices.
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Figure 10. 
Optimization Algorithms

Notes: Investigation using estimation sample of 5,000 agents with 30 replications and all 

tuning parameters of the algorithms set to their default values.
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Table 1

Cross Section Model Fit

Average Earnings State Frequencies

State Observed ML Observed ML

High School Finishing 0.77 0.78 0.83 0.86

High School Dropout 2.29 2.57 0.17 0.14

Early College Enrollment 1.18 1.40 0.42 0.40

High School Graduation 2.51 2.48 0.42 0.45

Early College Graduation 7.47 6.77 0.33 0.29

Early College Dropout 4.55 3.84 0.08 0.11

Late College Enrollment 2.72 2.54 0.12 0.14

High School Graduation (cont’d) 4.29 3.83 0.29 0.32

Late College Graduation 4.84 6.16 0.05 0.08

Late College Dropout 4.89 4.95 0.07 0.06

Notes: Earnings are discounted using the within state duration and measured in units of $10,000. Statistics are calculated on the NLSY79 sample 
and for ML based on 50,000 simulated agents using the parameter estimates. State frequencies are unconditional.

Int Econ Rev (Philadelphia). Author manuscript; available in PMC 2015 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Eisenhauer et al. Page 35

Table 2

Conditional Model Fit

State Number of Children Baby in Household Parental Education Broken Home

High School Dropout 0.77 0.26 0.37 0.03

High School Finishing 0.88 0.73 0.55 0.35

High School Graduation 0.91 0.94 0.65 0.91

High School Graduation (cont’d) 0.95 0.33 0.40 0.85

Early College Enrollment 0.46 0.54 0.01 0.15

Early College Graduation 0.06 0.86 0.00 0.14

Early College Dropout 0.33 0.27 0.54 0.75

Late College Enrollment 0.80 0.23 0.90 0.60

Late College Graduation 0.90 0.39 0.90 0.60

Late College Dropout 0.89 0.42 0.91 0.76
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Table 3

Costs

State Mean 2nd Decile 5th Decile 8th Decile

High School Finishing −2.38** −5.52*** −2.40** 0.79*

Early College Enrollment 2.73 −0.65 2.69 6.10

Early College Graduation 1.82 −3.88 1.89 7.61

Late College Enrollment 5.53** 1.72 5.48** 9.37**

Late College Graduation 1.13 −4.72 1.35 7.32

Notes: We simulate a sample of 50,000 agents based on the estimates of the model. We condition on the agents that actually visit the relevant 
decision state. Costs are in units of $100,000. We determine the accuracy of our estimates using the simulation approach proposed by Krinsky and 
Robb (1986, 1990) with 1,200 replications.

Level of Significance:

***
1%,

**
5%,

*
10%.
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Table 7

Standard Deviations

σ̂
η(ŝ′,s)

State True ML SMM

High School Finishing 0.27 0.24 0.61

Early College Enrollment 0.20 0.19 0.47

Early College Graduation 0.61 0.60 1.30

Late College Enrollment 0.22 0.20 0.56

Late College Graduation 0.61 0.60 1.30

RMSE 0.016 0.496

Notes: RMSE = root-mean-square error.
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Table 8

Set of Moments

Cross Section Moments Dynamic (Panel) Moments

Sets Base Base Alt. A Alt. B

Outcome Models

Means ✓ ✓ ✓ ✓

Standard Deviations ✓ ✓ ✓ ✓

Ordinary Least Squares ✓ ✓ ✓ ✓

Correlations ✓

Choice Models

State Frequencies ✓ ✓ ✓ ✓

Linear Probability

  - cross section ✓

  - dynamic ✓ ✓ ✓

Probit

  - dynamic ✓ ✓

Correlations ✓

Overall Statistics

Number of Moments 222 440 690 868

Number of Replications 50 50 50 50

Weighting Matrix diagonal variance matrix

Algorithm POUNDerS

Quality of Fit Measures

Λ(ψ̂) 130.69 383.49 666.57 798.33

Λ(ψ*) 222.12 434.07 685.94 847.64

Notes: Alt. = Alternative. 
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