
A novel, Bayesian approach to social structure uncovers cryptic 
regulation of group dynamics

B.R. Foley1,*, J.B. Saltz2, S.V. Nuzhdin1, and P. Marjoram3

1Molecular and Computational Biology, Dept. of Biological Sciences, USC, Los Angeles, 
California 90089, USA.

2Department of Biosciences, Rice University, Houston, Texas, 77005, USA.

3Dept. of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, California 90089, 
USA.

Abstract

Understanding the mechanisms that give rise to social structure is central to predicting the 

evolutionary and ecological outcomes of social interactions. Modeling this process is challenging, 

because all individuals simultaneously behave in ways that shape their social environments—a 

process called Social Niche Construction [SNC]. In previous work we demonstrated that 

aggression acts as an SNC trait in fruit flies (Drosophila melanogaster), but the mechanisms of 

that process remained cryptic. Here, we analyze how individual social group preferences generate 

overall social structure. We use a combination of agent-based simulation [ABS] and Approximate 

Bayesian Computation [ABC] to fit models to empirical data. We confirm that genetic variation in 

aggressive behavior influences social group structure. Furthermore, we find that female 

“decamping” due to male behavior may play an under-appreciated role in structuring social 

groups. Male-male aggression may sometimes destabilize groups, but may also be an SNC 

behavior for shaping desirable groups for females. Density intensifies female social preferences, 

thus the role of female behavior in shaping group structure may become more important at high 

densities. Our ability to model the ontogeny of group structure demonstrates the utility of the 

Bayesian model-based approach in social behavioral studies.
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Introduction

The process by which individuals shape their social environment is called social niche 

construction [SNC] (Flack et al., 2006; Saltz and Foley, 2011; Kohn et al., 2011). In free-

living populations, social groups emerge as a consequence of many individuals 

simultaneously engaging in SNC. These individuals will often vary in important ways, 
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including personality, and sex (e.g. Eldakar et al., 2009; Griffiths and Magurran, 1998; 

Aplin et al., 2014). This variation may in turn translate into differences in population-wide 

group structure, such as group size, and sex ratio (Jovani and Mavor, 2011; Sumpter, 2010). 

Understanding these aspects of group composition is important because social structure 

affects opportunities for competition, cooperation, or mating. However, modeling SNC is 

challenging, because an individual’s expressed social phenotype may depend on interactions 

between sex, genotype, and the available social environment (Saltz and Foley, 2011). In 

these kinds of diverse groups we need to understand: what are the differences in male and 

female behavior, how do these differences shape group structure, and how might group 

structure feed back into subsequent behavior?

The fruit fly, Drosophila melanogaster, is a classic model organism for studying social 

behavior, sex differences, courtship, and aggression. D. melanogaster interacts in groups on 

food for mating and egg laying, but the behavioral mechanisms that structure these groups 

are only partially understood. Aggressive behavior reduces aggregation among males (Saltz 

and Foley, 2011) and might be expected to reduce local (within patch) competition for mates 

for territorially successful males. Previous work has shown that across a wide range of 

conditions, aggressive males gain a mating advantage by excluding other males from the 

patches of food females use for egg laying (Hoffmann and Cacoyianni, 1989, 1990). 

However, while these studies focused on the direct outcomes of male-male interactions, they 

did not measure the way in which female social preferences interacted with male behavior. 

We have shown that the relationship between male aggressive success and mating success 

varies across social contexts due to female preferences. Females do not always prefer to 

mate with terriorial males, and may even mate more often when males are less aggressive 

(Cabral et al., 2008; Saltz and Foley, 2011; Saltz, 2013). This complexity suggests that we 

need to understand the social determinants of female behavior, including group choice. 

Female social preferences for males are likely to be complex, due to several conflicting 

selective pressures. In order to assess the quality of potential mates, or to mate at all, females 

need to be in groups with at least some males. However, females only mate every few days, 

and may often have reasons to actively avoid males. Exposure to males reduces female 

health (Pitnick and Garcia-Gonzalez, 2002), and females flee unwanted courtship (Spieth, 

1974). Female-female interactions may also be important in shaping group composition, 

since they are thought to aggregate to lay eggs (Sarin and Dukas, 2009). How to model the 

outcome of varying social interests and their effects on group structure is an important 

general problem in animal behavior.

Previously, we demonstrated that genetic variation in male-male aggressive behavior acts as 

a mechanism of SNC in fruit flies (Saltz and Foley, 2011—referred to as ‘S&F’ from here 

on). In aggressive encounters in D. melanogaster, males chase other males away from food 

patches. To evaluate whether genetic variation in male aggression can shape group structure, 

we formed mini-populations, varying density and genotype. Males and females could 

interact freely and form groups on food patches in each “population”. We found that females 

tended to form aggregations with other females, but males were more evenly distributed 

among patches than expected by chance. Overall, flies aggregated more than expected by 

chance, and male and female presence on patches was highly correlated—there were few 
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groups that had many males in them, but those groups also tended to have large numbers of 

females in them. Populations of different genotypes had different social structure. Those 

with the most aggressive genotypes had fewer males on patches, and lower variance in male 

presence among patches.

While male and female presence on patches was highly correlated, we were unable to assess 

whether the group choices of males or females were driving that correlation. Additionally, 

our approach was unable to test for changes in behavior across densities. Because each 

individual’s behavior can be determined by complex feedback and stochastic dynamics 

(Sumpter, 2010), linear approximations are often inadequate for higher order group 

processes (Eriksson et al., 2010). Simulation, however, provides a powerful mechanistic 

approach to describe complex group formation (Jovani and Mavor, 2011). In particular, 

Agent Based Simulation [ABS] is a particularly appropriate tool with which to study SNC 

(Bryson et al., 2007), because it operates at the level of individual behaviors and choices. 

Quantitative approaches have been successful in model fitting in ABS (Amé et al., 2004; 

Eriksson et al., 2010; Mann, 2011), particularly in describing patterns of collective 

movement in schooling or flocking animals (Sumpter et al., 2012; Mann et al., 2014; Ward 

et al., 2008). While D. melanogaster is not known to engage in collective movement, the 

methodology seems well suited for describing outcomes of individual interactions.

In situations where the potential state space is small, the model is reasonably simple, or there 

are no missing data, exact methods of model fitting are appropriate. For example, Aplin et 

al. (2014) applied a maximum-likelihood approach to fit stochastic models of empirical 

group behavior, while Mann et al. (2014) used Bayesian model selection. Our data, 

however, comprise multiple sampled states, and are sampled at discrete time-points rather 

than being observed continuously. Furthermore, because we need to model male and female 

social preferences independently, our state space is quite large. Since exact methods are not 

tractable in our context, we utilize Approximate Bayesian Computation [ABC] with Monte 

Carlo Markov Chain [MCMC] sampling (Marjoram et al., 2003; Beaumont et al., 2009). 

ABC is an approach that allows us to estimate model parameters in a principled manner, 

even in contexts that are analytically intractable. In essence we replace calculation of the 

likelihood with simulation, and use a Euclidean distance metric to assess model fit. In this 

way, it is a formalized version of the maximum likelihood approach sometimes used in 

fitting complex behavioral models (e.g. Ward et al., 2008). While a number of sampling 

schemes are possible in ABC, MCMC is a well worked-out approach that allows us to 

efficiently sample high-dimensional parameter space (e.g. Mann et al., 2013, 2011).

Materials and Methods

The 6 D. melanogaster genotypes used in S&F spanned a range of aggression. Of these, 4 

(W23, W58, W89 and W145) were nearly isogenic lines collected in Winters California in 

1998. The other 2 were high-aggression selected (A), and neutral control (N) genotypes, 

kindly supplied by Ralph Greenspan. These were created from the common laboratory 

wildtype stock Canton-S, as described in (Dierick and Greenspan, 2006).
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Simulation

Simulations were designed after the assay of S&F, and mimicked the experimental 

conditions of these assays. We simulated the results of experiments using our 6 different 

genotypes at 5 different densities. Each experimental density×genotype combination is 

considered a “treatment”. Each simulation comprised 4 food patches, among which flies 

were able to freely assort (as well as an “off patch” state). Each simulated trial contained an 

equal number of males and females. The density (total number) of flies in the arena ranged 

from 12 to 20 flies. We did not attempt to model the lowest 3 densities of S&F since the 

sampling variance for these replicates was high. We simulated group choice using a simple 

joining-and-leaving model (Amé et al., 2004). We modelled group behavior for each fly as a 

function of a joining rate, a baseline leaving rate, as well as social preferences (Figure 1). 

Social preferences were a fly’s affinity for males, and their affinity for females. Parameters 

were sex specific, so for each simulation there was a total of 8 parameters, 4 male and 4 

female, comprising the parameter set Θ (Figure 1B). While it is possible to construct simpler 

models with fewer parameters, we found highly significant sex differences in these estimates 

(Supplemental Material) suggesting that male and female social preferences should be 

modelled separately. Events were modeled as a continuous time Markovian Process, with 

rates determined by rate equations (Otto and Day, 2007).

Flies who were off-patch could join a group. Group joining Ji was taken to be a simple rate 

exp(js) for a focal individual i of sex s. Group joining was random with respect to patch 

(Figure 1A) since (at least over short distances) fruit flies do not appear to use social cues 

before landing on patches, but instead respond to social cues within groups (Saltz, 2011). 

We fixed the male joining parameter jm at 0 throughout all replicate simulations, rather than 

attempting a post hoc scaling of rate parameters. Priors for jf were flat between −3.3 and 3.3, 

which represents a possible difference of joining rates of more than 700 fold. Flies who were 

off-patch were not considered to belong to any group.

Flies who were on-patch left at a rate Li proportional to their sex-specific leaving rate, ls, 

modified by their group context and social parameters as described in Equation 1 (Figure 

1B). The particular form of our leaving rate equation was a simplified version of the leaving 

rate equation of (Amé et al., 2004), which is a very general rate equation that has been 

shown to describe group choice very well, in cockroaches for example. In order to reduce 

the number of parameters we needed to fit, we did not include their term k, effectively 

setting the intercept at the sex-specific baseline leaving rate ls. This means that every 

additional fly (of a given sex) added to a patch has the same proportional effect as the one 

before on the leaving rate of a focal fly.

The leaving rate Li for an on-patch focal individual, i of sex s is thus

given the number of non-focal individuals nr of sex r, and the sex-specific affinity asr of the 

focal individual for them. For the affinity parameters this results in easily interpretable 

values that are symmetric around 0. A preference value of 0 represents a lack of preference 
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for members of a given sex, a negative value represents a negative affinity (the leaving rate 

increases) and a positive value represents a positive affinity (the leaving rate decreases). The 

prior for ls was identical to js, while the prior for asr was flat and ranged between −10 and 10 

(Supplemental Material). The simulation design was chosen to mimic the experimental set-

up of S&F (see Supplemental Material for details). Summary statistics (Figure 1C and 

Supplemental Material) were chosen to comprehensively describe male and female 

distributions among patches, male and female covariance among patches, and sampling 

variance among measurements. We measured the average number of males and females on 

patches (mAv, fAv), the variance of their distribution among patches (mVar, fVar) and their 

covariance on patches (mfCovar). We also considered several metrics which were not 

included in S&F, including the mean individual-level group composition statistics: the 

number of males or females per-male (mPerM, fPerM) and per female (mPerF, fPerF), since 

these are better descriptors of individual experience (Jovani and Mavor, 2011). We also 

included the standard deviations of our mAv and fAv metrics (mAvSD, fAvSD), since these 

provide estimates of movement between measurements. This results in a total of 11 

summary statistics.

ABC

In a Bayesian framework, we describe our certainty about our parameter values, Θ, 

conditional on the observed data, D, by the posterior distribution, f (Θ | D). We write f(Θ | 

D) = f (D | Θ)π(Θ)/f(D), where π(Θ) is a prior distribution that reflects our existing beliefs 

regarding the parameters, and f(D) is a normalizing constant. This normalizing constant can 

be calculated by observing that f (Θ | D) is a probability distribution, and must therefore 

integrate to 1. The likelihood term f(D | Θ), however, is not calculable in this context, 

because D is composed of broad summary statistics, and does not include the stochastic 

individual movements described by Θ. We can instead replace the calculation step by a 

simulation step, generating a pseudo-likelihood between the statistics from the data, and 

statistics from the simulation.

We used an ABC Markov Chain Monte Carlo [MCMC] approach to estimate the parameter 

posterior distributions (Marjoram et al., 2003; Sisson et al., 2007, 2009; Beaumont et al., 

2009) (for full details see Supplemental Material). The use of MCMC has an advantage in 

high-dimensional space of searching efficiently, rather than estimating the entire set of 

possible solutions (as in Perez-Escudero and de Polavieja, 2011). We did this using the set 

of summary statistics given earlier. As is common in ABC analyses, we used the Euclidean 

distance metric and define a tolerance, [220A], that determines the level of agreement 

required between simulated and observed statistic values during the analysis. Choice of 

[220A] represents a trade-off between computational efficiency and accuracy of results. The 

analysis returned a joint-posterior distribution of these parameter values for each treatment. 

The underlying model did not include explicit parameters governing genetic differences or 

differences due to density. We instead expected that correlations between preference 

parameters and density or aggression would reveal the bases of SNC at the level of 

individual preferences.
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For speed, we opted to implement our simulation and ABC algorithm in a custom C++ 

program. For full details on implementation, stationarity diagnostics, and model validation 

see Supplemental Material.

Multimodality

In a majority of treatments, we found that two distinct, mutually-exclusive models fit the 

data, reflected in multivariate bimodal distributions for several parameters (Figure 2A). All 

but 2 treatments showed evidence of multimodality in at least 1 parameter (peaksIDPmisc in 

R, see Supplemental Material). The 2 parameters that showed the strongest evidence of 

multimodality were amf and afm, that is the affinity (or social preference) of males for 

females, and females for males. In one of the modes, males exhibited a strong social affinity 

towards females, in the other, females exhibited a strong affinity to males. When we fit these 

two models separately (model “mfHigh”: amf> afm; model “mfLow”: amf< afm), evidence of 

multimodality disappeared in all parameters for all treatments (Figure 2B). Thus, we have a 

problem of identifiability.

In each treatment we calculated the Bayes factor representing the relative likelihood of the 

mfHigh model by splitting the posterior distribution into mfHigh and mfLow samples, and 

dividing the number of samples representing the mfHigh model by those representing the 

mfLow. A Bayes factor of 1 means the models are equally likely. The Bayes factor for 

mfHigh ranged from 0.66 to 17.80 across all treatments. In only two treatments, (W23×d14, 

0.66; W58×d12, 0.90) was the Bayes factor lower than 1. Given the general level of support 

for mfHigh, we determined whether we were justified in disregarding the mfLow model. We 

calculated the joint probability of mfHigh by multiplying the probability of the mfHigh 

model across all treatments, and the probability of the mfLow model across all treatments, 

then recalculated the overall Bayes factor. The Bayes factor for the joint probability of 

mfHigh is 1017, therefore there is no reason to consider mfLow further.

Corrections for Multiple Testing

When testing for associations between variation in Θ and the predictors aggression, 

genotype and density (Results), we performed a number of tests which required correction 

for multiple testing. For the Wilcoxon Signed-Rank test, we were primarily interested in 

establishing that our method was sensitive enough to find significant differences in our 

parameters for the most conservative comparisons between posteriors. Because we were less 

interested in accurate, global P-values we opted for the simplest method of calculating the 

Bonferroni cutoff, that is for the total number of tests performed without accounting for the 

dimensionality of the data. For the regression analysis, because the model parameters had 

evident covariance structure, we first calculated the effective number of independent 

dimensions (Cheverud, 2001). We performed Principal Components Analysis on the 

concatenated dataset comprising all posteriors for all treatments in the mfHigh model. The 

first 5 PCs explained 96.7% of the total variance in the parameters. Since we tested 3 

predictors, this indicates approximately 15 independent tests and we therefore set the global 

Bonferroni correction for the regression of Θ on predictors at 0.003.
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Results

The ABC output comprised 30 replicates of Θ, with posterior distributions for our 7 

movement and social preference parameters, for each of our density×genotype 

combinations.

Variation among posteriors

We first established that the posteriors of Θ varied among genotypes and densities 

(treatments), and that we had the power to detect these differences, given our sampling rate. 

We thus performed a series of Wilcoxon Signed-Rank Tests for pairs of posteriors. We 

compared the distributions of all posteriors for a given parameter that were either within 

genotype, but different by one unit of density; or within density, between genotypes that 

were closest pairs in aggression levels. These comparisons were those we expected to be 

most similar. Even these conservative comparisons showed that posteriors varied greatly 

among treatments. Among the 24 density pairs for all 7 parameters (168 comparisons), only 

53 comparisons did not show significant differences after Bonferroni correction. Among the 

25 aggression pairs for all 7 parameters (175 comparisons), only 54 comparisons were not 

significantly different after Bonferroni correction. Two parameters (female leaving rate, lf, 

and male affinity for females, amf) accounted for over half of the non-significant results—28 

and 30 comparisons, for density and aggression respectively. This suggests that 5 of our 7 

parameters might be particularly important in shaping variation in group outcomes.

Genotype and aggression effects

Given significant differences in parameter estimates among treatments, we explored whether 

this variation was a result of genotype and density. Because we also had genotypic values 

for aggression (S&F), we used aggression as an additional predictor. In order to detect the 

directional effects of our predictors across all treatments, we used a summary (the marginal 

mean of each posterior) for each treatment and parameter combination. Subsequent 

calculations are performed using these summaries. We further investigated whether the 

differences in parameter estimates could be used to explain observed patterns of group 

structure.

Male and female group joining rates jm and jf, as well as male-male affinity, amm, were all 

correlated with both genotype and aggression (Figure 3A, B). The strongest correlation for 

both aggression and genotype was with amm. Aggression is male-directed behavior toward 

other males in Drosophila (see (Nilsen et al., 2004; Chen et al., 2002; Dierick and 

Greenspan, 2006; Cabral et al., 2008)). We therefore expected that aggression would be 

most correlated with amm in our analysis. It serves as a validation of the model that this is 

the case (est=−0.37, F(1,28)=14.95, P<0.001, adjrsq=0.32), and was significant at the global 

Bonferroni threshold (Materials and Methods). Because our lines were chosen for their 

extreme genetic values in male-male aggression, it is likewise encouraging that we found 

evidence for genetic variation in amm among the lines in our treatments (F(5,24)=4.52, 

P=0.005, adjrsq=0.38). Although this did not quite meet the global Bonferroni threshold of 

P<0.0033, the consistency of the effect among predictors suggests the association between 

amm and genotype is real.
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Having established that amm is significantly related to aggression and likely varies with 

genotype, we attempted to understand what elements of group structure are shaped by male-

male interactions. We tested for an effect of parameter estimates on group-level outcomes 

among our treatments using linear models, with density as a covariate (Figure 3C). We 

found that males with low values of amm had fewer other males in their groups (lower 

mPerM) (est=0.18, t=3.72, P<0.001, df=27). Likewise, low values of amm correlated with 

overdispersion, or decreased variance in the numbers of males among patches, (lower 

mVar), (est=0.16, t=3.56, P=0.001, df=27). This is consistent with one definition of 

aggression as a male-male displacement strategy in D. melanogaster (Wang and Anderson, 

2010). One might assume that aggression is a competitive strategy males engage in to gain 

access to females (Hoffmann and Cacoyianni, 1989). But, in fact, both increased aggression 

(est=− 0.08, t=−2.73, P=0.011, df=27), and the corresponding low amm (est=0.14, t=3.12, 

P=0.004, df=27), had a slightly negative relationship with our empirical measure of the 

number of females per on-patch male (fPerM).

In addition to amm, sex-specific joining rates for males and females, jm and jf, varied 

significantly among the genotypes (F(5,24)=3.36, P=0.019, adjrsq=0.29; F(5,24)=3.44, 

P=0.017, adjrsq=0.30) and with aggression (est=0.49, F(1,28)=5.72, P=0.024, adjrsq=0.14; 

est=0.39, F(1,28)=5.63, P=0.025, adjrsq=0.14). The higher the overall aggression levels were, 

the higher the group joining rates were. The consistency of the effects of multiple predictors 

on these parameters supports their significance, although individually they do not meet the 

Bonferroni cutoff. The relationship between jm or jf and group structure was complex, and 

differed between their corresponding sexes. Higher values of jm and jf should result in a 

higher average number of males (mAv) and females (fAv) respectively on patches because 

increased joining rates were not offset by correlated higher leaving rates. We found support 

for this prediction for males, (est=0.05, t=4.29, P<0.001), but not females (est=0.03, t=1.84, 

P=0.07). Higher values of jf did correspond with one aspect of group structure: reduced 

male-female correlation on patches (mfCor) (est=−0.3, t=−3.73, P<0.001, adjrsq=0.51), 

suggesting one way in which females might shape their group context.

Male disruption of preferred female groups

Analysis in an agent-based simulation framework allows us to evaluate the plausibility of 

proposed hypotheses relating parameter values to group structure. We can vary one or more 

parameters in a series of test simulations, and examine the effects without needing to 

explicitly redefine all the interacting dynamics (Supplemental Material). Here we 

manipulate the 3 aggression-related parameters, holding the other parameters constant. This 

enables us to determine whether these parameters by themselves can explain the patterns we 

see, and whether there is a plausible mechanism underlying the effect. In this case, we 

investigate changes in movement rates to evaluate social dynamics. Because aggression is a 

behavioral interaction where males displace other males, we might expect overall male 

movement rates to be higher in aggressive environments.

We simulated a ‘high aggression” and “low aggression” treatment, using typical values of 

parameters from our set of posterior distributions. All conditions in these simulations were 

identical, but we mimicked high-aggression versus low-aggression values of jf, jm and amm. 

Foley et al. Page 8

Am Nat. Author manuscript; available in PMC 2015 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our simulations include an internal “clock” against which fly movement rate is calculated. 

We recorded the length of time between fly moves, as well as the relative number of male 

and female fly moves. In the set of parameters mimicking the high-aggression conditions, 

overall fly movement rate was significantly greater, compared to the low-aggression 

scenario (est=−21.38, t=−18.45, P<0.001, sf=58). Moreover, the proportion of times males 

moved in the high aggression treatment was higher (est=0.02, t=5.72, P<0.001, df=58). 

These results are consistent with the idea that aggressive males are driving each other off 

patches more frequently than nonaggressive males.

It is not immediately obvious why female moving rates should co-vary with male 

aggression. But given that males seem to move more often in high aggression treatments, we 

hypothesized that male-female encounter rates are higher in these treatments. Female 

reaction to males is mediated by the term afm, and afm is consistently negative (Figure 2B, 

above diagonal), indicating that females will respond to increased numbers of males on 

patches by leaving.

To test the role of displaced-males in disrupting female group structure, we set the 

preference of males for females, amf, to 1 (nearly neutral) in the “high aggression” 

simulation. This will reduce the confounding effects of overall mobility with male social 

preferences for female groups. The average number of females on patches increased 

dramatically with lowered amf (est=0.86, t=33.07, P <0.001, df=58), and the ratio of female 

to male movement decreased (est=−0.29, t=−52.22, P <0.001, df=58).

Together these results suggest a plausible mechanism for the relationship between 

aggression and female group preferences. More-mobile males preferentially aggregate with 

females, disrupting female groups in turn. In this scenario, the negative correlation between 

jf and mfCor, and the lack of correlation between jf and fAv indicate that females are 

reacting to non-preferred groups by modifying their group-choice parameters (Figure 4A). If 

so, the correlation between genotype and jf is an example of an Indirect Genetic Effect 

(IGE) (Moore et al., 1997).

Density effects

We found significant density effects (after global Bonferroni correction) in the 2 female 

social preference parameters. Female preference for males, afm (est=−0.59, F(1,28)=10.733, 

P=0.003, adjrsq=0.25), was more negative at higher density; female preference for females, 

aff (est=0.59, F(1,28)=13.57, P=0.001, adjrsq=0.30), was increasingly positive at higher 

densities (Figure 3C). In S&F, using conventional analyses, these differences in female 

behavior across densities were cryptic.

We expected to see more females in groups with other females in those treatments where we 

estimated high aff, as described by our summary statistics fPerF, and fVar. Instead, we found 

that fVar did not correlate with aff. Moreover, the correlation between aff and fPerF was in 

the opposite direction to our expectation (est=−0.098, t=−2.40, P=0.024, df=27). Likewise, 

we expected females would be less often on patches with males in treatments where we 

estimated low values of afm. This would be reflected in a lower value of our male-female 

correlation statistic mfCor and sex ratio statistics of males-per-female (mPerF) and females-
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per-male(fPerM). However, among the treatments, only mfCor varied with afm in the 

predicted direction (est=0.035, t=2.35, P=0.026, df=27), and we did not detect any 

correlation between afm and fPerM or mPerF. Because the differences in afm and aff across 

densities were equal in magnitude and in the opposite direction, we hypothesized that they 

might, in effect, cancel each other out, via a mechanism similar to that described above (see 

“Male disruption of preferred female groups”). An increased value of aff will lead to groups 

with more females. But, because amf is uniformly large and positive, groups with more 

females will come to attract more males. Since afm is highly negative, this will make the 

group less attractive to females (Figure 4B).

Additional simulations confirmed that our proposed mechanism could plausibly account for 

the group structure we observed. We ran simulations with aff and afm corresponding to either 

high density or low density values, holding all other parameter values constant. We first 

tested the effects of changing aff and afm together and independently. We found that when 

we changed them independently, the values of fVar or fPerF changed significantly 

(Supplemental Material). But, when we changed the values of afm and aff simultaneously, 

the values of these summary statistics did not change. We then evaluated whether male 

preferences for females might play a role in regulating this process. We set the male 

preference for females, amf, to 1 (nearly neutral). When we then tested high-density and low-

density values of aff and afm, there was a large difference in group structure. In particular 

fVar increased, as did fPerF, that is, a very few groups became increasingly female biased. 

This result indicates that opposing social preferences between the sexes may regulate group 

structure through a process of negative feedback, and that increasingly extreme female 

preferences may help to buffer this process with increasing density.

Discussion

Understanding the behavioral mechanisms that give rise to group structure—i.e., Social 

Niche Construction—is central to predicting the evolutionary and ecological outcomes of 

social interactions. These interactions are best modeled at the level of individual choices, 

therefore we used ABS with ABC model-fitting techniques. Using this approach in D. 

melanogaster, we found that effects of density and aggression on group structure that were 

ambiguous when we examined group-level summary statistics were more transparent when 

we modeled them at the individual level. We have shown that there is an effect of female 

group choice on overall social structure. This has important implications for understanding 

male aggressive behavior. While some studies have shown that males who directly exclude 

other males from food may directly increase their mating success (Hoffmann and 

Cacoyianni, 1989), there are a number of exceptions to this pattern (S&F, Cabral et al., 

2008). Our current results highlight the importance of the indirect effects of male behavior 

on female group choice. In particular, we found that heightened aggression might degrade 

the desirability of social environments for females, which may help explain why there are 

multiple successful social strategies for male D. melanogaster.

Our results give novel insight into the way that differences between the sexes define social 

structure in D. melanogaster, and point to a dynamic process of SNC, actively involving 

both sexes. The consistent negative affinity of females for males was not a priori 
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predictable. While males can damage females with intense courtship or mating (Pitnick and 

Garcia-Gonzalez, 2002), it is not obvious that males should behave in ways that drive 

females away from patches. In fact, we found extremely strong, positive affinity of males for 

females, consistent with the effort males spend in courtship behavior (Greenspan and 

Ferveur, 2000). As well as between-sex interactions, within-sex interactions were also 

important in shaping group structure. We found that females tended to have positive 

affiliative tendencies, consistent with descriptions of egg-laying aggregation (Sarin and 

Dukas, 2009). For males, the strongly negative male-male affinity we found was consistent 

with the role of male-male aggression as an SNC behavior previously reported in S&F.

We found that complex male-female behavioral interactions that depended on density 

generated the social structures we observed in S&F. In our previous work, we were unable 

to demonstrate a role of female behavior, or response to the social environment, in SNC. 

Here, changes in female parameters with changes in male aggression and density show that 

female social group choice plays an active role in shaping group structure. The effects of 

female group choice were not directional however, and were more easily interpreted as 

buffering the effects of directional male preferences. Strong male preferences for being in 

groups with females apparently led to disruption of females’ preferred groups at both high 

aggression and high density. Joining rates in both sexes were perturbed under high 

aggression. Our model suggests that displaced males preferentially aggregate in groups with 

more females, influencing the females to leave in turn. The fact that females seem to be 

increasing their joining rates without changing their overall time spent on patches is 

consistent with results showing individuals have a baseline preference for the proportion of 

time they spend on patches (Saltz, 2011). At high densities, female social preferences were 

increasingly strong. Our predictions based on changes of aff and afm with density were that 

at high densities, larger, more female biased groups should form. Models suggest that male 

affinity for females disrupts these groups. Together, these results are consistent with 

published observations (Hoffmann and Cacoyianni, 1990) showing that mobile, non-

territorial males may even chase females between patches.

The effects of the opposing male-female group dynamic points to an underappreciated role 

of decamping (or female negative group choice) as an SNC trait, and as an important 

component of courtship (Spieth, 1974). Mating can only occur in groups with both males 

and females in them. Therefore, preventing female decamping has an important role in male 

mating success. For males, aggression directly removes competitors from a group, by 

displacing other males. It may also have an important indirect role in increasing the numbers 

of females in a group, via females’ preferences for fewer males. Open ended selection for 

increased aggression does not seem to occur, however. According to indirect genetic effect 

theory, the net SNC effects of aggression is expected to depend on the behavior of all other 

males in the population (Moore et al., 1997). It is telling that increased aggression has the 

unexpected effect of disrupting preferred groups for both sexes. We found in S&F that the 

least aggressive genotypes had large groups, with more males, and high mating success. 

There may, then, be emergent social niches for stable, relatively large groups, containing 

less-aggressive males.
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The study of complex systems, including social systems, is of growing importance. Our 

paper demonstrates the power of a model-based analysis in such contexts. Power is gained 

because behavior is modeled in detail, at the individual level. However, where individual 

level modeling is not accompanied by individual level data, an explicit solution is generally 

impossible. Simulation, and Bayesian methods have proven their worth in the field of 

behavior, particularly where there is complete information (cf Perez-Escudero and de 

Polavieja, 2011; Arganda et al., 2012; Mann et al., 2014; Aplin et al., 2014; Mann, 2011). 

However the form of our data—multiple sampled states describing spatial distributions 

across time—is common in animal behavior research. For instance, field observations may 

be restricted to spot-sampling distributions of individuals, or patterns of group membership 

(e.g. Oh and Badyaev, 2010; Jovani et al., 2008; Wittemyer et al., 2005), and tools to 

analyze this kind of data will be valuable. Here, we invoked ABC methodology, an approach 

that has gained traction in recent years in a variety of fields. The ABC method may be 

complementary to other emerging methods of model building and fitting (Franz and Nunn, 

2009; Pratt et al., 2005). For example, we used simple dynamic models from the animal 

behavior to characterize variation resulting from genotype, density and a candidate behavior 

(aggression) in many replicate data sets. Once the basic dynamics of a system has been 

described, one could use ABC with these models to estimate the underlying parameter 

values which lead to patterns of group behavior such as schooling or hierarchy development 

(Hemelrijk, 1999); or in human social sciences (Smith and Conrey, 2007); or in complex 

social groups such as flies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the Agent Based Simulation. Females are denoted as light gray, and males as 

dark gray. A) Food patches constitute social groups, and individuals may choose to join a 

patch at random, or leave a patch and be off-patch, at characteristic rates governed by the 

model parameters we are estimating. Female and male joining rate (Ji) for sex i are each a 

function of a single parameter, jf and jm. Leaving rate (Li) is a function of the sex-specific 

leaving rate, ls, the number of non-self males and females in a group, and the sex-specific 

social parameters describing female attraction to males (afm) and females (aff), and male 

attraction to males (amm) and females (amf) [Equation 1]. B) Table of model parameters. C) 

Table of group-level summary statistics S, calculated from the experiments of S&F. These 

statistics were used to estimate the parameters Θ.
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Figure 2. 
Bivariate heat map pooling the posterior distributions of parameter estimates of all 30 

genotype×density treatments. There is bimodality within afm amf and lf. Bimodal 

distributions like this may represent a lack of identifiability (see Supplemental Material). 

Here, for the combination of amf and afm, the two peaks fall into two distinct categories: one 

in which amf is higher than afm(mfHigh), and one in which the opposite is true (mfLow). 

Because the joint probability of mfHigh is effectively 1, we conduct subsequent analyses 

only on mfHigh. On the left plot we show the full dataset. On the right, the model mfHigh is 

above the diagonal and mfLow is below.
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Figure 3. 
Plots for parameters showing significant correlations with predictors. Sub-figure axes are 

denoted by the sub-headings as y ~ x. In linear models with genotype as a factor, significant 

effects were found for male joining rate, jm, female joining rate, jf, and male-male affinity, 

amm (A). In linear models with genotypic aggression values as a quantitative trait, effects 

were found for male joining rate, jm, female joining rate, jf, and male-male affinity, amm (B). 

In linear models with treatment density (number of individuals), effects were found for 

female-male and female-female affinity, afm and aff (C).
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Figure 4. 
Graphical representation of our proposed mechanisms comprehensively explaining group-

level outcomes from variation in individual-level parameters. Females are denoted as light, 

and males as dark. A) Our proposed mechanism for how variation in aggression indirectly 

affects female group joining parameters. When aggression is high (male-to-male affinity, 

amm is low), males move between groups more often. They are thus more likely to encounter 

groups of females. Because female-to-male affinity, afm, is consistently negative, when 

males join these groups are destabilized and females leave and must find a new patch. B) 

Foley et al. Page 18

Am Nat. Author manuscript; available in PMC 2015 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We found that density affects both female-to-male and female-to-female affinity, afm and aff, 

in opposing ways. We propose that the effects of this change cancel out at the group-level 

via a negative feedback loop involving male preferences for females. An arrow indicates a 

positive effect, a bar headed line an inhibitory effect.
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