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Abstract

Biomathematical modeling quantitatively describes the disposition of metal nanoparticles in lungs 

and other organs of rats. In a preliminary model, adjustable parameters were calibrated to each of 

three data sets using a deterministic approach, with optimal values varying among the different 

data sets. In the current effort, Bayesian population analysis using Markov chain Monte Carlo 

(MCMC) simulation was used to recalibrate the model while improving assessments of parameter 

variability and uncertainty. The previously-developed model structure and some physiological 

parameter values were modified to improve physiological realism. The data from one of the three 

previously-identified studies and from two other studies were used for model calibration. The data 

from the one study that adequately characterized mass balance were used to generate parameter 

distributions. When data from a second study of the same nanomaterial (iridium) were added, the 

level of agreement was still acceptable. Addition of another data set (for silver nanoparticles) led 

to substantially lower precision in parameter estimates and large discrepancies between the model 
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predictions and experimental data for silver nanoparticles. Additional toxicokinetic data are 

needed to further evaluate the model structure and performance and to reduce uncertainty in the 

kinetic processes governing in vivo disposition of metal nanoparticles.
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1. Introduction

The use of nanoparticles in commerce has expanded rapidly, with an increase from 803 

products in 2008 to 1628 products as of October 2013 in a nanotechnology consumer 

products database (Project on Emerging Nanotechnologies, 2013). As consumer exposure 

increases, concerns about toxicity have also been raised, based on effects identified in 

laboratory animals. As in other areas of chemical toxicology, the development of 

physiologically based pharmacokinetic (PBPK) dosimetry models has the potential to 

improve understanding of concerns identified in rodents and the potential relevance to 

humans, based on comparative internal dosimetry. The fate of nanoparticles is an active area 

of research.

A biomathematical model was previously developed for the disposition of nanoparticles in 

rats (MacCalman et al., 2009; MacCalman and Tran, 2009) based on calibration to three data 

sets (Semmler et al., 2004; Takenaka et al., 2001; Fabian et al., 2008). In the preliminary 

model, adjustable parameters were calibrated for each data set using least squares methods, 

with varying values for a given parameter obtained for the different data sets. Some of these 

parameter values differed radically among data sets. For example, the estimates of fractional 

translocation from the liver capillaries to the venous blood ( ) were 0.9786 (Semmler), 0.5 

(Takenaka) and 0.0001 (Fabian). As these data sets describe the disposition of three different 

types of nanoparticles, it is unclear whether the parameter differences were due to material-

specific differences in disposition, inadequate data to unambiguously identify model 

parameter values, or an inappropriate model structure.

In the current model, Bayesian population analysis using Markov chain Monte Carlo 

(MCMC) simulation was performed to provide estimates of the parameter distributions 

(rather than point estimates), which also allowed for subsequent uncertainty and variability 

analysis. Bayesian population analysis is an appropriate method for calibrating the rat 

nanoparticle PBPK model (Bernillon and Bois, 2000; Lunn et al., 2009; Jonsson and 

Johanson, 2003; Hack, 2006; Hack et al., 2006; Péry et al., 2009). Using this technique, the 

model parameters were calibrated to one or more data sets simultaneously. Data from one of 

the three previously-identified studies were used; additional data useful for model 

calibration were extracted from one of these previously identified studies (described in more 

detail in the “Methods” section) and from a newly published study of nanoparticle 

toxicokinetics. The previously-developed model structure was modified and some 

physiological parameter values modified to improve physiological realism or simplify the 

model structure, based on published PBPK modeling of nanoparticles in rats and humans.
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A sensitivity analysis of the adjustable model parameters was conducted to assess the impact 

of uncertainty/variability in model parameter values to predictions of output, using the 

population posterior distribution as inputs for Monte Carlo simulations.

2. Materials and methods

2.1. Key data sets

The preliminary rat PBPK model for nanoparticles (MacCalman et al., 2009; MacCalman 

and Tran, 2009) was based on calibration to three data sets (Semmler et al., 2004; Takenaka 

et al., 2001; Fabian et al., 2008). (Key characteristics of these studies and others used in the 

model calibration are summarized in Table 1). For the preliminary model, the iridium data 

initially reported in Semmler et al. (2004) (with additional detail reported by Semmler-

Behnke et al., 2007) constituted the key data set for understanding rat whole-body 

disposition of nanoparticles due to the extended follow up time (longer than Takenaka et al., 

2001) and the measurement of nanoparticles in most of the tissue regions of interest 

(particles were not observed in the brain, olfactory, alveolar, and upper airway regions in the 

i.v. study by Fabian et al., 2008; which was also reported in van Ravenzwaay et al., 2009).

Based on literature searches, additional data sets that could potentially be used to further the 

development of this model were identified. The studies under consideration were limited to 

a narrow range of particles sizes (15–30 nm) (Table 1) due to findings that particles of 

approximately 20 nm diameter behave differently in vivo than larger (80–100 nm) particles 

(Sarlo et al., 2009; Lankveld et al., 2010). Furthermore, nanoparticles between 6 nm and 34 

nm are expected to result in the greatest internal tissue exposure, relative to other particle 

sizes (Choi et al., 2010). Additional desirable characteristics for candidate studies were the 

availability of time course data (vs. disposition at a single sampling time) and potential for 

mass balance (extensive tissue sampling and/or excretion data). Studies with a duration of 7 

days or more, and the use of non-functionalized metal particles were preferred due to greater 

comparability to the key data (Semmler et al., 2004). Potentially applicable new data sets 

included studies by Zhu et al. (2009) (ferric oxide), Lankveld et al. (2010) (silver), 

Dziendzikowska et al. (2012) (silver), and Shinohara et al. (2014) (titanium dioxide); the 

data of Sarlo et al. (2009) could not be used because nanoparticle recovery for most tissues 

was reported in semi-quantitative form (i.e., 0.005–0.05% of dose). In addition, another 

study of iridium nanoparticles from the same laboratory as the Semmler et al. (2004) study 

(Kreyling et al., 2002, 2009) was identified and the additional data deemed useful for the 

development of this model. The data of Zhu et al. (2009) were not used due to uncertainty 

regarding the distribution of intratracheally instilled particles within the airway. A portion of 

the study of Lankveld et al. (2010) was conducted using particles similar in size to the 

previously identified data, the study duration was similar, and the data were provided in a 

convenient tabular form, so these data were also used in model development (Table 1). The 

Dziendzikowska et al. (2012) concentration data were reported in terms of dry weight of 

tissue or feces; conversion factors were not provided, so this data set could not readily be 

used for model development. In the Shinohara et al. (2014) study, titanium dioxide was 

measured as titanium metal (Ti); since Ti in excreta were not elevated above the substantial 

levels in controls, mass balance could not be adequately characterized.
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The data of Semmler et al. (2004), reported in graphical form, were digitized. Whole body 

retention and fractional excretion rate data were used to compute cumulative fecal excretion 

of nano-particles (not used in the preliminary model) and fractional retention in the lung 

(normalized to retention on day 3) was converted to absolute amounts.

The data for the study of Takenaka et al. (2001) were reported in tabular form. We were not 

able to successfully simulate this scenario, due to simulation errors (negative amounts of 

mass predicted, most frequently in smaller tissues) encountered when attempting to simulate 

this study using the MCSim software. Furthermore, this study used a different animal model 

than other studies under consideration (female F344 rats vs. male Wistar rats), so solutions 

to the simulation difficulties were not pursued and this data set was not used in the current 

evaluation.

The data of Lankveld et al. (2010) were reported both in graphical form as concentrations, 

and in tabular form as whole-organ values. The whole organ values were used, with the 

exception that the blood values were multiplied by 1/3 to estimate the amount of particles 

present in the venous blood only, based on rat anatomy and the model structure, which 

separates venous, arterial, and capillary blood.

The data of Fabian et al. (2008) were reported as tissue concentrations of nanoparticles. 

These concentrations were scaled to whole-organ values using average organ masses 

provided in the same paper. On Day 1, the sum of these scaled amounts (1.37 mg) slightly 

exceeded the administered dose (1.25 mg). To avoid mass balance issues associated with 

this discrepancy, the amounts of nanoparticles in all tissues on day 1 were adjusted such that 

the total body burden equaled the administered dose.

2.2. Model structure

The model structure (Fig. 1) was a revision of the structure proposed by MacCalman and co-

workers (MacCalman et al., 2009; MacCalman and Tran, 2009); the MacCalman et al. 

PBPK model was an extension of earlier models describing the retention and clearance of 

particles in the lung (Tran et al., 2002; Tran et al., 2001). The multi-compartmental structure 

(i.e., “splitting” rather. than “lumping”) was dictated by consideration of the data available 

and physiological processes of interest. For example, the availability of particle 

concentration data for a number of distinct tissues that are sometimes lumped in PBPK 

models (e.g., brain, heart, spleen) meant that these tissues could be considered separately. 

Physiological processes of interest included a realistic representation of arterial plus portal 

flow to the liver and potential enterohepatic recirculation. Revisions were made to improve 

the physiological realism of the extrarespiratory portions of the model. Briefly, the model 

describes each non-respiratory organ as consisting of tissue and tissue capillaries (liver 

tissue shown in Fig. 2; other tissues have the same subcompartments, but no biliary 

excretion). Arterial blood carrying nanoparticles enters the tissue capillaries, and 

nanoparticles diffuse into the tissue. Nanoparticles within the tissue can either be quasi-

irreversibly sequestered or diffuse back into the tissue capillaries, from which they may exit 

in the venous blood. As implemented for this effort, parameter values for diffusion are set 

such that there is no diffusion limitation. In the revised model structure, the venous blood of 

the splanchnic tissues (spleen and gastrointestinal tract [GI]) is delivered to the liver 
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capillaries rather than the venous blood, as in the MacCalman et al. model in order to be 

more physiologically realistic. The GI tract includes a “gut contents” subcompartment in 

addition to the tissue and capillaries. Nanoparticles may reach the gut contents via gavage; 

direct oral ingestion; clearance from the olfactory region, upper airways, or alveolar region; 

or biliary elimination from the liver. The nano-particles in the gut contents may be absorbed 

into the GI capillaries (and distributed systemically from there) or excreted from the body in 

the feces. The biliary elimination of nanoparticles from the liver is assumed to occur via 

partitioning from liver tissue to bile and transport of the bile into the gut contents.

The “bound” material in the organs is eliminated from the “sequestered” subcompartment 

into the feces. This mathematical description is a simplistic description of undetermined 

processes. The nature of the bound material is unknown, but may be sequestered, 

phagocytized material in immune cells (Li et al., 2014) or strongly bound to protein. 

Attempts to describe the entire nanoparticle content of systemic tissues as freely 

exchangeable with blood or limited by diffusion only were unsuccessful. However, to 

simulate the long-term time course of nanoparticles in systemic tissues, some form of 

clearance must be included, although this pathway appears to provide a relatively small 

contribution to total clearance. It was assumed that, once sequestered, the nanoparticles 

would not again become “free” particles available for uptake from blood or GI contents. 

Therefore their tissue clearance was described as direct elimination via feces. Simplified 

descriptions of elimination pathways for excretion via urinary, fecal, and/or exhaled breath 

pathways (e.g., Hays et al., 2000; Louisse et al., 2010; Kim et al., 1994; Thrall et al., 2000) 

are common in PBPK modeling, due to limited data availability for parameterizing clearance 

(Clark et al., 2004).

2.3. Model parameter values

Anatomical and physiological parameters for a “standard” 250 g rat were generally taken 

from the preliminary model (MacCalman et al., 2009; MacCalman and Tran, 2009) and are 

reported in Table 2. The computation of the “other tissues” volume was corrected so that it 

was calculated by mass balance. Bile flow from the liver to the gut contents was added at a 

rate of 20 ml/day (RIVM, 2010) so that transfer of nanoparticles from the liver to the gut 

contents could be calculated based on bile:liver tissue partitioning and bile flow.

The parameters controlling the diffusion of nanoparticles between capillary blood and 

tissues were set equal to 1 so that the diffusion limitation would effectively be removed. 

This change was based on the findings of Péry et al. (2009) that diffusion limitations were 

not necessary to adequately describe the kinetics of 99mtechnetium-labeled carbon 

nanoparticles in humans and because in the MacCalman and Tran (2009) optimization to the 

Semmler et al. (2004) data, most of the values for fractional translocation from capillaries to 

tissues were similar to 1 (spleen and kidney were exceptions to this finding).

Particle size-specific estimates of airway deposition in the various regions for which 

calibration data are available were calculated for both normal and endotracheal inhalation 

using the MPPD2 model (v. 2.11, Applied Research Associates, Albuquerque, NM). 

Fractional deposition estimates for endotracheal inhalation of iridium were determined using 

MPPD2 based on the particle and exposure characteristics described in Semmler et al. 
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(2004)/Semmler-Behnke et al. (2007) and Kreyling et al. (2002, 2009). Calculated 

deposition fractions were 0.2371 for the upper airways (conducting airways, in MPPD) and 

0.4203 for the alveolar region for the Semmler study and 0.2657 for the upper airways and 

0.4461 for the alveolar region for the Kreyling study. Similar calculations were done to 

estimate deposition for the Takenaka et al. (2001) data, but are not described here because 

these data were not used.

In the preliminary model, the fractions of the nanoparticles cleared from the airways into the 

gut contents were allowed to be adjustable (optimized) parameters. In the current model, 

100% transfer of cleared nanoparticles into the gut contents was assumed, an approximation 

that is likely to be accurate for airway clearance in rats (because it is unlikely that coughing 

or sneezing would be significant in rats).

In the preliminary model, the rate constants for processes in the alveolar region (particle 

uptake, release, and clearance by macrophages and the particle interstitialization rate) were 

taken from an earlier model for silica (Tran et al., 2002; Tran et al., 2001). For the current 

effort, this assumption was initially relaxed, and attempts were made to estimate these 

parameter values for nanoparticles. However, it was found that these parameters could not 

be unambiguously identified from the existing data (i.e., the parameter values did not 

converge when multiple chains of simulations were completed), so the values used in the 

preliminary model were used for further analyses.

Urinary elimination of nanoparticles was included in the preliminary model. Lankveld et al. 

(2010) found that multiple routes of nanoparticle clearance (i.e., urinary and fecal) could not 

be clearly distinguished in their model (based only on tissue concentrations from their own 

data set; they did not measure nanoparticle mass in excreta) and Choi et al. (2007) 

determined that urinary elimination is unlikely for nanoparticles larger than 5.5 nm. 

Therefore, the urinary clearance in the model was effectively “turned off” by setting the 

kidney clearance rate (κ54) to zero. In the human nanoparticle PBPK model developed by 

Péry et al. (2009), the same value was used for all tissue:plasma partition coefficients. Based 

on their results, the possibility of making all tissue:plasma partition coefficients equal was 

tested, but did not improve model fits for these data (not shown), so tissue-specific 

tissue:plasma partition coefficients were retained in the model.

In the preliminary model, sequestration of nanoparticles in tissue was assumed to be 

irreversible. Because shorter term models (e.g., Péry et al., 2009) were able to simulate 

nanoparticle tissue kinetics with partition coefficients only (no binding), it was hypothesized 

that the longer-term declines in tissue nanoparticle levels were due to slow clearance of 

sequestered material by un-identified processes (possibly via trafficking of phagocytes, or 

protein turnover). This clearance process was assumed to be governed by first-order 

kinetics.

The fecal elimination rate was a fully adjustable parameter in earlier versions of the revised 

model. Because unrealistically high rates for this parameter were estimated in the 

optimization, the population mean was fixed at 8.2/day, based on the half time for the 

passage of material from the stomach to the cecum (Enck et al., 1989). The absorption rate 
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from the GI tract to the portal vein blood was allowed to vary for individual studies, within 

the constraints of the population parameters.

2.4. Model implementation/model calibration

The preliminary rat PBPK model was previously developed by one of the coauthors (Laura 

MacCalman) in Matlab. The equations were modified per the model structural changes 

noted above and converted into a format appropriate for MCSim (version 5.3.1). The model 

text file was converted into a C file using the preprocessor “mod” and was subsequently 

compiled into the executable program.

The Bayesian approach relies on both prior knowledge, as described in initial parameter 

distributions (shapes and ranges of values), and information that (if analyzed appropriately) 

can be deduced from the measured data (Gelman et al., 1996; Bernillon and Bois, 2000). 

Using a sampling algorithm such as the Metropolis Hastings algorithm, proposed 

distributions are tested and narrowed to identify distributions that produce the best 

agreement between the model and the data. In these stochastic simulations, the selection of 

subsequent random values is influenced by the current parameter values (Bois and Maszle, 

2009), with the goal that, on the whole, agreement improves as the simulation progresses. 

Each chain should be inspected to verify that “equilibrium” has been achieved, and multiple 

chains with different starting values (seed values) should be executed to test for consistency 

among chains.

To facilitate the Bayesian MCMC analysis, a statistical model was generated to implement a 

Bayesian approach to modeling the data. For the statistical model, the parameters to be 

sampled and optimized were transformed so that the parameters would be described by 

distributions of the means of the natural logarithm of the parameter value (M_lnParam) and 

the associated variances (V_lnParam). The variance of the measurement error for the 

measured covariates was also specified (Ve_Meas). The distribution shapes were modeled 

after those used in development of the trichloroethylene PBPK model (U.S. EPA, 2009; 

Evans et al., 2009; Chiu et al., 2009), and reflect to the degree possible the known, empirical 

distributions of values in variable human populations. The distributions for M_lnParam were 

generally truncated normal distributions, while the V_lnParam values were assumed to 

follow an inverse gamma distribution (see “Results”, Table 3, and Supplementary Materials, 

Tables S-1 and S-2). The Ve_Meas distributions were characterized as log uniform. Highly 

uninformative prior parameter distributions were used to avoid bias, so that the posteriors 

were determined by the data alone.

Multiple chains of MCMC simulations (10,000 iterations per chain, results reported for 

every fifth iteration) were produced by using different seed values for the MCMC algorithm. 

Occasionally chains produced fatal errors; when this happened, such events typically 

occurred early in the chain and the results were discarded. This problem was encountered 

more frequently when multiple data sets were considered simultaneously. Preliminary 

analyses of the chains consisted of evaluating the progress of the chain by viewing the 

changes in the log likelihood function (LLF) as the iterations progressed (a larger LLF 

indicates better agreement between the model predictions and experimental data). This 

inspection ensured that the chain was sufficiently stable that the last 5000 iterations would 
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yield an acceptable set of “optimal” parameter values from the chain. An example of the 

stabilization of the LLF output is provided in the Supplementary Materials (Fig. S-1). When 

three acceptable chains had been produced, an initial assessment of the consistency of the 

results was made by comparing the average of the LLFs. Typically, if there appeared to be 

disparate results, additional chains were produced (up to a total of six chains) and the three 

with the highest LLFs were used in subsequent analyses (e.g., convergence, posterior 

parameter estimates).

2.5. Evaluation of model output

2.5.1. Convergence of model parameter estimates—The convergence (similarity) 

of results among chains was analyzed by comparing the means and variances of the 

parameter estimates through the use of the “R” statistic, where R = 1 indicates perfect 

convergence (Gelman and Rubin, 1992; Gelman, 1996; Gelman et al., 1996). Gelman et al. 

(1996) indicated that PBPK model parameter value estimates demonstrated acceptable 

convergence if √R < 1.2 (R < 1.44). In the MCMC output summaries (Table 3, Tables S-1, 

and S-2), the posterior variances (in the column to the left of the “R” value) reflect the 

average variance in posterior values the three chains used for a particular data set (or group 

of data sets). That is, for a series in which the first three chains were deemed to adequately 

converge, the reported posterior variance is 1/3rd of the sum of variance of posterior values 

from chain 1, chain 2, and chain 3. These variances among output values of each chain 

should not be confused with the population parameter variances, the posterior mean value 

for V_lnParam.

2.5.2. Model sensitivity analyses—Key (sensitive) adjustable model parameters were 

identified by using the posterior parameter values derived from the MCMC analysis of the 

Semmler et al. (2004)/Semmler-Behnke et al. (2007) and Kreyling et al. (2002, 2009) data. 

The model was implemented in acslX (version 3.0.2.1, AEgis Technologies, Huntsville, AL, 

USA) using the Monte Carlo analysis utility to generate 1000 model iterations. The 

population means and variances noted in bold in Table 3, Tables S-1, and S-2 and the prior 

constraints (minimum and maximum values) were used to generate the parameter values for 

the Monte Carlo simulations. Sensitivity was determined at a limited number of times that 

corresponded to the times at which experimental data had been collected. Because non-

normal distributions were used, inputs and outputs were converted to ranks (i.e., the lowest 

value is assigned a rank of 1000, whereas the highest value is assigned a rank of 1) prior to 

correlation analysis (Decisioneering, 1996). The correlation between ranks was determined 

using Microsoft Excel (“CORREL” function). The contribution of a given parameter to the 

variance of the forecast value is determined by squaring the correlation coefficients of the 

input parameters and normalizing each input to a total contribution of 100 percent 

(Decisioneering, 1996).

2.5.3. Visualization of output—The forecast values from the Monte Carlo simulations 

were compared to the experimental data using plots generated in Microsoft Excel. Time 

course simulations of measurements of interest were extracted for the median output of the 

population simulation and the 16th and 84th percentile values. For normally distributed 
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outputs, the 16th and 84th percentile values approximate values ± one standard deviation 

from the mean.

2.5.4. Quantification of extent of agreement between model predictions and 
experimental data—For each experimental data point, the agreement between the model 

prediction and the experimental value (discrepancy index) was computed as the maximum 

of the predicted value/experimental value or experimental value/predicted value. In the case 

of perfect agreement between the model and the data, the discrepancy index would be 1. 

Geometric mean discrepancy indices were computed to aggregate the discrepancy indices 

for tissues/excreta over time and for all times and matrices evaluated for a given study. The 

agreement between the model and data was generally deemed acceptable if, on average, the 

difference between the model predictions and the mean of the experimental data is not more 

than a factor of two (International Programme on Chemical Safety [IPCS], 2010).

3. Results

The current model calibration was based mainly on data from three studies, including the 

Semmler study (Semmler et al., 2004; Semmler-Behnke et al., 2007) that was used in the 

earlier model (MacCalman and Tran, 2009). The Semmler study was the only study with 

sufficient detail to adequately characterize the mass balance of inhaled iridium particles. 

Data from two additional studies were added in a stepwise manner in the current model: a 

second study of iridium particles (Kreyling et al., 2002, 2009), and a study of silver 

nanoparticles (Lankveld et al., 2010). Alteration in the agreement between the model 

predictions and the data was assessed as data sets were added.

Bayesian MCMC analyses were successfully completed for the Semmler data alone 

(Semmler et al., 2004; Semmler-Behnke et al., 2007) (“S analysis”); the Semmler data plus 

Kreyling data (Kreyling et al., 2002, 2009) (“SK analysis”), and the Semmler data, Kreyling 

data, and Lankveld data (Lankveld et al., 2010) (“SKL analysis”). A fourth study (Fabian et 

al., 2008; van Ravenzwaay et al., 2009) of titanium dioxide nanoparticles, which was also 

used in the preliminary model, was evaluated in the current model with the other three data 

sets. It took 32 attempts to find seed values that produced 5 complete chains when all four 

data sets were used. Several population parameter estimates generated by these chains failed 

to converge, so no further analysis of this output was conducted.

The statistical model parameters and results for the SK, S, and SKL analyses were 

summarized in Table 3, Tables S-1, and S-2, respectively. Convergence was seen for all 

parameters for the S and SKL analyses. A lack of convergence was observed for two 

parameters for the SK analyses—the sequestration rate in other perfused tissues (κ93) and 

the clearance of sequestered material from the heart (κ634). For the SK and SKL analyses, 

no substantial differences between the group-specific parameter values for the Semmler data 

vs. Kreyling data were identified (Table 3, Table S-1). For the SKL analyses, the Lankveld 

group parameter values were substantially different from those of the Semmler and Kreyling 

groups for fecal elimination and the plasma:liver partition coefficient (Table S-2).
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Monte Carlo simulations were conducted based on the population parameters from the S, 

SK, and SKL analyses. The predictions generated from the central tendency estimates of the 

population values were compared to the experimental data to generate a quantitative 

assessment of the agreement between the model and Semmler data (Table 4), Kreyling data 

(Table 5), and Lankveld data (Table 6). Graphical comparisons of the mean values of the 

experimental data and the 16th percentile, median, and 84th percentile values of the outputs 

of the SK and SKL analyses were also generated (Fig. 3—Semmler data, Fig. 4—Kreyling 

data, and Fig. S-2 in the Supplementary Materials—Lankveld data). Error bars for the 

experimental data are not shown; standard deviations for the Semmler et al. lung data were 

small (~17% of the mean, on average). Standard deviations on tissue concentrations 

appeared to be larger, at times exceeding 100% of the mean value, but could not be 

determined from the original paper due to lack of clarity in the original figure (overlapping 

error bars). Outputs from the S analyses were omitted from the figures for clarity and 

because of their similarity to the SK outputs. A data set not used in parameter estimation 

(Fabian et al., 2008) was also compared to model forecasts (Table S-3 and Fig. S-3).

Overall, the agreement to the Lankveld data was fair to poor, and the model tended to over 

predict the measured nanoparticle burdens, with the exception of the liver (Table 6, Fig. 

S-2). Because of this finding, the variability/uncertainty analysis was limited to the SK 

model to identify contributors to variability in predicted iridium disposition and inform the 

assessment of parameter identifiability from these data sets. Fixed parameters (Table 2) were 

not considered in this analysis. The analysis was limited to the population parameters 

determined through the Bayesian MCMC analysis, with sensitivity determined via rank 

correlation (i.e. rank of the input, among the 1000 trials vs. the rank of the forecast value 

derived from that trial) and percent contributions to variability determined from the squares 

of the correlation coefficients.

Optimized parameters that had the greatest impact on predicted brain concentration in 

iridium for the Semmler study are shown in Fig. 5. A larger estimated oral absorption rate 

tended to increase predicted brain concentrations, especially at the earliest sample time, 

while the fecal elimination rate had the opposite effect. The tissue-specific sequestration rate 

(κ83) and clearance rate for sequestered materials (κ834) had little impact at the earliest 

point, but were more important at later points, with impacts in opposite directions, while the 

impact of the plasma:brain partition coefficient is fairly consistent over time. The rate of 

sequestration in “other” tissues has some impact beyond the earliest time point due to its 

function as a relatively large sink for systemically-delivered nanoparticles. The time-

dependent contributions of the various parameters to the variability at each time point are 

shown in Fig. 6. Other systemic tissue concentrations had similar key determinants (data not 

shown). The amount in the lung and associated lymph nodes was sensitive to the rates of 

translocation from the lung to the blood (kb) and into the lymph nodes (kl), and was 

differentially sensitive over time to these parameters (Fig. 7). The cumulative amount 

excreted in feces was sensitive to some of the same parameters that drove the forecasted 

systemic levels (absorption, elimination, and sequestration in other tissues), and the same 

parameters to which lung burden was sensitive (Fig. 8).
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4. Discussion

The focus on the iridium data of Semmler and co-workers (Semmler et al., 2004; Semmler-

Behnke et al., 2007) for these analyses was due to the extended follow up (170 days post 

dosing) and potential for constraining mass balance (fecal excretion data; urinary excretion 

was likely minimal for this study due to particle size) and the previous use of these data in 

PBPK modeling of nanoparticles (MacCalman and Tran, 2009; MacCalman et al., 2009). 

The addition of the Kreyling et al. (2002, 2009) data was anticipated to better constrain the 

parameter estimates for systemically distributed iridium because of the availability of data 

for tissues not characterized by Semmler (e.g., one time point each for heart and blood and 

four time points for the other tissues compartment). It was determined that the addition of 

the Kreyling et al. (2002, 2009) data set, did not substantially alter the level of agreement, 

although optimal parameter values changed. Therefore changes in estimated parameter 

values between the “S” and “SK” analyses were not necessarily considered indicative of a 

poor model structure, but rather a reflection of better identification of parameter values due 

to consideration of additional data. Furthermore, the time course estimates for the median 

population simulation were still substantially in agreement with the experimental data (Table 

4) and the spread of the population simulations (84th vs. 16th percentile values) were 

narrower for the SK analysis than the S analysis (simulations not shown). The addition of 

the next data set (Lankveld et al., 2010) did not substantially alter the fit to the iridium data 

sets, but did not produce adequate agreement between experimental data and simulations for 

the silver nano-particles. In addition, inclusion of the third data set dramatically increased 

the spread of the posterior Monte Carlo population simulations of iridium toxicokinetics. 

This step-wise addition of data sets within the MCMC framework, rather than a single 

MCMC analysis of all of the data being considered, allowed us to discern the impact of each 

additional data set on model performance (i.e. fit) and precision of parameter estimates.

The sensitivity analyses for iridium kinetics demonstrated that the forecast values were 

clearly sensitive to most of the parameters being optimized. The time-sensitivity of the rank 

correlation co-efficients (Figs. 5 and 7) highlights the importance of time course data for 

evaluating model structures and parameterization. The determination that tissue burdens 

were sensitive to the values of many adjustable parameters was not surprising–had the tissue 

burdens been sensitive to a more limited set of parameters, the simpler model structures that 

were explored may have sufficed to fit the data.

The Lankveld et al. (2010) data were used to test the applicability of the iridium-derived 

parameters to the disposition of a similar material (with respect to size, lack of 

functionalization, etc.) in the same animal model, the young adult male Wistar rat. The fit of 

the median SKL simulation results to the Lankveld data was not acceptable (Table 6). The 

impact on simulations of the Semmler and Kreyling studies from the addition of the 

Lankveld et al. (2010) data to the MCMC analysis was not apparent from the predictions 

based on the central tendency population parameters values alone (Tables 4 and 5), but was 

evident in the wider population predictions (Fig. 3) and in an elevated estimate in the 

variance of the fecal excretion rate (Table S-2). This conclusion could not readily have been 

drawn from deterministic analyses alone, and helps demonstrate the value of the Bayesian 

approach. Had data on nanoparticle excretion in feces been available for the Lankveld et al. 
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(2010) study, the fecal excretion rate might have been more narrowly constrained. 

Dissolution of the silver nanoparticles at some rate may have contributed to poorer model fit 

and over-prediction compared to the calibration data (Fig. S-2) and an independent data set 

for titanium oxide nanoparticles (Fig. S-3).

The kinetics of nanoparticles in vivo are, in general, not currently well-understood (Li et al., 

2010) and the reasons for the inability of the iridium-derived model parameters to describe 

the toxicokinetics of silver (Lankveld et al., 2010) data are likewise unclear. One possibility 

is that there are key differences in the characteristics of the test articles that somehow 

translate to differences in optimal values for certain parameters; the data sets considered in 

this analysis were selected primarily based on similarity of particle size, and the lack of 

additional functional groups. Another possibility is that model structure does not adequately 

describe the key processes. The PBPK model structure tested here (a flow-limited 

modification of MacCalman and Tran, 2009; MacCalman et al., 2009), is based largely on 

model structures used previously for many volatile, soluble compounds, but with limited 

translocation from the lung interstitial tissue into the blood. A similar model structure was 

successfully applied to short term (up to 60 min) kinetics of 99mtechnitium-labeled carbon 

nanoparticles inhaled by humans (Péry et al., 2009). In contrast, Li et al. (2012) found the 

kinetics of poly(lactic-co-glycolic acid) nanoparticles prepared with varying amounts of 

monomethoxypoly (ethylene glycol) in mice were described better by membrane-limited 

models than flow-limited models. The model structure used herein for iridium particles did 

not include any saturable processes, and the doses of iridium nanoparticles (~3 μg in 

Semmler et al., 2004; Semmler-Behnke et al., 2007) were much less than the silver dose in 

Lankveld et al. (2010) (five injections of 23.8 μg), so the lack of consistency could be due to 

saturation of key processes at the higher doses in Lankveld et al. (2010). The model does, 

however, appear to capture the extent of the day-to-day increases in retention of 

nanoparticles in lung and peripheral tissues, consistent with the repeated-dosing data of 

Lankveld et al. (2010), the only repeated dosing study considered in this analysis. PBPK 

models for nanoparticles that integrate diffusion limited uptake and incorporate immune 

cells as a distinct, capacity-limited subcompartment could provide alternative structures to 

test against these same data sets (Bachler et al., 2013; Li et al., 2014). In addition, if the 

majority of systemically distributed nanoparticles are associated with macrophages, rather 

than “free”, their distribution over the time frame of interest here (several days) might better 

be described by inter-organ trafficking of the cells of the immune system (Zhu et al., 1996) 

rather than diffusion from blood alone. The simplistic description of sequestered particles 

being cleared directly to feces (rather than being trafficked through the lymphatic system or 

carried in the blood in a non-exchangeable form) contributes uncertainty to the derived 

parameters. However, since the parameters for clearance of sequestered particles do not 

have a significant impact on predictions of nanoparticle elimination in feces, the impact, if 

any, is likely limited to the fit to blood concentrations.

Further modeling work would benefit from well-conducted long-term kinetics studies in 

rodents, as discussed above. Even without such data, simulation studies may provide more 

information on the reliability of the current model parameter values as well as the potential 

to simplify the model structure for poorly-soluble nanoparticles. Moreover, further model 
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development to include particle dissolution pathways (e.g., as described in Bachler et al., 

2013) may improve the model predictions for soluble nano-particles. Although a goal of 

developing a PBPK model in rodents is to provide a biological basis for extrapolation of the 

model to humans, further data and model evaluations are needed before extrapolation is 

feasible. Ideally, future in vivo toxicokinetics studies of nanoparticles would incorporate 

better demonstration of mass balance, by collection of excreta and determination of nano-

particle content of all important tissues, including muscle, fat, bone marrow, and the 

skeleton at multiple time points. Multiple measurements of tissues are important so that both 

the delivery/distribution and clearance phases can be discerned, but this requires increased 

numbers of animals and amounts of test article. However, multiple measurements of blood, 

urine, and feces can be completed without requiring more animals or test article. While the 

sensitivity of tissue burdens of iridium to values of model parameters was fairly consistent 

after the initial distribution period (t = 6 h, vs. 7–170 days; Figs. 5–7), the cumulative 

excretion in the feces showed somewhat different patterns of sensitivity, depending on the 

parameter. For example, cumulative excretion showed a transient sensitivity to storage in 

“other” tissues, decreasing sensitivity to the oral absorption rate, and increasing sensitivity 

to the rate of transfer to the lymph nodes (Fig. 8). Thus, if analytical techniques permit 

quantitation of nanoparticles in excreta at longer times after administration, these data can 

provide useful constraints on model parameter values.

5. Conclusions

While the nanoparticle toxicokinetic database continues to expand (Yang et al., 2010), much 

remains unknown as to the fundamental processes which dictate the systemic uptake, 

distribution, and clearance from the body. PBPK modeling of nanoparticles is hampered by 

a lack of thorough mass balance studies with adequate time courses to supply sufficient data 

sets for comprehensive modeling; this lack may be overcome through better-designed 

studies, or techniques that allow information to be amalgamated across studies and study 

designs. In addition, it is important that the test articles be well-characterized so that 

properties beyond size and elemental composition (e.g., surface properties and other 

characteristics) be considered as potential key determinants of disposition. Bayesian MCMC 

techniques have the potential to be applied to test various model structures via the 

simultaneous consideration of multiple data sets over wide ranges of potential parameter 

values, facilitating an improved understanding of key determinants of toxicokinetics of 

different types of nanoparticles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Structure of rat nanoparticle PBPK model.
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Fig. 2. 
Details of liver compartment structure and processes.
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Fig. 3. 
Disposition of iridium nanoparticles in rats exposed via a single intratratracheal intubation 

inhalation at 0.7 mg/m3 for 60–100 min. ■ Mean value of experimental data (Semmler et 

al., 2004; Semmler-Behnke et al., 2007; n = 8 up through day 59; n = 4 after day 59). Lines: 

PBPK model Monte Carlo simulations. Solid lines: median; dashed lines: 16th and 84th 

percentiles; black: SK analysis; gray: SKL analysis.
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Fig. 4. 
Disposition of iridium nanoparticles in rats exposed via a single intracheal tubation 

inhalation at 0.2 mg/m3 for 60–100 min. Symbols: mean experimental data of Kreyling et al. 

(2002, 2009); error bars not shown (fractional excretion and retention were reported 

graphically in the original data; the following coefficients of variation were estimated from 

the figures: 0.11 (lung), 0.14 (feces), 0.34 (brain), 0.44 (kidneys), 0.36 (liver), 0.44 (spleen), 

0.31 (heart), 1.03 (blood), and 0.18 (skeleton). Lines: PBPK model Monte Carlo 

simulations; solid lines—median; dashed lines—16th and 84th percentiles; black—SK 

analysis; gray—SKL analysis.
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Fig. 5. 
Rank correlation coefficient for optimized parameters and brain concentration at 0.25, 7, 21, 

or 170 days (from left to right, within each cluster) after inhalation exposure to iridium 

nanoparticles (Semmler et al., 2004; Semmler-Behnke et al., 2007). Only parameters with |

rank correlation| >0.2 for at least one sample time are shown.
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Fig. 6. 
Contributions of various parameters to variability in Monte Carlo-derived population 

simulations of nanoparticle concentrations in the brain in rats exposed to iridium by 

inhalation (per Semmler et al., 2004; Semmler-Behnke et al., 2007).
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Fig. 7. 
Rank correlation coefficient for optimized parameters and lung burden at 0.25, 7, 21, or 170 

days after inhalation exposure to iridium nanoparticles (Semmler et al., 2004; Semmler-

Behnke et al., 2007). Only parameters with |rank correlation| >0.2 for at least one sample 

time are shown.
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Fig. 8. 
Rank correlation coefficient for optimized parameters and cumulative excretion in feces at 

0.25, 7, 21, or 170 days after inhalation exposure to iridium nanoparticles (Semmler et al., 

2004; Semmler-Behnke et al., 2007). Only parameters with |rank correlation| >0.2 for at 

least one sample time are shown.
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Table 2

Fixed model parameters.

Value

Anatomical parameters (MacCalman and Tran, 2009; MacCalman et al., 2009)

Volume inhaled, L/min (VI) 0.18 (default)

Liver tissue volume, ml (Vtis3) 10.3

Liver capillary blood, fraction of liver tissue volume (Vcap3C) 0.06

GI tissue volume, ml (Vtis4) 6.0

GI capillary blood, fraction of GI tissue volume (Vcap4C) 0.0265

Kidney tissue volume, ml (Vtis5) 1.2

Kidney capillary blood, fraction of kidney tissue volume (Vcap5C) 0.13

Heart tissue volume, ml (Vtis6) 1.2

Heart capillary blood, fraction of heart tissue volume (Vcap6C) 0.1

Spleen tissue volume, ml (Vtis7) 0.6

Spleen capillary blood, fraction of spleen tissue volume (Vcap8C) 0.1

Brain tissue volume, ml (Vtis8) 1.2

Brain capillary blood, fraction of brain tissue volume (Vcap8C) 0.033

Venous plasma volume (Vven) 5.6

Arterial plasma volume (Vart) 11.3

Other tissues capillary blood, fraction of other tissues volume (Vcap9C) 0.1

Cardiac output, ml/day (QC) 1,201,200

Blood flow to liver (hepatic artery only), ml/day (Q3) 2523

Blood flow to GI tissue, ml/day (Q4) 16,704

Blood flow to kidneys, ml/day (Q5) 13,248

Blood flow to heart tissue, ml/day (Q6) 5616

Blood flow to the spleen, ml/day (Q7) 864

Blood flow to the brain, ml/day (Q8) 1872

Bile output, ml/day (Qbile) (RIVM, 2010) 20

Fecal elimination rate, day−1 (population mean) (Enck et al., 1989) 8.2

Alveolar region parameters (Tran et al., 2002)

Macrophage clearance rate, per day (kt) 0.015

Macrophage phagocytosis rate, per day (kr) 4.0

Macrophage death rate, per day (kd) 0.033

Interstitialization rate, per day (ki) 3.5
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Table 4

Discrepancies between model predictions and experimental data of Semmler et al. (2004) and Semmler-

Behnke et al. (2007).

Matrix (n)a Geometric mean discrepancy indexb

S Analysis SK analysis SKL analysis

Lung (20) 1.2 1.2 1.2

Feces (22) 1.0 1.1 1.1

Brain (4) 1.7 1.9 2.5

Kidney (5) 1.6 1.7 1.9

Liver (5) 2.0 4.4 3.5

Spleen (6) 2.5 3.2 3.1

All (63) 1.3 1.5 1.5

a
n = number of experimental data points for a specific matrix.

b
Discrepancy index = maximum of predicted value/measured value or predicted/measured value. Perfect agreement would have a discrepancy 

index of 1. Agreement considered acceptable if the discrepancy is, on average, <2 (IPCS, 2010).
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Table 5

Discrepancies between model predictions and experimental data of Kreyling et al. (2002, 2009).

Matrix (n)a Geometric mean discrepancy indexb

SK analysis SKL analysis

Lung (4) 1.1 1.1

Feces (6) 1.2 1.1

Brain (1) 1.0 3.8

Kidney (1) 2.1 9.9

Liver (4) 1.9 1.8

Spleen (1) 1.1 2.5

Heart (1) 1.0 6.1

Venous blood (1) 1.3 2.0

Other tissues (4) 5.1 1.5

All (23) 1.6 1.7

a
n = number of experimental data points for a specific matrix.

b
Discrepancy index = maximum of predicted value/measured value or predicted/measured value. Agreement considered acceptable if the 

discrepancy is, on average, <2 (IPCS, 2010).
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Table 6

Discrepancies between model predictions and experimental data of Lankveld et al. (2002 ,2009).

Matrix (n)a Geometric mean discrepancy indexb

SKL analysis

Lung (7) 10

Brain (7) 16

Kidney (7) 5.4

Liver (7) 2.2

Spleen (7) 9.0

Heart (7) 6.1

Venous blood (5) 1.5

All (47) 5.9

a
n = number of experimental data points for a specific matrix.

b
Discrepancy index = maximum of predicted value/measured value or predicted/measured value. Agreement considered acceptable if the 

discrepancy is, on average, <2 (IPCS, 2010).
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