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Abstract: Human age can be employed in many useful real-life applications, such as 

customer service systems, automatic vending machines, entertainment, etc. In order to 

obtain age information, image-based age estimation systems have been developed using 

information from the human face. However, limitations exist for current age estimation 

systems because of the various factors of camera motion and optical blurring, facial 

expressions, gender, etc. Motion blurring can usually be presented on face images by the 

movement of the camera sensor and/or the movement of the face during image acquisition. 

Therefore, the facial feature in captured images can be transformed according to the 

amount of motion, which causes performance degradation of age estimation systems. In 

this paper, the problem caused by motion blurring is addressed and its solution is proposed 

in order to make age estimation systems robust to the effects of motion blurring. 

Experiment results show that our method is more efficient for enhancing age estimation 

performance compared with systems that do not employ our method. 

Keywords: affective interface for entertainment; human age estimation; blurring effect of 

camera sensor 
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1. Introduction 

Human age estimation has many useful applications, such as face recognition systems that are 

robust to age progress, evaluation systems of the effectiveness of advertising to customers, and 

systems that help prevent minors from buying alcohol, tobacco, or accessing adult websites [1,2]. 

Because of its useful applications, age estimation has become an attractive research area, and it has 

been studied intensely. In most previous studies, human age has been estimated using facial images. 

This type of method uses differences in the appearance of facial regions between old and young 

people. Several methods have been proposed for this problem [3–9], and the popular method is based 

on active appearance models (AAMs) [3–5]. This method models the shape of the human face using 

multiple landmark points that describe the shape of the face. In addition, the appearance of the face is 

also modeled using principal component analysis (PCA). However, many landmark points should be 

detected in order to describe the shape of the face, and detection performance can be affected by head 

movement, complex backgrounds, and head pose. In addition, the detection of multiple landmark 

points requires significant processing time, thus making it difficult to apply to real-time systems. 

Therefore, methods that do not use AAM are proposed [7–9] that do not require exact detection of the 

landmark points on a facial area. These methods extract age features from the facial region without 

accurate positions for the landmark points. 

In addition, methods have been proposed for extracting high-frequency components from the face 

region and/or extract the appearance of special skin textures that appear on the face region when 

people age [6–9]. The facial features used for age estimation are classified into three categories: local, 

global, and hybrid. Typical local features are wrinkles, skin, and hair. In previous research, facial 

images are classified into three age groups: babies, young adults, and senior adults based on the 

features of the distance ratio of facial components and the wrinkle features [10]. Txia et al. proposed 

an age classification method based on hair color and wrinkle features obtained by the Sobel edge  

operator [11]. Global features show the overall characteristics of the face area for age estimation, 

which are based on AAM, Gabor wavelet transform (GWT) [12], and subspace features based on 

image intensity [13]. As the third method, hybrid features based on a combination of global and local 

features are used in previous research [14]. These extracted features are then inputted to regression or 

classification machines in order to estimate human age [1–3]. 

Classification steps are performed for age estimation with the age features. This can be classified 

into three approaches: age group classification [12], single-level age estimation [5], and hierarchical 

age estimation [3,5,15]. The first approach is the method that approximately predicts an age group, 

instead of estimating accurate age. The second and third approaches focus on estimating the accurate 

age. Among these two approaches, single-level age estimation is used to estimate an accurate age in 

the entire data set without pre-classification. In this case, age estimation accuracy can be reduced 

because there are many data sets to classify. To overcome this problem, hierarchical age estimation is 

proposed, which is a coarse-to-fine method, with pre-classification, and this produces improved 

performance [3,5,15]. This is because age estimation on a smaller group can simplify the complexities 

of classification and computational load [15]. 

Although these previous methods can produce good estimation results, they still have many 

challenges. Some such challenges include the effect of gender differences, facial expressions, or the 
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quality of captured images on age estimation. For example, at the same age, the female face normally 

appears younger than the male face [7]. Another factor is facial expressions. By presenting feelings, 

the appearance of the human face changes in both texture and shape. 

In addition, in most of the previous methods, the authors used only focused and good quality images 

for age estimation. Consequently, when poor quality images are used in the system, the estimation 

results become untrustworthy. Blurring is one of the major factors that cause poor quality in face 

images. By including blurring effects on face images, both the shape and texture information of the 

face are changed and/or lost. There are two types of blurring, optical blurring of the camera and motion 

blurring caused by the relative movement of the camera and observed objects. Although optical 

blurring can be compensated through an algorithm for auto focusing, motion blurring is frequently 

present on an image because of the natural and random behavior of humans or camera movements. As 

a result, the captured image becomes blurred, and this causes degradation of the age estimation 

performance. However, to the best of our knowledge, there is no previous research that considers the 

effects of motion blurring on age estimation systems. 

In other researches, they used deep convolutional neural network (CNN) [16] and CNN with 

support vector machine (SVM) [17] to extract the features and train the model and to classify the input 

image to specific group of age and gender. Their methods could be used for unfiltered image, internet 

images and its performance is superior to previous research. However, their methods require complex 

architecture and time consuming procedure for training the network. In addition, this research is just 

for age classification not precise age estimation. 

In [18], they proposed the age estimation using feature extraction method based on multi-scale 

CNN. In previous research [19], they proposed the method of estimating the human age using feature 

extraction method based on CNN and age classification/estimation based on SVM/support vector 

regression (SVR). Although the performance of their age estimation is superior to previous methods, 

they require complex architecture and time consuming procedure for training the network [18,19].  

In addition, landmark detection based on active shape model (ASM) is affected by background and 

non-uniform illumination, and it takes much processing time [18]. 

To overcome the problem of previous age estimation systems on poor quality images caused by 

motion blurring effects, we propose an age estimation method that is robust to the effects of motion 

blur. Our research is novel in the following four ways compared to previous methods. First, we 

propose a method for estimating motion blur parameters (the direction and amount of motion blur) based 

on the modified Radon transform with ߩ range-based summation and fitting method. Second, the input 

facial image is pre-classified into one of the several groups of motion blur based on the estimation 

results of the motion blur parameters, which can reduce the variation of facial images caused by 

motion blurring in each group. Third, an up-to-date age estimation system based on multi-level local 

binary pattern (MLBP), Gabor filtering, PCA, and SVR is used to estimate human age. Fourth, an 

appropriate age estimator is applied for each group of motion-blurred images. Using this scheme, the 

age estimator used for each group of motion-blurred images can efficiently describe the age 

characteristics of the images in that group. Consequently, age estimation performance can be enhanced 

greatly, even with an image that includes motion blurring. 

Table 1 lists the comparisons of previous and proposed studies on age estimation. 
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Table 1. Summary of previous and proposed studies on age estimation. 

Category Method Strength Weakness 

Age estimation not 

considering motion 

blur effect 

-AAM [3–5] or non-AAM [7–9] based methods, 

local features [10,11], global features [12,13], 

hybrid feature [14]-based methods, age group 

classification [10,12], single-level age estimation 

[5], hierarchical age estimation [3,5,15],  

deep CNN-based methods [16–19] 

-Produce good 

estimation results 

with clear and good 

quality input images 

-Estimation accuracy is 

degraded significantly 

with motion blurred 

images 

Age estimation 

considering motion 

blur effect 

(Proposed method) 

-Motion blur parameters are estimated based on 

the modified Radon transform with ߩ range-

based summation and fitting method 

-Input facial image is pre-classified into one of 

several groups of motion blur based on estimated 

motion blur parameters 

-An appropriate age estimator is applied for each 

group of motion-blurred images 

-Robust to image 

motion blurring 

-Additional procedure 

for estimating motion 

blur parameters for 

image is required 

The remainder of this paper is structured as follows: in Section 2, we describe the proposed age 

estimation method. Then, the experimental environment and results are shown in Section 3. Finally, 

we present the conclusions in Section 4. 

2. Proposed Method for Human Age Estimation Robust to Motion Blurring Effects 

2.1. Proposed Method Overview 

The overall procedure for our method of the human age estimation system that is robust to the 

effects of motion blurring is depicted in Figure 1. As shown in the figure, we first perform a 

preprocessing step in order to localize the face and eye region in the input face image. This step is 

necessary for face region localization and removal of the background regions in the input images. The 

details of this step are explained in Section 2.2. With the detected position of the face and eye regions, 

we approximately define the face region of interest (ROI) to classify the focused and motion blurred 

images using a method based on the modified Radon transform with ߩ range-based summation. In the 

case of images that contain motion blurring, we further estimate the parameters of motion blurring, 

including motion direction and amount of motion blur, using the modified Radon transform and fitting 

methods. In this research, we assume that motion blur is in the form of linear motion blurring. In 

Section 2.3, we provide more details of our method for this step. 

From this step, we obtain the estimated parameters of motion direction and the amount of motion 

blur in a motion-blurred image. Using these parameters, we pre-classify the input facial images into 

one of several groups of motion blurring, such as the focused group, which contains only the focused 

images and trivially blurred images, and the blurring groups that contain images at higher degrees of 

motion parameters (motion direction and motion length). As a result, we obtain several groups of facial 

images where image variation caused by motion blurring is in a small range. 
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Figure 1. Overall procedure for our method. 

Finally, in order to enhance the performance of the age estimation system and obtain the appropriate 

age estimator, we perform a training procedure with each group of motion-blurred images using an age 

estimation method based on MLBP, Gabor filtering, PCA, and SVR. Because each group of  

motion-blurred images contains the images from a small range of motion blur, face variation is small. 

Consequently, the age estimator trained with the images of that group can well describe the 

characteristics of the images in that group. The explanation of the age estimation method is presented 

in Section 2.4. 

2.2. Pre-Processing Steps for Human Face Detection and in-Plane Rotation Compensation 

In normal cases, the captured face images can contain both a human face and background regions, 

as shown in Figure 2a. Because there is no age information in the background region, it should  

first be removed before executing further processing steps. For this purpose, we perform a  

pre-processing step to detect the location of the face and the position of the two eyes using the  

adaptive boosting (Adaboost) method [20]. In order to detect the face from the facial image, the 

Adaboost method extracts the face feature from the input facial image and constructs several weak face 

classifiers. Finally, a strong face classifier is built by combining these weak classifiers using adaptive 

boosting method. The same method is applied to detect the eyes region by applying the Adaboost eye 

classifier on the detected face region. In Figure 2b, we show an example of face and eyes detection by 

the Adaboost method. 

Age estimation performance can be affected by misalignment of the facial region [21]. Therefore, 

our method compensates the in-plane rotation of the facial region using the detected position of the 

two eyes, as shown in Figure 2b. In general, in-plane rotation can occur because of human head pose 

during image acquisition. Based on previous research [7], we compensate the in-plane rotation through 
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rotating the facial region by angle θ calculated by Equation (1). In Equation (1), (Rx, Ry) and (Lx, Ly) 

represent the detected positions of the right and left eyes, respectively. By rotating the face region by 

angle θ, the face regions are aligned. As a result, the face region can be estimated efficiently; then we 

attempt to capture as much face information as possible, and remove as much background and noise 

regions as possible. In Figure 2c, we show a sample result of in-plane rotation compensation. Based on 

the position of the two eyes and the result of in-plane rotation compensation, we redefine the face 

region to make it fit the face region, as shown in Figure 2d. Because the face region is redefined to fit 

with the correct face region, instead of face ROI detected by the Adaboost method, the redefined face 

ROI contains richer age information than the face ROI detected by the Adaboost method. 

Consequently, age estimation performance can be enhanced. ߠ = ଵି݊ܽݐ ൬ܴ − ௬ܴ௫ܮ − ௫൰ (1)ܮ

 

(a) (b) 

(c) (d) 

Figure 2. Demonstration of in-plane rotation compensation and face region redefinition in 

our method: (a) input facial image; (b) detection results of face and eyes using Adaboost 

method; (c) in-plane rotation compensation; and (d) redefinition of face region. 
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2.3. Proposed Method for Estimating Motion Blur Parameters 

2.3.1. Motion Blur Modeling and Its Point-Spread Function 

The quality of captured images can be affected by many factors, such as the capturing conditions, 

environment, and capturing devices. Motion blur is a common type of image quality degradation 

caused by the relative motion between the camera and observed objects [22–27]. Similar to the optical 

blurring of camera sensors, motion blurring makes captured images to appear blurred, and changes the 

image’s texture according to the motion direction and amount of motion (motion length). Consequently, 

it causes degradation in the image quality and performance of image processing systems. In order to 

manage motion blurring, it is usually modeled by the term of the point-spread function (PSF) [22].  

By presenting the PSF term, the image observed under motion blurring is modeled by Equation (2).  

In this equation, the observed image g(x,y) is obtained by convolution of the original scene f(x,y) and 

the motion blur PSF function h(x,y), where x and y are the horizontal and vertical positions of image 

pixel, respectively. In addition, the noise term ݔ)ߟ,  is added to produce the image observed in the (ݕ

actual case. The symbol “*” indicates the convolution operation in this equation. In the frequency 

domain, Equation (2) is represented by Equation (3): ݃(ݔ, (ݕ = ,ݔ)݂ (ݕ ∗ ,ݔ)݄ (ݕ + ,ݔ)ߟ ,ݑ)ܩ(2) (ݕ (ݒ = ,ݑ)ܨ (ݒ × ,ݑ)ܪ (ݒ + ,ݑ)ܰ (3) (ݒ

In general, it is extremely difficult to manage motion blurring because of the types of motion 

blurring and the effects of noise. In our research, we consider the common general type of motion 

blurring, called linear motion blurring, and the PSF is given by Equation (4) [22]: 

,ݔ)݄ (ݕ = ൝1ܮ 	݂݅ ඥݔଶ + ଶݕ  2ܮ ܽ݊݀ ݕݔ = 0(ߠ)݊ܽݐ− ݁ݏ݅ݓݎ݄݁ݐ  (4)

where, L is the amount of motion blur, called motion length, and θ is the motion direction. In the 

frequency domain, the PSF function of motion blur is given by Equation (5) [22]. In addition, if we 

neglect the noise term, the consequent observed image in the frequency domain in Equation (3) is 

reduced to Equation (6). For calculation purposes, the power-spectrum of images in the frequency 

domain is given by Equation (7) using the log operator: ݑ)ܪ, (ݒ = sin(ߠݏܿݑ)ܮߨ + ߠݏܿݑ)ܮߨ((ߠ݊݅ݏݒ + (ߠ݊݅ݏݒ ,ݑ)ܩ(5)  (ݒ = ,ݑ)ܨ (ݒ × ,ݑ)ܪ (ݒ (6)log൫ݑ)ܩ, ൯(ݒ = log൫ݑ)ܨ, ൯(ݒ + log(ݑ)ܪ, (7) ((ݒ

In Figure 3, we show some examples of motion-blurred images and their corresponding 

representations in the frequency domain. It can be observed from Equation (6) and Figure 3 that the 

power spectrum of motion-blurred images has a directional characteristic by presenting dominant 

parallel lines that are orthogonal to the motion blur direction. This is because the edge elongates in the 

direction of motion blur in the image, which increases the high frequency components in the 
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orthogonal direction to the elongated edge direction. This characteristic plays a key role in estimating 

the parameters of motion blur. 

(a) (b) 

 

(c) (d) 

Figure 3. Examples of motion blurred images and their corresponding power spectrums 

with motion length of 7 and motion direction of 45°: (a) the first case of motion blurred 

image and its corresponding power spectrums with the indicator of motion direction;  

(b–d) the other cases of motion blurred images and their corresponding power spectrums. 

As shown in Figure 3, the power spectrum of motion-blurred images contains a boundary artifact in 

the horizontal and vertical frequency axes caused by the image boundaries. It is easy to observe that 

the boundary artifact reduces the directional characteristic of the power spectrum of the motion-blurred 

image. Therefore, the estimation performance of the motion blur direction and motion length is 

reduced. In order to remove the boundary artifact, we use the Hann windowing method [22]. The 1-D 

Hann window is defined in Equation (8). In this equation, N is the size of the Hann window. By 

applying the Hann windowing method in both the horizontal and vertical directions, we make the 

image to become a periodic signal and remove the boundary artifact of the image. Examples of the 

results by Hann windowing are given in Figure 4. As shown in Figure 4, using the Hann windowing 

method allows us to efficiently remove the boundary artifacts on the images and make the directional 

characteristics become clear: ܹ(ݔ) = 12 1 − cos(2ܰݔߨ )൨ (8)
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(a) (b) 

(c) (d) 

Figure 4. Implementation result examples for Hann windowing method for removing 

boundary artifacts on images in Figure 3: (a–d) the four examples of results by Hann 

windowing method. 

2.3.2. Motion Direction Estimation Based on Modified Radon Transform with ߩ Range-Based Summation 

In order to estimate the motion blur parameters, motion direction must be estimated first. In 

previous studies, motion direction is estimated using the directional characteristic as shown in Figure 4. 

Several methods have been used, such as Hough transform, Radon transform, and Steerable filters [22]. 

The idea of Hough transform-based methods is that they attempt to detect lines in the power spectrum 

of blurred images, and choose the direction that is orthogonal to the longest line as the direction of 

motion blurring. Intuitively, this method works well because of the directional characteristic of  

the power spectrum of motion-blurred images. However, this method has several limitations, the  

largest of which is the calculation of the edge map (binarization map) of the power-spectrum image. 

According to the amount of motion blur and motion direction, the size of the dominant parallel lines is 

different, as shown in Figure 5. In addition, from Equation (6), it could be desired for the length of the 

dominant parallel lines to also be dependent on the number and distribution of the high frequency 

components in the focused image (scene image without blurring effect and noise). Consequently,  

the threshold for the binarization step can be varied according to the motion direction and amount of 

motion blur. Therefore, performance of the method depends greatly on the threshold for binarization of 

the power-spectrum image. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 5. Examples of motion-blurred images (upper Figures of a–h) and corresponding 

power spectrum (lower Figures of a–h) with various amounts of motion blur and motion 

directions: (a) case without motion blurring; (b–h) cases of motion blurring with motion 

length from 3 to 15 with step of 2, respectively, and motion direction of 135°. 

Another method for direction estimation is the Radon transform-based method [22,23]. This method 

applies the Radon transform on the power-spectrum image to find the dominant parallel lines by 

finding the maximum peak of the Radon transform image. Because the power-spectrum image is used 

instead of the binarized image, the Radon transform-based method overcomes the limitations of the 

Hough transform-based method on the binarization step. However, this method has also its own 

limitations. Because this method calculates the integral values of the image pixels along the projection 

directions, it has the problem of the difference of the frequency areas where the pixels are taken in 

each direction. For example, in Figure 6a, the pixels are taken from the additional frequency area 

(region A) in the case of the diagonal direction (45°, 135°, 225° and 315°) compared to the horizontal  

(0° and 180°) and vertical (90° and 270°) directions. Therefore, finding the maximum peak cannot 

ensure good estimation results for motion direction. In addition, when the amount of motion blur  
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is small, the directional characteristic is not clear, which can also cause wrong estimation for the  

motion direction. 

In order to overcome the limitations of previous methods on motion direction estimation, we 

propose a new method for direction estimation of motion-blurred images. In this method, we modify 

the Radon transform to overcome the limitation of the traditional Radon transform method by taking 

the statistical characteristic of dominant parallel lines. 

The Radon transform is an efficient image transformation method widely used in medical image 

processing systems. This method produces 1-D image data from normal 2-D image data by projecting 

the 2-D image data along a specific direction. Figure 6 shows a visualization of the Radon transform 

applied on a power-spectrum image. Using a mathematical expression, the Radon transform is 

expressed by Equation (9). In this equation, (ݔ)ߜ indicates the delta function, ݂(ݔ,  is the input (ݕ

image (Figure 6a), ߠ is the projection direction, and ߩ is the distance: 

,ߩ)ܴ (ߠ =  ݂(ݔ, ߠݏܿݔ)ߜ(ݕ + ߠ݊݅ݏݕ − ேିଵ(ߩ
௬ୀ

ெିଵ
௫ୀ  (9)

 

(a) (b) 

Figure 6. Example of Radon transform method: (a) input power-spectrum image;  

(b) Radon image in all directions (horizontal and vertical axes are	ߠ	and	ߩ	of Equation (9)). 

In Figure 6, it can be observed that because of the problem of the number of pixels taken in the 

projection directions, the Radon image contains several similar peaks, and finding the maximum peak 

is not efficient for accurate direction estimation. In order to overcome the limitation of the traditional 

Radon transform method, we propose the modified Radon transform method using only the image 

region inside a circle of the power-spectrum images, instead of using the entire image. 

As explained in Equation (6), the power-spectrum image of motion blur is formed by multiplying 

the power spectrum of the focused image (the scene image without blur effect and noise) with a sinc 

function. The center position of the power-spectrum image indicates the low frequency components, 

whereas the positions far from the center indicate the high-frequency components. Normally, the very 

high-frequency components in an image are smaller than the lower frequency components. In addition, 

by multiplying the power spectrum with the sinc function, the high-frequency components become 
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small values. Consequently, the directional characteristic is mainly concentrated on the region around 

the low frequency components, as shown in Figure 7a. Based on this observation, in order to solve the 

problem of the traditional Radon transform method, we only perform the Radon transform on the 

image area inside a circle, as shown in Figure 7b. The resulting Radon image for Figure 7b is given  

in Figure 7c. 

(a) (b) (c) 

Figure 7. Demonstration of selected area for Radon transform in our research: (a) original 

power spectrum of a motion-blurred image; (b) selected region for motion direction 

estimation, and (c) Radon transform of selected region (horizontal and vertical axes 

are	ߠ	and	ߩ	of Equation (9)). 

As explained before, because of the distribution of the high frequency components of the focused 

image and the amount of motion blur, the dominant parallel lines of the power spectrum of motion blur 

could not be in the correct motion blur direction. In order to obtain a more correct direction for motion 

blur, we propose the method of ߩ range-based summation, as shown in Equation (10). In this equation, 

“margin” is the margin value of	ߩ. The image obtained by this method corresponds to the summation 

of the modified Radon transform image at each motion direction with a filter size of (2 × margin + 1). 

Consequently, we can estimate the noise effects, random distribution of the high frequency 

components of the focused images, and effects of the amount of motion blur. In another interpretation, 

the modified Radon transform with ߩ range-based summation takes the statistical characteristic of the 

dominant parallel lines in order to produce a more accurate estimation result by accumulating the 

power spectrum values inside a larger region, instead of a single region, as with the traditional Radon 

transform-based method. Finally, the direction of motion blur is estimated by finding the largest value 

(peak value), as shown in C of Equation (11), and taking the orthogonal value. The overall procedure 

for estimating the motion blur direction in our research is given in Algorithm 1. 

(ߠ)ܲ =  ,ߩ)ܴ (ߠ
ఘୀି  (10)

C = 
'

))(max(arg
θ

θP  (11)
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Algorithm 1: Motion Direction Estimation Using Modified Radon Transform with ߩ range-based 
Summation 
1. Convert blurred image into gray-level image 
2. Performing Hann windowing to remove the boundary artifacts 
3. Transform the image in step 2 from spatial domain to frequency domain using Fourier transform 

to obtain the image in frequency domain F(u,v) 
4. Compute the log of the power spectrum of F(u,v) in step 3 and remove the very high frequency 

components, as shown in Figure 7b 
5. Compute ߩ range-based summation using Equation (10) 
6. Find the largest value (peak value), as shown in C of Equation (11), and indicate the direction of 

the dominant parallel line 

2.3.3. Estimation of Motion Blur Amount (Motion Length) 

As shown in Equation (6), by neglecting the noise term, the representation of motion-blurred 

images in the frequency domain is the multiplication of the focused image in the frequency domain 

and a sinc function. By taking the log of Equation (6), the power spectrum of the motion-blurred image 

is the summation of the log of the power spectrum of the focused image and the motion blur kernel. 

Because the power spectrum of the motion blur kernel is in the shape of the sinc function, the profile 

of the power spectrum in the motion direction (that is orthogonal to the dominant direction of the 

power-spectrum image) also has the sinc function shape [22,23]. In Figure 8, we show an example of 

the power spectrum profile in the motion direction. 

(a) (b) 

Figure 8. Example of profile in motion direction where motion direction is 135° and 

amount of motion blur is 9: (a) power-spectrum image; and (b) profile in motion direction. 

In order to estimate the amount of motion blur, two general methods have been used in previous 

studies, including the Radon transform-based and Cepstral-based methods. The Radon transform-based 

method extracts the profile in the motion direction of the power-spectrum image and attempts to find 

all local minimum points of the profile. Then, the average distance between these local minimum 
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points is measured and used to calculate the amount of motion blur [22]. Another way to estimate the 

amount of motion blur is to use the Cepstral transform based on the inverse Fourier transform of the 

log of the power spectrum of motion-blurred images. However, these methods have the effects of noise 

and frequency distribution in focused images. Because of these factors, the extracted profile is not 

identical in the sinc shape; it is simply a sinc-like shape, as shown in Figure 8b. Consequently, 

estimation errors can occur. 

To overcome the limitations of previous methods, we propose a method for estimating the amount 

of motion blur using a fitting method. Because of the effects of noise and the distribution of frequency 

components of the focused image, the extracted profile in the motion direction of power-spectrum 

images is a sinc-like shape, instead of a sinc shape, as shown in Figure 8b. Therefore, instead of 

finding the local minimum points in the profile or making the inverse Fourier transform, we perform 

the fitting method to find the best-fit sinc shape to the extracted profile. The fitting process is 

performed by choosing the sinc function that minimizes the error between the extracted profile and 

selected sinc function. By estimating the best-fitted sinc function to the extracted profile, we estimate 

the distance (Figure 9d) based on the local minimum points from the fitted function. Finally, the 

amount of motion blur in the image is estimated as N/d where N is the horizontal or vertical length of 

image [22]. In Figure 9, we show an example of the fitting process to find the best-fitted sinc function 

to the extracted profile. In addition, the overall algorithm for estimating the amount (length) of motion 

blur in our research is given in Algorithm 2. 

Algorithm 2: Estimation of the Amount (Length) of Motion Blur 
1. Estimate the motion blur direction using Algorithm 1. 
2. Extract the intersection profile in the motion blur direction of the power-spectrum image 
3. Perform the sinc fitting process to approximate the parameter of the sinc function and calculate 

the value of distance d. 
4. For an image of size N × N, the motion length is calculated by N/d 

 

Figure 9. Example of fitting process to find best-fitted sinc function to an extracted profile. 
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2.3.4. Proposed Focus Score Measurement for Classification of Focused and Motion-Blurred Images 

In addition to the method for estimating motion blur parameters, we also propose a focus score 

measurement for classifying the focused and motion-blurred images. In Figure 10, we show an 

example of the power-spectrum images of a focused image and the power spectrums of motion-blurred 

images with different direction values and amount of motion blur (motion length). 

As shown in Equation (6) and Figure 10, because the focused image has no motion blur effect, its 

power spectrum does not contain the dominant parallel lines, as does the power spectrum of  

motion-blurred images. In the case of motion-blurred images, Figure 10 shows that the gray-level of 

the pixels along the motion blur direction in the power-spectrum images is much lower than that of the 

orthogonal direction. Consequently, the difference between the total gray-level of the image pixels in 

the dominant and non-dominant directions becomes very large. 

(a) (b) 

(c) (d) 

Figure 10. Example of power-spectrum images of focused and motion-blurred images at 

different motion blur directions: (a) focused image without motion blurring; (b) motion 

blur with direction of 0° and motion length of 15; (c) motion blur with direction of 45° and 

motion length of 15; (d) motion blur with direction of 90° and motion length of 15. 

In addition, because of non-directional characteristics, the power spectrum of the focused image 

only has the characteristic where the difference between the total gray-level of the image pixels in the 

dominant and non-dominant directions becomes very small. Based on this characteristic, we propose a 

focus score measurement for classifying the focused and motion-blurred images as shown in Equation (12). 

In this equation, ܵఏ indicates the sum of the gray-levels of the power spectrum along the dominant 

direction, and ܵఏାଽ indicates the sum of the gray-levels of the power spectrum along the orthogonal 

direction of θ. Using the proposed focus score measurement in Equation (12), the focus scores of the 

focused images tend to be close to 100, whereas the focus scores of the motion-blurred images become 

lower because of the directional characteristic: 
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ܵܨ = 100 × ܵఏାଽܵఏ  (12)

In Figure 11, we show some examples of focus score measurements of focused and motion-blurred 

images. Using the proposed focus score measurement method, we can classify the input images into 

focused or motion-blurred class, as shown in Figure 12. Using the training database, an optimal 

threshold for classification is determined, with which the minimum classification error is obtained. 

Then, this optimal threshold is used to classify new input images. 

 

 

Figure 11. Example of focus score measurements using our method with focused image 

and corresponding motion-blurred images (θ is motion direction; LEN is amount (length) 

of motion blur). 

 

Figure 12. Classification of focused and motion blur classes using proposed focus score 

measurement (FS). 

2.4. Human Age Estimation Based on MLBP, Gabor Filtering, PCA, and SVR 

As described in Section 2.1 and shown in Figure 1, our method uses an age estimation method 

based on MLBP, Gabor filtering, PCA feature extraction method, and SVR. The detailed procedure of 
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this method is depicted in Figure 13. As explained in Section 2.2, we first perform in-plane rotation 

compensation using Equation (1). The face ROI detected using Adaboost method normally does not fit 

the actual face region. Therefore, we perform a further pre-processing step to redefine the face ROI 

region in order to obtain a more correct face region based on the geometric characteristics of the 

human face [7]. There are several features that appear on the human face according to human age, such 

as wrinkles, spots, rough skin, etc. Based on these characteristics, we extract skin features for the 

estimation problem. There are two types of age feature extraction methods used to extract the age 

feature, including the global feature extracted by the MLBP method and the local wrinkle feature 

extracted by the Gabor filtering method [7,14]. In previous research [7], the SVR method is applied 

directly to the feature combined by MLBP and Gabor filtering. This approach has the limitation of 

high-dimensional features and noise effects. Therefore, feature dimension reduction and selection of 

optimal features based on PCA are performed. Finally, we use the SVR method with the PCA features 

to estimate the human age. Detailed explanations are given in Sections 2.4.1 to 2.4.3. 

 

Figure 13. Procedure for age estimation method based on MLBP, Gabor filtering, PCA and SVR. 

2.4.1. Global Age Feature Extraction by MLBP Method 

LBP has been used widely in many computer vision systems, such as face description [28],  

finger-vein recognition [29,30], face recognition [31], facial expression recognition [32], and human 

age estimation [7–9]. This is a powerful method for texture description that offers an image texture 

descriptor that is robust to illumination and rotation changes. Mathematically, the LBP method is 

described by Equation (13). In Equation (13), variable R indicates the radius of the circle from which 

the surrounding pixels are taken; variable P indicates the number of surrounding pixels; and s(x) is a 

thresholding function that takes the value of 1 if the input value is equal to or greater than zero; 
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otherwise, it takes the value of 0. Intuitively, the LBP method encodes each image pixel into a binary 

code by comparing the surrounding pixels with the center pixel: 

ܤܮ ோܲ, = ݏ(݃ − ݃) × 2ିଵ
ୀ  (13)

In previous studies [7–9,14], the LBP method was used for the human age estimation problem. For 

this purpose, the LBP codes are first divided into uniform and non-uniform codes. Then, the histogram 

feature of such codes is acquired and used for age estimation. The uniform codes have the 

characteristic of at most two bit-wise changes from 0 to 1 (or 1 to 0). This type of LBP code efficiently 

describes the appearance of micro-texture features of the face, such as wrinkles and spots. The other 

types of LBP codes that have more than two bit-wise transitions from 0 to 1 (or 1 to 0) are classified as 

non-uniform codes. These LBP codes represent the very complex texture features normally associated 

with noise. Therefore, they do not contain sufficient information for age estimation. Consequently, by 

making a histogram feature of uniform and non-uniform codes, we can represent the characteristic of 

age features on a human face. The LBP histogram feature of a face ROI is formed by obtaining and 

concatenating the LBP histograms of many non-overlapped sub-blocks of a face ROI image. In 

addition, in order to overcome the problem of sub-block size, the MLBP feature is obtained, instead of 

the LBP feature, as shown in Figure 14 [7]. 

 

Figure 14. Methodology for feature extraction using MLBP method. 

As shown in Figure 14, the MLBP feature is a histogram feature constructed by concatenating 

several LBP features, which are obtained by the different parameters of radius (R), number of pixels (P), 

and number of sub-blocks (Mn, Nn). Consequently, using the MLBP feature, we can extract the age 

feature that exploits the richer age information compared with the LBP feature. 
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2.4.2. Local Age Feature Extraction by Gabor Filtering 

Although the MLBP feature works well on making histogram features that describe the appearance 

of the texture feature, it cannot sufficiently measure the strength of the wrinkle feature. As humans 

age, the wrinkle feature is presented on some local regions of the face, such as the forehead, left and 

right sides of the eyes, lower part of the eyes, etc. This type of age feature is weak on the face of young 

people, but it becomes stronger and larger on that of older people. Therefore, our age estimation 

method uses Gabor filtering to extract the wrinkle feature. Because such feature appears as edges in 

different directions and sizes according to human age, we use a Gabor wavelet filtering at different 

scales and directions. Mathematically, Gabor filtering is modeled by the Gaussian function multiplied 
by a sinusoid wave, as shown in Equation (14) [7,14,33]. In this equation, 	ߪ௫ and ߪ௬ are the standard 

deviations of the filter in the x and y-axes, respectively; ܹ	 is the sinusoid frequency. In our 

experiment, we use only the real part of Gabor filtering at four scales and six directions to extract the 

wrinkle feature, as shown in Equation (15): ݔ)ܩ, (ݕ = ௬ߪ௫ߪߨ12 ݔ݁ ቊ−12ቆݔଶߪ௫ଶ + ௬ଶቇߪଶݕ + ቋ (14)ݔܹߨ2݆

,ݔ)ܴ (ݕ = ௬ߪ௫ߪߨ12 ݔ݁ ቊ−12ቆݔଶߪ௫ଶ + ௬ଶቇቋߪଶݕ cos(2ݔܹߨ) (15)

Based on the detected positions of the two eyes, we first define several local wrinkle regions, as 

shown in Figure 15. These regions are selected based on where the wrinkle feature normally appears as 

human age increases. For each selected region, the filtered image is calculated by the convolution 

operation of the wrinkle region and the Gabor filter. Then, the mean and standard deviation of the 

filtered image are used as two wrinkle features. In our experiments, we use five local regions  

and Gabor filtering at four scales and six directions. Consequently, a feature vector in the  

240-dimensional space (5 (regions) × 4 (scales) × 6 (directions) × 2 (features)) is obtained to represent 

the wrinkle feature [7]. 

 

Figure 15. Example of several selected local wrinkle regions to extract wrinkle features. 
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2.4.3. Age Estimation by SVR 

Using two feature extraction methods, our method obtains two feature vectors, including the MLBP 

feature vector and Gabor filtering feature vector. The final feature vector is then formed by combining 

the two feature vectors. In order to perform the feature vector combination, each feature vector is first 

normalized using the Z-score normalization method. In Equation (16), the values µi and σi are the 

mean and standard deviation vectors of the raw feature vectors fi [7,14], respectively. Then, the 

combined age feature (f) is constructed by concatenating the two normalized feature vectors of MLBP 

and Gabor filtering using Equation (17): 

∗ࢌ = ࢌ − ࣌ࣆ ࢌ(16)  = ∗ࢌ] , ∗] (17)ࢌ

In previous research [7], the combined feature is used directly as input to the SVR machine to 

estimate human age. This approach has a limitation of the very high-dimension feature vector and 

noise effects. As shown in Figure 14, the MLBP feature is constructed by concatenating several LBP 

feature vectors. Consequently, the MLBP feature is a vector in a very high dimensional space. 

Processing a high-dimensional feature vector causes the increase of processing time. In addition, the 

performance of the estimation system can also be affected by redundant information caused by 

imperfect face ROI estimation and noise. To solve this problem, our research uses the PCA  

method [34–36] to analyze the feature vector, and uses a small number of principal components, 

instead of all components in the feature vector. Using this scheme, we not only reduce the dimension 

of the feature vector, but also enhance the performance of the age estimation system by removing some 

non-important components from the extracted feature vector. The feature vector obtained by PCA is 

used as input to the SVR machine, and then human age is estimated using SVR. The LibSVM software 

package was used for implementation in our experiments [37]. 

3. Experiment Results 

3.1. Description of Database and Performance Measurement 

In this section, we present the experiment results of our methods on motion blur parameters 

estimation and the age estimation system. For this purpose, we use an open database called PAL [38,39]. 

The PAL database contains the face images of 580 persons in the age range of 18 to 93 years of 

different genders (male and female) and races (Caucasian, Africa-American, and others). In order to 

evaluate the performance of our system, the PAL database is first divided into learning and testing 

databases twice in order to perform a two-fold cross validation scheme. Described in detail, at each 

division, half the images are assigned to the learning database, and the other half are assigned to the 

testing database. Table 2 provides a detailed description of the PAL database and the learning and 

testing sub-databases. Some sample images from the PAL database are shown in Figure 16. 
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(a) (b) (c) 

 
 (d) (e)  

Figure 16. Sample images from PAL database: (a) male aged 22; (b) female aged 49;  

(c) male aged 52; (d) female aged 67 and (e) female aged 78. 

Table 2. Descriptions of PAL database and its learning and testing sub-databases. 

Database Number of Learning Images Number of Testing Images Total 

Database Part 1 291 289 580 
Database Part 2 291 289 580 

Because it is extremely difficult to obtain a real motion blur database to test our system, we 

artificially made the motion blur database using the images from the PAL database. In our research, we 

assume that the linear motion blur is presented in the face image as shown in Equation (4). Described 

in detail, for each image in the PAL database, we artificially made the motion-blurred images in four 

directions (0°, 45°, 90°, and 135°, respectively). In addition, the amount of motion blur (motion length) 

is varied from 1 (without motion blur) to 15 (with much motion blur) with a step of 2. A detailed 

description of the motion blur database is given in Table 2. From this motion blur database, we classify 

the images into three groups: focused, slightly blurred, and blurred. The focused group contains images 

without motion blur (images from the PAL database without motion blur) and trivial motion blur with 

motion length of 3. The slightly blurred database contains images with a larger amount of motion  

blur compared to the focused database with an amount of motion blur of 5, 7, and 9. The other  

motion-blurred image with amount of motion blur of 11, 13, and 15 are grouped into the blurred 

database. In total, we obtained a database of 16,820 images (580 (original image) + 580 (images) × 4 

(directions) × 7 (motion length values)). This database of 16,820 images is listed in Table 3. 
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Table 3. Description of motion blur database used in our experiments. 

Number of 

Images 

Focused Database (Motion 

Length is 1 and 3) 

Slightly Blurred 

Database 

(Motion Length is  

5, 7, and 9) 

Blurred Database 

(Motion Length is  

11, 13, and 15) 

Total Number 

of Images 

0° 45° 90° 135° 0° 45° 90° 135° 

Learning Database 1455 873 873 873 873 873 873 873 873 8439 

Testing Database 1445 867 867 867 867 867 867 867 867 8381 

The goal of the age estimation system is to accurately estimate human age. This means that the error 

between the estimated age and ground-truth should be small. In order to measure the performance of 

the estimation system, our method uses the mean absolute error (MAE) criteria. Mathematically, MAE 

measures the average estimation error between the estimated and ground-truth ages of the images in 

the testing database, and it is represented by Equation (18) [6,7,9,14]. 

In this equation, the value of N indicates the number of testing images, and ak and ak’ are the 

ground-truth and the corresponding predicted ages, respectively. As indicated in Equation (18), a 

smaller value of MAE indicates a better estimation performance of the estimation system: 

ܧܣܯ = 1ܰ |ܽᇱ − ܽ|ே
ୀଵ  (18)

3.2. Performance Evaluation of the Proposed Motion Blur Parameters Estimation 

In the first experiment, we evaluate the performance of our method for motion blur parameters 

estimation and the focus score measurement depicted in Section 2.3. As shown in Equation (12), our 

method uses the proposed focus score measurement to first separate the focused and motion-blurred 

images. As shown in Figure 12, using the training database, the optimal threshold for classifying the 

focused and blurred images is determined. Using this optimal threshold, we classify the input testing 

images into one of two classes of focused or motion blurred by comparing the focus measurement of 

the input images with the optimal threshold. Table 4 lists the classification results of our focus score 

measurement on the two testing databases. In this table, the focused class contains the image without 

motion blur, and the blurred class contains the images with motion blur effects. 

Because of blur effects, nine images failed for face detection in the testing databases. Consequently, 

a total of 8372 images were used for this experiment, instead of the 8381 images in each testing 

database, and this includes 289 focused images and 8083 blurred images. For testing database 1, only 

one image from a total of 289 images of the focused class was misclassified into the blurred class, 

whereas 14 images from a total of 8083 images from the blurred class were misclassified into the 

focused class. For testing database 2, these values are three and 14 images, respectively. On average, 

the classification equal error rate of the two testing databases is 0.433%. Through this experiment 

results, we can conclude that our focus score measurement method for motion blur assessment is 

efficient for the classification of focused and motion-blurred images. 
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Table 4. Classification results of images into focused and blurred classes for two testing databases. 

Number of Images 

(Testing Database 1/Testing Database 2) 

Focused Class 

(Images without Motion Blur) 

Blurred Class 

(Images with Motion Blur) 

Focused class 

(Images without motion blur) 
288 (99.654%)/286 (98.962%) 1 (0.346%)/3 (1.038%) 

Blurred Class 

(Images with motion blur) 
14 (0.173%)/14 (0.173%) 8069 (99.827%)/8069 (99.827%) 

In the next experiment, we measure the performance of our estimation method for motion blur 

parameters. As indicated in Table 3, we artificially made the blur image database using four major 

directions: 0°, 45°, 90°, and 135°, respectively. In addition, the amount of motion blur is varied from 3 

to 15, which corresponds from trivial to significant blur. In total, 16,240 images (580 (original images) 

× 7 (motion lengths) × 4 (directions)) were used in this experiment. Table 5 lists the average estimation 

error of the motion direction and amount of motion blur. As indicated in this table, the average error of 

the direction estimation is approximately 0.709° and the average error of the estimation of the amount 

of motion blur is approximately 0.309. From this, we can confirm that our method can correctly 

estimate the direction and amount of motion blur. 

Table 5. Estimation errors of motion blur parameters using entire motion blur database. 

Average Error of  

Direction Estimation 

Average Error of Amount of Motion Blur  

(Motion Length) 

0.709° 0.309 

In Figure 17, we show some examples of the estimation results of the motion direction and amount 

of motion blur. By comparing the ground-truth parameters and estimation results, we can see that the 

proposed estimation method for motion blur parameters works well in all the cases of images. In this 

figure, θ means the motion direction, and LEN means the amount of motion blur on the given images. 

 

Figure 17. Examples of estimation results of motion blur parameters. 
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3.3. Performance Evaluation of Proposed Age Estimation Method 

In order to obtain the best estimation performance, age estimation systems are normally trained 

using good quality images. For the testing phase, the input face image is also required to be of good 

quality. This requirement is necessary because poor quality images do not contain sufficient 

information for the estimation task. Therefore, if a poor quality image is used with an age estimation 

system, the consequent estimation result becomes untrustworthy. In order to demonstrate the effects of 

motion-blurred images on the age estimation system, we first perform an experiment on the age 

estimation system with motion-blurred images by measuring MAE of the age estimation system using 

the motion blur database from Table 3 and the age estimator that uses the focused images. In this 

experiment, the database from Table 3 is separated manually for the purpose of demonstrating the 

effects of motion blur on the age estimation system. Detailed estimation results are listed in Table 6 

with each sub-database according to motion direction and amount of motion blur. 

Table 6. Estimation results of motion blur database without our proposed age estimation method. 

MAE 

Original 

PAL 

Database 

Focused 

Database 

(LEN = 1, 3) 

Slightly Blurred 

Database 

(LEN = 5, 7, 9) 

Blurred Database 

(LEN = 11, 13, 15) 
Average 

MAE 

0° 45° 90° 135° 0° 45° 90° 135° 

Testing 

Database 1 
5.89 6.45 8.90 9.89 8.22 10.67 12.58 13.14 10.90 14.11 10.26 

Testing 

Database 2 
6.15 6.40 8.17 9.07 7.36 9.79 11.25 11.87 9.90 12.95 9.42 

Average MAE 

of Entire 

Database 

6.02 9.87 

As indicated in this table, the average error (MAE) of the estimation system without motion-blurred 

images is 6.02 years. With motion-blurred images, the error increases according to the direction and 

amount of motion blur. On average, a MAE of 9.87 years is obtained from the entire motion blur 

database, which is much higher than the MAE of 6.02 years for the system using only the focused 

(good quality) images. From this result, we can conclude that the motion-blurred images have very 

strong effects on the age estimation system and result in degradation of the estimation performance. 

To solve the problem of motion blur effects on age estimation systems, as depicted in Figure 1, our 

method pre-classifies the motion-blurred images into one of several groups of motion blur direction 

and amount of motion blur. Based on this result, human age is estimated using an appropriate age 

estimator for each group. 

In the next experiment, we use the proposed estimation method of motion blur parameters to 

estimate the motion direction and amount of motion blur in input images. We classify the input images 

into one of several groups of motion blur based on the estimation results of the motion blur parameters. 

Using the motion blur database from Table 3 and our method, the detailed experiment results of the 

pre-classification step are indicated in Table 7. In this experiment, we pre-classified the images into 

nine groups, including the focused groups that contain the focused images and trivial motion blur (the 
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amount of motion is one and three, where one indicates no motion blur), and the other eight blur 

groups according to motion direction and amount of motion blur. As indicated in the table, with the 

exception of some images that failed for face detection, all the images are classified correctly into the 

corresponding groups. This experiment result proves that our estimation method for motion blur 

parameter is efficient for correctly estimating the motion direction and amount of motion blur. 

Table 7. Estimation results of motion blur database using our estimation method for 

motion blur parameter. 

Classification Rate (%) 

(Testing Database 1/ Testing 

Database 2) 

Focused Database

(LEN = 1, 3) 

Slightly Blurred Database 

(LEN = 5, 7, 9) 

Blurred Database 

(LEN = 11, 13, 15) 

0° 45° 90° 135° 0° 45° 90° 135° 

Focused Database 

(LEN = 1, 3) 
100/100 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Slightly Blurred Database 

(LEN = 5, 7, 9) 

0° 0/0 100/100 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

45° 0/0 0/0 100/100 0/0 0/0 0/0 0/0 0/0 0/0 

90° 0/0 0/0 0/0 100/100 0/0 0/0 0/0 0/0 0/0 

135° 0/0 0/0 0/0 0/0 100/100 0/0 0/0 0/0 0/0 

Blurred Database 

(LEN = 11, 13, 15) 

0° 0/0 0/0 0/0 0/0 0/0 100/100 0/0 0/0 0/0 

45° 0/0 0/0 0/0 0/0 0/0 0/0 100/100 0/0 0/0 

90° 0/0 0/0 0/0 0/0 0/0 0/0 0/0 100/100 0/0 

135° 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 100/100

Based on these pre-classification results, we performed the age estimation method for images in 

each group by applying an appropriate age estimator for each group. As explained in Section 2.4, after 

pre-classifying the motion-blurred images into appropriate groups, human age is estimated using a 

suitable age estimator for that group. For this purpose, the training process is first done using the 

images that correctly belong to each group of motion-blurred images. Then, the trained age estimators 

are used to estimate human age in the input test images. Detailed estimation results using our method 

are indicated in Table 8. On average, we obtained a MAE value of 6.48 years. Although this MAE 

value is slightly higher than the MAE of 6.02 years for the system using only the focused good quality 

images (Table 6), this MAE value is much lower than the MAE of 9.87 years for the system without 

our method (Table 6). 

This result is caused by the poor quality of images caused by the motion blurring effects. Because 

of motion blurring, the quality of the face image is reduced and some spurious age feature is presented 

on the face region. Consequently, age information in the face region is lost or not represented 

correctly. Therefore, although we trained an age estimator suitable for each group of motion-blurred 

images, the estimation performance of the blur groups cannot be as good as the estimation 

performance of the focused good quality group. 

For this reason, the performance of our method cannot improve compared with the system without 

motion blur effects. However, the performance of our method is superior to that of the system that does 

not consider the effects of motion blurring. 
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In Figure 18, we show some sample results of the age estimation system with and without our 

method. In this figure, “Predicted Age 1” means the age estimation result of the system that does not 

consider the effects of motion blurring; “Predicted Age 2” means the estimation result of our method 

that considers the effects of motion blurring. It can be seen from these examples that our age 

estimation method produces better estimation results compared with the system without our method. 

We performed the additional experiments with the second evaluation dataset of MORPH. The 

MORPH is composed of over 55,000 images from over 13,000 people from 16 years old to 77 years 

old [40]. From this database, we randomly select images at different age, gender and individuals for 

our new experiments. Consequently, a new motion blur database of 17,400 images that is composed of 

600 focused images and 16,800 motion-blurred images (600 (focused images) ×4 (directions) ×	7 

(motion lengths)) is constructed for our new experiments. The experimental results are included in 

Tables 9–13 and Figure 19. As shown in Tables 3–8 by PAL database and Tables 9–13 by MORPH 

dataset, the accuracies of age estimation by our method are similar in these two databases, which can 

confirm the generalization of our method in different databases. 

Table 8. Estimation performances of our age estimation method using motion blur databases. 

MAE 

Focused 

Database 

(LEN = 1, 3) 

Slightly Blurred 

Database 

(LEN = 5, 7, 9) 

Blurred Database 

(LEN = 11, 13, 15) 
Average 

MAE 

0° 45° 90° 135° 0° 45° 90° 135° 

Testing Database 1 5.88 6.10 6.63 6.16 6.60 6.29 6.75 6.18 6.61 6.54 

Testing Database 2 6.14 6.18 6.47 6.25 6.68 6.36 6.62 6.31 6.87 6.41 

Average of Entire 

Database 
6.48 

 

 

Figure 18. Sample results of estimation process with and without our method. 
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Table 9. Description of the new motion blur database obtained from MORPH database 

used in our experiments. 

Number of 

Images 

Focused Database (Motion 

Length is 1 and 3) 

Slightly Blurred 

Database 

(Motion Length is  

5, 7, and 9) 

Blurred Database 

(Motion Length is  

11, 13, and 15) 

Total Number 

of Images 

0° 45° 90° 135° 0° 45° 90° 135° 

Learning 

Database 1 
1515 909 909 909 909 909 909 909 909 8787 

Testing 

Database 1 
1485 891 891 891 891 891 891 891 891 8613 

Learning 

Database 2 
1505 903 903 903 903 903 903 903 903 8729 

Testing 

Database 2 
1495 897 897 897 897 897 897 897 897 8671 

Table 10. Classification results of images into focused and blurred classes for two testing 

databases using new motion blur database obtained from MORPH database. 

Number of Images 

(Testing Database 1/Testing Database 2) 

Focused Class 

(Images without motion blur) 

Blurred Class 

(Images with motion blur) 

Focused class 

(Images without motion blur) 
297 (100.000%)/299 (100.000%) 0 (0.0%)/0 (0.0%) 

Blurred Class 

(Images with motion blur) 
13 (0.157%)/13 (0.156%) 8273 (99.843%)/8323 (99.844%) 

Table 11. Estimation errors of motion blur parameters using entire new motion blur 

database obtained from MORPH database. 

Average Error of  

Direction Estimation 

Average Error of Amount of Motion Blur  

(Motion Length) 

0.837° 0.332 

Table 12. Estimation results of motion blur database without our proposed age estimation method. 

MAE 
Original MORPH 

Database 

Focused 

Database 

(LEN = 1, 3) 

Slightly Blurred 

Database 

(LEN = 5, 7, 9) 

Blurred Database 

(LEN = 11, 13, 15) 
Average 

MAE 

0° 45° 90° 135° 0° 45° 90° 135° 

Testing Database 1 5.99 6.36 8.18 9.65 7.82 10.12 10.1811.29 9.78 11.81 9.25 

Testing Database 2 6.02 6.42 9.10 12.29 9.51 12.72 13.1816.0813.2916.84 11.76 

Average MAE of  

Entire Database 
6.01 10.51 
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Figure 19. Sample results of estimation process with and without our proposed method 

using the new motion blur database obtained from MORPH database. (Estimated Age 1 

means the age estimation result of the system that does not consider the effects of motion 

blurring; Estimated Age 2 means the estimation result of our method that considers the 

effects of motion blurring). 

Table 13. Estimation performances of our age estimation method using motion blur databases. 

MAE 
Focused Database 

(LEN = 1, 3) 

Slightly Blurred Database 

(LEN = 5, 7, 9) 

Blurred Database 

(LEN = 11, 13, 15) Average MAE 

0° 45° 90° 135° 0° 45° 90° 135° 

Testing Database 1 5.90 6.00 5.85 5.86 6.12 6.23 6.33 6.34 6.17 6.08 

Testing Database 2 5.76 5.76 6.07 5.75 5.98 6.30 6.38 6.06 6.16 6.01 

Average of Entire 

Database 
6.05 

As the next experiment, we compared the performance by age estimation after de-blurring filter 

(Wiener filter) with that by our proposed method on PAL database. As shown in Tables 8 and 14, we 

can confirm that the accuracy of age estimation by our method is higher than that by age estimation 

after de-blurring filter. The reason why the accuracy of age estimation after de-blurring filter is lower 

than that by our method is that the additional noises can be included by the de-blurring filter or the 

blurred image is not completely restored to the focused one by the de-blurring filter as shown in Figure 20. 
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(a) 

 
(b)

 
(c)

Figure 20. Examples of age estimation results in case of focused images, motion blur 

images with and without our proposed method and the de-blurred images using Wiener filter. 

Table 14. Age estimation accuracies using de-blurring filter (Wiener filter) on  

motion-blurred images of testing database 1 and 2. 

Testing Database 1 Testing Database 1 Average MAE 

7.818 8.081 7.950 

In our experiment, we just consider the motion blurring of linear type, and use the assumption that 

the motion blurring of our experimental images does not include the two (or more than two) directions 

or degree of motion blurring. As shown in Tables 3–8 and 9–13, we show that our method can 

accurately estimate the age with the motion blurred images of two databases where various degree of 

blurring (from 1 to 15) and various directions of blurring (vertical (0°), horizontal (90°), diagonal (45°), 

anti-diagonal (135°)) are included. From that, we can confirm that our method can generalize in 

various cases of motion blurring. 
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4. Conclusions 

In this paper, we proposed a new human age estimation method that is robust to the effects of 

motion blurring. In general, motion blurring can occur on captured images because of camera 

movement and/or the movement of the viewed objects. Because of this effect, the age feature of the 

face can be changed according to the amount of motion blur and direction, which can cause 

performance degradation in age estimation systems. In order to make the age estimation system robust 

to the effects of motion blurring, the parameters of motion blurring (amount of motion blur and motion 

direction) were first estimated using our proposed estimation method. By estimating the motion 

parameters, we pre-classified the images into one of several groups of motion blurring according to the 

estimated amount of motion blur and motion direction. Finally, an appropriate age estimator for each 

group of motion blurring based on MLBP, Gabor filtering, PCA, and SVR was used to estimate human 

age. For future work, we plan to investigate other effects of low image resolution, low light, or image 

distortion on age estimation systems in order to enhance the performance of age estimation systems. In 

addition, we would perform the experiments with other real database of motion blurring. 
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