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Abstract: Image-based localization is one of the most widely researched localization
techniques in the robotics and computer vision communities. As enormous image data sets
are provided through the Internet, many studies on estimating a location with a pre-built
image-based 3D map have been conducted. Most research groups use numerous image
data sets that contain sufficient features. In contrast, this paper focuses on image-based
localization in the case of insufficient images and features. A more accurate localization
method is proposed based on a probabilistic map using 3D-to-2D matching correspondences
between a map and a query image. The probabilistic feature map is generated in advance
by probabilistic modeling of the sensor system as well as the uncertainties of camera
poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the
probabilistic feature map. The proposed algorithm is optimized from the initial pose by
minimizing Mahalanobis distance errors between features from the query image and the
map to improve accuracy. To verify that the localization accuracy is improved, the proposed
algorithm is compared with the conventional algorithm in a simulation and realenvironments.

Keywords: localization; monocular camera; probabilistic feature map; 3D-to-2D matching
correspondences; image data set
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1. Introduction

Image-based localization is an important issue in robotics communities as well as computer
vision communities. Its applications include navigation of robots or pedestrians, virtual reality, and
visualization of tourism cites [1]. Since Google Street view [2] and other tourism sites data sets [3]
such as Dubrovnik, Rome, and Vienna are provided, image-based localization has been widely studied
and the performance of the suggested approaches has been demonstrated with these data sets. As it is
expected to offer enormous image data sets to the entire world on the Internet, image-based localization
can be utilized for global localization as a replacement of GPS (global positioning system). As cameras
are extensively equipped in everyday electronic devices such as mobile phones, image-based localization
is becoming increasingly important in various fields.

In the field of computer vision, Robertson et al. [4] proposed an image-based localization method
by employing an urban navigation system. They utilized a database of rectified views of building
facades by extracting edges of buildings and roads to estimate the pose of a query image. Similarly,
Kosecka et al. [5] introduced an indoor image-based localization method by matching histograms that
are generated by detecting edges of room images. In the robotics field, Nepier et al. [6] estimated a
robot’s pose by matching road information of a query image to synthetic orthographic images of the
road surface produced by a stereo vision system in advance.

colorl As robust features have been developed such as SIFT (scale-invariant feature transform) [7]
and SUREF (speeded up robust features) [8], many researchers are trying to apply the robust features for
localization. Zhang et al. [9] proposed an image-based localization method in urban environments using
triangulation of matched features from database images. 3D feature map-based localization methods
are introduced by matching features between a query image and the 3D map which is generated from
image databases [10,11]. The accuracy of the feature map is important in feature-based localization
methods because errors of the map directly influence the accuracy of localization. In response, the
SfM (structure-from-motion) technique [12] was proposed to estimate camera’s motion and scene’s
structures from camera images while improving the accuracy of 3D feature maps. colorlBundle
Adjustment [13] is one of the widely used optimization methods for minimizing residual errors of the
StM approach. With recent developments of SfM techniques, an SfM model can be constructed on
a city-scale considering millions of points [14—16]. Accordingly, localization methods based on a 3D
feature map such as the SfM model have been widely researched as it has become possible to cover
large areas. In large environments, one of the crucial issues is the computation time because the 3D
feature map contains millions of features. Lu ef al. [10] improved computation time by employing
kd-tree and nearest neighbor (FLANN; fast library for approximate nearest neighbors) algorithms to
find a query feature’s correspondences. Sattler et al. [17] applied feature-based localization to a mobile
phone platform and suggested a method to accelerate the matching process. Other studies of localization
based on a feature map to enhance the accuracy of matching correspondences have also been reported.
Irschara et al. [18] enhanced registration performance using relevant fragments of a 3D model. Other
researchers also improved the performance of 3D-to-2D correct correspondences using mutual visibility
information [3] and query expansion [19].
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According to [14,17,18], localization methods based on a feature map solve the real-time problem
while also providing high performance of matching on a large scale map. However, these studies assume
that the map has high accuracy and sufficient features. It therefore remains challenging to apply the
feature-based localization methods with insufficient and uncertain features. Since the most feature-based
localization methods [3,9-19] use camera pose estimation methods [20-24], uncertainty of features is
not considered during the camera pose estimation. colorl Although Ferraz et al. [25] proposed a camera
pose estimation method considering features’ uncertainties by estimating the uncertainties from a bunch
of feature points, this method is unsuitable to be employed in a mobile robot application because it is
usually not easy to obtain many features of the same object from various views. Thus, a novel localization
method is needed to enhance localization accuracy by considering uncertainty of the feature map for
mobile robot system during the camera pose estimation.

The uncertain feature map is widely used in SLAM (Simultaneous localization and mapping)
techniques in robotics communities. The camera-based SLAM techniques [26-29] generate a
probabilistic feature map based on a sensor system modeling and estimate the robot’s pose at the same
time. Since the monocular camera is not able to estimate the full states of the robot’s pose at a single
observation, it is required to incorporate additional information such as the robot’s prediction [30] or a
scale-known landmark [29,31,32]. There are also researches to estimate the robot’s pose using a pre-built
map from the SLAM algorithm, which is called a robot relocation problem. Jeong et al. [33] proposed
a relocation method of a cleaning robot installed with an upward-looking camera using Harris corners
and their orientation information from a ceiling and side walls. This algorithm estimates the robot’s pose
using Hough clustering [34] exploiting orientation information of features. Since the uncertainty of the
individual feature is not considered, large uncertainties of the features directly influence the accuracy of
localization. Lee et al. [35] proposed a recursive pose estimation algorithm in kidnapping situation of
a cleaning robot using EKF (Extended Kalman Filtering)-based SLAM. The robot’s pose is estimated
by recursive EKF updates of the corresponding past robot pose of the best feature-matched frame with
a current frame. However, it is hard to estimate an optimized position since this algorithm just matches
features based on the single frame. Moreover, these algorithms are designed based on the assumption
that the robot is moving on a flat ground, so the robot’s pose can only be estimated in 3-DoF (z, y, yaw).

Most feature map-based localization methods are performed in a feature map which has sufficient
number of features. However, it is challenging to apply these methods in real environment because
the feature map from real environment also contains some areas which have inaccurate and insufficient
features. The main contribution of this paper is the suggestion of the novel image-based localization
method that can cover extensive areas containing inaccurate and insufficient features. In addition, as the
proposed method is able to estimate 3D camera pose, it can deal with a relocation situation ina 3D SLAM
system. In our approach, a probabilistic feature map is generated from an insufficient data set using
sensor modeling. An initial camera pose is estimated by the PnP (Perspective-n-Point) algorithm [20,22]
using 3D-to-2D matching correspondences between the map and the query image. The camera pose is
further enhanced by minimizing Mahalanobis distance error between the matching correspondences on
its image plane.

The rest of this paper is structured as follows. Section 2 explains the method of generating a

probabilistic feature map. In Section 3, the proposed localization method is explained in detail.
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To verify the effectiveness of the proposed method, the results of simulations and experiments are shown
in Section 4. In Section 5, a conclusion and directions for future work are provided.

2. Generation of Probabilistic Feature Map

To generate a probabilistic feature map, camera-based sensor data are necessary in advance.
If the sensor data and their corresponding poses are provided, a 3D map can be constructed. After
features are extracted from each image, it is possible to express a probabilistic feature map in the
3D space by referring to its sensor system modeling. Any camera-based sensor system such as a
stereo camera, ToF (time-of-flight) camera, and Kinect can be modeled. In this section, the method
to generate a 3D probabilistic feature map is introduced using a camera based on bearing-only landmark
initialization [36,37].

2.1. Definition of Probabilistic Feature Map

The probabilistic feature map has m features that are assumed to have Gaussian distributions
comprising position and covariance values. The probabilistic feature map is expressed on the global

coordinates of the 3D space as follows:

Map = [F17F27”‘7Fm] (1)
F, = [Xfi70fi] (i:1,~~,m) (2)

where Fj is the ¢-th feature composed of a position, Xy, € R3, and its covariance, C' 5 € R3*3, and m is
the total number of features. The feature also contains additional information for feature matching such
as a descriptor vector and an index of the image. The method of constructing the probabilistic feature

map is explained below.

2.2. Probabilistic Representation of Features

A probabilistic representation of features is related to a sensor system modeling. Although various
image-based sensor systems are available for use, this paper deals with a stereo vision system without
loss of generality. Figure 1 shows the steps of probabilistic representation considering the stereo vision
system. Let us consider a point on the 3D space represented by X = (z, %, 2)? in Cartesian coordinates
and X = (p,0,¢)T in spherical coordinates. The covariance of each coordinate system is represented by
C and C as follows:

2 2 2 2 2 2
e Ozy Oz _ T Opo 9pg
N 2 2 _ 2 2 2
C=1lo; o, 0, |.C=]|04 o5 04 3)
2 2 2 2 2 2
0., 0, O 0% Ogs Oj

where each element denotes the covariance between corresponding axes. By measuring intrinsic
parameters and the baseline of two cameras, the position of a feature in the 3D space can be calculated as
X; and X 1 on each coordinate system by a triangulation algorithm, as shown in Figure 1a. For estimating
the covariance based on the sensor system modeling, a spherical coordinate system is employed, as
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shown in Figure 1b. As the relationship of covariances between these two coordinate systems is
expressed by a Jacobian transformation, the covariance of the spherical coordinate system at X; can
be converted to the Cartesian coordinate system as follows (refer to Figure 1b):

Cy = Jr(p,0,0)CrJr(p, 0, )" 4)

where Jg(p, 0, ¢) is the Jacobian matrix at X, for converting the spherical coordinate system to the
Cartesian coordinate system; p, 6, and ¢ denote the radial distance, inclination, and azimuth, respectively.
Since the covariance of features on the 3D space is influenced by the depth information, C' is formulated
as follows:

®)

=7t 0
0

where o, is the standard deviation of the depth error and C; is a submatrix of Ch regarding to # and ¢.
As the uncertainty in the radial direction on the spherical coordinate system is dependent on the depth
value, the covariance of radial distance is set to 2207 according to the sensor modeling of a stereo vision
system [38]. C is influenced by pixel errors of the feature on an image. rcolorl X, and C are the
projected point of X; and its covariance on a virtual image plane where z = 1, as shown in Figure 1b.
Since the inclination and azimuth of X 1 and )?2 are same, the inclination and azimuth of 51 are also
same as the ones of 52. Therefore, C is equal to the inclination and azimuth covariance of 52 which
is the covariance at X». As the uncertainty of features on the image is usually set to a fixed value, the

covariance of features on the virtual image plane is expressed as
Cy = diag(o3, 03, 0) (6)

where o5 is the standard deviation of the pixel value. The uncertainty in z-axis is set to zero because
the virtual image plane does not have z-axis values. C is converted from C5 by approximation of the
Jacobian matrix on the virtual image plane as follows:

Ci = BJp(t,y,2)Calr(z,y,2)" BT (7
010

= 8

0 0 1 ] ®)

where Jp(x,y, 2) is a Jacobian matrix at X, for converting Cartesian to spherical coordinates on the

virtual image plane. To obtain a sub-matrix for the inclination and azimuth, matrix B is applied.
Through Equations (3) to (7), the covariance of features from Camera 1, C'; in Figure 1b, is estimated.

Since the camera pose also contains uncertainty, the uncertainties of the sensor measurement and the

camera pose, C; and Cj in Figure 1c, are combined by compound approximate transformations [39]

as follows:
C, = TOTT + O, ©)
1 00 O Z1 =W
T1 = 010 —21 0 T (10)

0 0 1 U1 —T1 0
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where 7 denotes approximate transformations to uncertainty of the 3D feature point, X;, from the
covariance of the camera pose, (5. colorlxzy, y;, and z; denote the coordinates of the 3D feature
point, X;. Thus, the covariance from Camera 1 is represented as C); as in Equation (9). Let the
rotational components (roll, pitch, and yaw) of the 3D pose be defined as Oron, pitcn, and Oyay. Cs
can be generally set to diag(o?,0;,07,03 05 .05 ) from the uncertainty of each element (z, y, z,

roll, pitch, and yaw).

Image plane

Spherical coordinates

baseline

Cameral baseline Camera2 Cameral Camera2

(a) (b)

(Rp, tp)

baseline baseline
Cameral Camera2 Cameral Camera2

(c) (d)

Figure 1. Generation steps of probabilistic features in a stereo system. (a) Matched
feature points on each image plane; (b) Conversion from Cartesian coordinate to spherical
coordinate system; (c) Estimating covariance from a single camera; (d) Estimating initial

covariance of the stereo system by merging covariance of each camera.
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By estimating the covariance of features, the features can now be expressed as Gaussian distributions.
Since there are two Gaussian distributions of the features from two cameras in the stereo system,
a merging method of multivariate Gaussian distributions is required for estimating one Gaussian
distribution for a single observation from this system. When two Gaussian distributions are N (p7, )
and N (u9,3), the merged Gaussian distribution, N (u3,3), can be estimated using the merging
method [39] as follows:

By o= (T D)7 (11)
ps = Ba(Sy i+ X5 ) (12)

In Figure 1d, C; and C5 are covariances of the features from Camera 1 and 2, respectively. Cs seen
from Camera 1 is represented as C; = Rng,Rg where R, is the rotation matrix from Camera 1 to
Camera 2. Letting the probabilistic feature from each camerabe N (y; = X7,%; = Cy) and N (e = X7,
Yo = RbC’g,RbT) in Equations (11) and (12), the probabilistic feature is estimated from a single
observation of the stereo vision system, as shown in Figure 1d. Through this process, the position
and covariance of each feature from a single observation, denoted by X, and C,, respectively, can
be obtained.

2.3. Constructing a Probabilistic Feature Map

To construct a probabilistic feature map, the features from a single observation require transformation
to the global coordinate system and merging of the same features from other observations.
colorl According to [40], a probabilistic feature from a single observation can be transformed to the

global coordinate system as follows:
F, = [R,X,+t,, R,C,R!] (13)

where I?, and ¢, are rotation and translation of Camera 1 to the global coordinate system.

After all features are converted to the global coordinate system, the probabilistic feature map is
constructed using clustering and merging methods of the features. The clustering method has two process
steps for recognition of identical features. The first process is the feature descriptor matching. colorl The
descriptor matching method is dependent on the feature extraction algorithm, and the approximate
best-bin-first search method [41] is employed as a matching method for SURF and SIFT descriptors.
However, feature matching includes many outliers. Thus, the geometric constraint is employed to
remove outliers of matching in the next step. To check the geometric constraint of each feature,
the Bhattacharyya distance metric [42] is used by measuring the geometric distance between the
probabilistic representations of two features. As the Bhattacharyya distance measures a distance between
two probability distributions, the Bhattacharyya distance for two multivariate Gaussian distributions,
N(uy,2) and N (pg, 3o), is

1 _ 1 ||
Do = (- ) S g — o) + 5 — o (14
8 2 V%
v o X1+ 2 (15)

2
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where | - | denotes determinant. If the Bhattacharyya distance of two features is lower than a certain
threshold, those features are regarded as the same features. After finding the same features by checking
the descriptor matching and the geometric constraint, probabilistic features are estimated by the merging
method described in Equations (11) and (12). Through the merging method of the same features, the
probabilistic feature map is constructed.

3. Localization Method Using Probabilistic Feature Map

Using prior collected data, the probabilistic feature map can be generated in advance. With this
pre-built map, the localization problem is solved using only a monocular camera. The localization of the

camera is performed by matching a query image of the camera to the probabilistic feature map.

3.1. Generation of Matching Correspondences

It is difficult to find matching correspondences between a query image and the map with
robustness, speediness, and accuracy in a large scale area. Many studies have attempted to solve
this problem [1,10,17-19]. This paper therefore does not deal with matching correspondences deeply
and instead applies a simple matching method.

To find matching correspondences between the query image and the probabilistic feature map,
features are extracted from the query image. First, candidates of matching correspondences are generated
from matched features between the query image and the feature map by descriptor matching. Although
descriptor matching of features using SURF or SIFT is still reliable, there are many outliers due
to the existence of identical descriptors with different features. Thus, the epipolar constraints-based
RANSAC algorithm [43] is utilized to remove mismatched correspondences. As a result, the matching
correspondence of features on the query image and the map is expressed as follows:

pairs = ¢, F}]  (j=1,-.n) 16)

where ¢; € R? denotes the j-th feature position from a query image and F; € R? denotes the matched
probabilistic feature consisting of its position X, and covariance Cy,, and n is the total number of the

matching correspondences.

3.2. Projection of Probabilistic Feature onto Image Plane

The probabilistic features on the map can be projected onto the image plane by utilizing intrinsic
and extrinsic parameters of the camera, as shown in Figure 2a. A point in the 3D space can be easily
projected to the 2D image plane [43] whereas the covariance in the 3D space cannot. Since the projection
onto the image plane is a non-linear transformation, the Jacobian approximation method is employed to
project the covariance, in a similar manner to that described in Equations (4) and (7) in Section 2.
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Figure 2. (a) The projection results of probabilistic features on the map; (b) The projection
of the probabilistic feature on the map onto the image plane using spherical coordinates.

The projection process of a probabilistic feature is shown in Figure 2b. When the camera pose is
located at the origin, X; = (z,y,2)" and X; = (p, 0, ¢)" are easily projected into the virtual image

plane as follows:

T
Xf - ([E,y, Z)T — Xp = ($pv Yps Zp)T = (g’ ga > (17)
~ ~ T
Xy = (p7 0, ¢)T - X, = (va Qpa ¢p)T = <§7 0, Qb) (18)

where X, and )N(p are the corresponding points on the virtual image plane in Cartesian and spherical
coordinates, respectively; p denotes the distance between the camera origin and X¢; and p,, denotes the
distance between the camera origin and X, as shown in Figure 2b. When projected onto the image
plane, the inclination and azimuth are not changed in spherical coordinates. Using this property, the
covariance in the 3D space can be projected onto the image plane approximately. The projection steps
for the covariance of a feature are C'y — C F— 5p — C,,. First, the 3D covariance of a feature on the
Cartesian coordinate system is converted into the spherical coordinate system by using a Jacobian matrix

as follows:
6?f = JF(‘Q:?y?Z)CfJF(xaya Z)T (19)

where C'y and C  are covariance matrices on the Cartesian and spherical coordinates; and Jp(z,y, 2) is a
Jacobian matrix for converting Cartesian to spherical coordinates at X . In the projection step, Cy — C,,,
in the spherical coordinate system, it can be seen that C,, = C'y since the inclination and azimuth are not

changed in the spherical coordinate system and the radial distance can be neglected due to the fact that
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depth values of points in the image plane is unity (¢ = 1). Next, the covariance in spherical coordinates
is converted to Cartesian coordinates on the virtual image plane as follows:

Cp = ‘]F(pv 0, ¢)6’p‘]F(p7 0, qb)T (20)

where Jr(p, 0, ¢) is a Jacobian matrix at )N(p. As X, and (), denote the position and the covariance on
the virtual image plane in the 3D space, they are converted to image coordinates by utilizing the intrinsic

parameter of the camera as follows [43]:

X, = BKX,, C, = BKC,(BK)" (21)
010

where K denotes the intrinsic parameter of a camera. To obtain sub-matrices of X, and C), for x and y,
the matrix B is applied.
Through these steps, the points and covariances of features in the map are projected onto the image.

Let us define the projection operator P of a point and covariance as follows:

Py =(X,,Cy) = P(Xy,Cy) (23)
where (X;,C}) € R? x R¥3 and (X,,C,) € R? x R?*2 denote probabilistic features on the 3D map
and on the image, respectively. Therefore, all probabilistic features on the 3D map can be represented
probabilistically on a virtual image plane through the projection operator P without considering the
camera’s extrinsic parameter.

3.3. Estimating Camera Pose Based on Probabilistic Map

The camera pose of the query image is estimated using 3D-to-2D matching correspondences. After
features are extracted from the query image, correspondences between the probabilistic feature map and
the query image are acquired by Equation (16). Once color13D-to-2D matching correspondences are
offered, the PnP algorithm [20,21] which is one of the most widely used algorithms for the camera pose
estimation, is employed for comparison with the proposed algorithm. The PnP algorithm is also used
for the initial point generation of the proposed algorithm. The PnP algorithm estimates R and ¢ of the
camera pose by minimizing the error of 3D-to-2D matching correspondences from the relation equation
as follows:

{R,t} = arg Héltn ; ej(q;, KRXy, +1) (24)
where ¢; and X f; are defined in Equation (16), K is the camera’s intrinsic parameter, ¢; denotes
the distance error of each pair, n is the total number of the matching correspondences. The
proposed algorithm considers the probabilistic information of the map during localization by minimizing
Mahalanobis distance errors between the correspondences. Since a point on the image only represents a
ray on the 3D space, it is difficult to employ the Mahalanobis distance in the 3D space. Therefore, we

propose a method to employ the Mahalanobis distance on a 2D image where the probabilistic features
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are projected. Since the camera pose is required for performing projection of probabilistic features onto
the 2D image, the initial pose is necessary. Thus, the conventional PnP algorithm is utilized for the initial
pose estimation.

All matched features from the probabilistic feature map, F; from Equation (16) can be projected
onto the image plane by Equation (23). However, Equation (23) does not consider the camera’s pose.
Considering the camera pose, probabilistic features are projected onto the image plane at certain R and
t as follows:

Prlri = (X, Cp)lre = P(R" Xy, — R™t,R"C}, R) (25)

where ?F], |r+ indicates the projected probabilistic feature on the image. Using Equations (16) and (25),
the Mahalanobis distance, D), on the image plane between the projected probabilistic feature at certain

R and ¢ and the extracted feature from the query image is expressed as:

DM(QjaFFj|R,t) = \/(Qj - 7p|R,t)T(6p|R,t)_1(Qj - 7p|R,zt) (26)

Minimizing the Mahalanobis distance errors for all correspondences, the optimal solution can be
obtained as follows:

N
1 ) —
{R,t} = arg min — Zl min(Dy(q;, Pr;|re), 7) (27)
]:

where F; and g; are the matching correspondences from Equation (16); and 7 denotes a certain threshold
to restrict the maximum Mahalanobis distance. colorl Although mismatched pairs are rejected using the
epipolar constraints-based RANSAC algorithm [43], there might still be mismatches. The localization
accuracy is improved by the maximum restricted Mahalanobis distance that reduces influence from
outlier matching during optimization. Since Equation (27) is a nonlinear problem with respect to I
and ¢, various nonlinear optimization algorithms can be employed. Since it is important to set the initial
point in the nonlinear optimization, the estimation from the conventional PnP method is utilized.

4. Simulation and Experiments

The proposed algorithm is validated through comparison with the conventional algorithm in
simulations and real experiments. The proposed algorithm is demonstrated in a virtual probabilistic map
in the simulation environment. Through testing in the real environment, the robustness of the proposed
algorithm is also verified.

4.1. Simulation

The camera pose is estimated using the proposed algorithm based on the probabilistic feature map.
It is assumed that there are feature maps expressed by Gaussian distributions in a virtual 3D space. The
features are randomly generated in the virtual 3D space sized 50 m X 50 m x 10 m, similar to a real
test environment. Their covariances are set randomly from 1 m to 3 m for each axis. The circular path
for a 6-DoF (Degree-of-freedom) camera pose is generated with diameter of 25 m. Figure 3 shows the
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top view of the virtual environment. The blue ellipses denote the randomly generated covariances of
features. The red line is the trajectory of the camera pose. Considering the intrinsic camera parameter
and image size, the feature map is projected to the image plane at the virtual path. The feature map
contains Gaussian noises based on the covariance of each feature. The features on the image plane
have fixed Gaussian noises considering pixel values. 10% of mismatching is also implemented to the

matching correspondence between the map and the image plane, similar to real environments.
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Figure 3. Top view of the simulation environment. Blue circles denote the covariance of

features and the red dots denote the ground truth of the robot’s trajectory.

As conventional PnP methods, P3P [20] and OPnP [22] methods are employed as a traditional and
state-of art methods using these matching correspondences between features on the map and the image
plane, respectively. The proposed algorithm minimizes errors between the probabilistic map features
and extracted features on the image plane. The active-set algorithm [44] is employed as a nonlinear
optimization method in the proposed algorithm. Since it is important to set an initial point in the
nonlinear optimization method, the result of the conventional PnP method is set as the initial point
for optimization. Figure 4a shows the top view of the simulation results. The Euclidean distance errors
for the PnP and the proposed algorithms are shown in Figure 4b. The mean and standard deviation of

the error for each 6-DoF are shown in Table 1.
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Figure 4. (a) Top view of the simulation results. Red triangles, green triangles, and blue
circles denote results of PnP, OPnP, and the proposed algorithm, respectively; (b) Euclidean
distance errors relative to the ground truth data.
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Table 1. Comparison of the error statistics of the conventional and the proposed algorithms

in the simulation environment (Unit: m, deg).

P3P Algorithm OPnP Algorithm Proposed Algorithm

Mean Stdev Mean Stdev Mean Stdev

0.634 0.353 0.486 0.132 0.292 0.085

0.714 0.351 0.665 0.307 0.279 0.076

z 0.801 0.444 0.663 0.245 0.706 0.368
ol 1.368 1.795 0.981 0.705 1.227 1.569
Bpitch 1.527 2.141 1.292 1.493 1.273 0.658
Oyaw 1.070 0.934 1.188 0.774 0.493 0.257

As can be seen in Table 1, the accuracy of the proposed algorithm seems to be higher than that of the
conventional PnP algorithm. z, y, and 0, in the proposed algorithm especially have better performance
because the simulation is made for a mobile robot moving on a flat ground. To be clear, a paired ¢-Test
is performed to analyze the performance statistically. As the p-value is 1.1527 x 1077, the superiority
of the proposed algorithm is assured.

4.2. Experiment in Indoor Environment

To validate the performance of the proposed algorithm, experiments with a mobile robot were
performed. The mobile robot system, Pioneer 3-AT model [45], is equipped with a stereo vision,
Bumblebee XB3 model [46], and a marker system for the ground truth as shown in Figure 5. The XB3
provides the depth value of each pixel. Thus, the sensor produces a 2D image as well as per-pixel depth
data with 1920 x 1080 resolution. A camera is installed on the ceiling for measuring the ground truth
pose of the mobile robot as shown in Figure 6a and its sample captured image is shown in Figure 6b.
The ground truth system is only able to estimate 3-DoF pose (z, y, 0yaw). Thus, other elements of
robot pose (z, Gron, Opicn) for ground truth are set to zero because the mobile robot is assumed to move
on the flat ground. As the resolution of ceiling camera is 640 x 480 pixels and the camera covers
4.4 m x 3.3 m area, the resolution of the ground truth system is about 0.7 cm per pixel. The indoor
experiment was performed in the hall as shown in Figure 7. The trajectory of the mobile robot was
composed of a circle with a diameter of 2.0 m repeated 5 times. The probabilistic feature map is
generated from the first and second laps of the experiment and the proposed localization is demonstrated
from third to fifth laps using the pre-generated probabilistic feature map.

Figure 8 shows the experimental environment where the probabilistic feature map was generated in
advance. The shapes of covariance ellipses are mostly narrow since the features were observed only a
few times. Figure 9a shows the top view of the results in the indoor experiment. Euclidean distance errors
from the ground truth for each algorithm are shown in Figure 9b. The error results of the 6-DoF robot’s
pose are presented in Table 2. Similar to the simulation results, the accuracy of the proposed algorithm is
higher than that of the conventional algorithm, particularly for the x, y, and 0,,,, values. As the p-value

of the paired t-Test is 1.5353 x 10734, the superiority of the proposed method is confirmed statistically.
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Figure 5. A mobile robot system equipped with a stereo camera. A patterned marker is used
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Figure 6. Ground truth system based on global vision sensor. (a) Installed camera on the
ceiling for the ground truth system; (b) The image processing result for ground truth system.
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Figure 7. Indoor experiment site for demonstrating the performance of the

proposed algorithm.

O  Features
= = = Ground truth

Y [m]

Figure 8. The top view of the indoor environment. Blue circles denote the covariance of

features and the red dots denote the ground truth of the robot’s trajectory.
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Figure 9. (a) Top view of the results of the indoor experiment. Red triangles, colorlgreen
triangles, and blue circles denote results of PnP, colorlOPnP, and the proposed algorithm,
respectively; (b) Euclidean distance errors relative to the ground truth data.
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Table 2. Comparison of the error statistics of the conventional and the proposed algorithms

in the indoor environment (Unit: m, deg).

P3P Algorithm OPnP Algorithm Proposed Algorithm

Mean Stdev Mean Stdev Mean Stdev

0.2812 0.0218 0.2752 0.0373 0.224 0.0152

0.2543 0.0229 0.2813 0.0362 0.2079 0.0131

z 0.022 0.0003 0.0641 0.0026 0.0244 0.0003
Broll 0.5857 0.2521 1.4794 0.3213 0.7875 0.2246
Opitch 0.6502 0.2717 1.3515 0.2914 0.6794 0.2816
Oyaw 4.9775 5.0588 5.7647 4.5845 2.0417 2.8283

4.3. Experiment in Outdoor Environment

The outdoor experiments have been conducted at Korea Advanced Institute of Science and
Technology in Daejeon, South Korea as shown in Figure 10. color1The robot system for experiments
is equipped with the stereo vision same as the previous indoor experiments and we added Huace
X90 RTK-GPS receiver [47] and E2BOX IMU 9DOFV?2 [48] for the reference which have 2 cm and
1° accuracy, respectively. The probabilistic feature map was collected from 383 positions in 177 m

trajectory as shown in Figure 11. The maximum valid depth information from the stereo vision system

was restricted to 20 m because the uncertainty of depth data rapidly increases with the distance beyond

20 m.

Figure 10. Outdoor experiment

proposed algorithm.

site for demonstrating the performance of the
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Figure 11. Top view of the outdoor environment. Blue circles denote the covariance of

features and the red dots denote the ground truth of the robot’s trajectory.

The experiment for localization was performed at 383 positions around the probabilistic feature map.

Figure 12a shows the top view of the results in the outdoor experiment. Euclidean distance errors from

the reference for each algorithm are shown in Figure 12b. The error results of the 6-DoF robot’s pose are

presented in Table 3. The accuracy of the proposed algorithm is also higher than that of the conventional

algorithm particularly for the z, y, and 0,,,, values similar to the simulation and the indoor experiment.

It is natural that the accuracy of z and 6,,;; values does not show improvement since the z and 6, values

are not compensated well because the experiment is performed on a flat ground. The experimental results

are similar to the simulation results. The p-value of the paired ¢-Test is 2.339 x 10~2%, which statistically

confirms the superiority of the proposed method.
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Figure 12. (a) Top view of the outdoor results. Red triangles, colorlgreen triangles, and

blue circles denote results of PnP, colorlOPnP, and the proposed algorithm, respectively;

(b) Euclidean distance errors relative to the reference data.
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Table 3. Comparison of the error statistics of the conventional and the proposed algorithms

in the outdoor environment (Unit: m, deg).

P3P Algorithm OPnP Algorithm Proposed Algorithm

Mean Stdev Mean Stdev Mean Stdev

1.0865 0.5374 2.1011 1.2546 0.7473 0.1549

0.8908 0.4334 1.5947 2.0542 0.6935 0.2382

z 0.1607 0.0376 0.2056 0.0541 0.1754 0.0356
Broll 1.409 1.9777 0.4489 1.1541 2.1761 3.9504
Opitch 1.4347 2.4532 1.2055 2.5132 1.3489 2.1354
Oyaw 2.155 4.264 3.1218 5.1235 1.5689 1.9399

5. Conclusions

This paper sought to enhance the accuracy of monocular camera localization using a probabilistic
feature map that is generated in advance with a prior data set by adopting probabilistic sensor system
modeling. When the map is generated, the probabilistic feature map is estimated not only by the sensor
system modeling but also by considering the uncertainty of the robot’s pose. In the conventional PnP
method, the camera pose is estimated by minimizing the Euclidean distance between 2D-to-3D matching
correspondences. The proposed algorithm is optimized based on the Mahalanobis distance error in
the image plane between the matching correspondences. The main contribution of this paper is that
the proposed method enhances the accuracy of the conventional camera pose estimation algorithm by
providing probabilistic sensor modeling. The performance of the proposed algorithm is demonstrated by
comparing with the conventional PnP algorithm in simulations and real experiments. By the experiments
conducted in indoor and outdoor environments, the superiority of the proposed algorithm is proved.

Although the average computation of the PnP algorithm takes less than 5 ms per one frame, the
proposed algorithm takes about 100 ms per one frame in the computing platform of Intel i7 3.4 GHz
with 8 GB RAM. The reason is that the proposed algorithm solves a complex nonlinear optimization
problem. color1The average computation times of subtasks are: 187 ms for feature extraction, 231 ms for
matching, 5 ms for initial pose estimation using conventional PnP algorithm, and 95 ms for optimization
in our proposed method. Therefore, a simple linearization method for the proposed algorithm and fast
feature management should be researched for real time operation in the future. The proposed algorithm
will be also applied to vast data sets and various environments in the future.
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