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An association between lower educational attainment (EA) and an increased risk for depression 

has been confirmed in various western countries. This study examines whether pleiotropic genetic 

effects contribute to this association. Therefore, data were analyzed from a total of 9,662 Major 

Depressive Disorder (MDD) cases and 14,949 controls (with no lifetime MDD diagnosis) from the 

Psychiatric Genomics Consortium with additional Dutch and Estonian data. The association of EA 

and MDD was assessed with logistic regression in 15,138 individuals indicating a significantly 

negative association in our sample with an odds ratio for MDD 0.78 [0.75–0.82] per standard 

deviation increase in EA. With data of 884,105 autosomal common SNPs, three methods were 

applied to test for pleiotropy between MDD and EA: (i) genetic profile risk scores (GPRS) derived 

from training data for EA (independent meta-analysis on 120,000 subjects) and MDD (using a ten-

fold leave-one-out procedure in the current sample) (ii) bivariate Genomic-Relationship-Matrix 

Restricted Maximum Likelihood (GREML), and (iii) SNP effect concordance analysis (SECA). 

With these methods we found (i) that the EA-GPRS did not predict MDD status, and MDD-GPRS 

did not predict EA, (ii) a weak negative genetic correlation with bivariate GREML analyses, but 

this correlation was not consistently significant, (iii) no evidence for concordance of MDD and EA 

SNP effects with SECA analysis. To conclude, our study confirms an association of lower EA and 

MDD risk, but this association was not due to measurable pleiotropic genetic effects, which 

suggests that environmental factors could be involved such as, for example, socioeconomic status.
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Introduction

An association between lower educational attainment (EA) and increased risk for Major 

Depressive Disorder (MDD) has been confirmed in various Western countries. A meta-

analysis of 37 studies from mainly western countries found a 3 per cent decrease in log odds 

ratio for depression per additional year of education.1 Research of the World Mental Health 

Survey Initiative also found that those with high educational levels are generally at lower 

risk for depression in high-income countries, although Japan showed an inverted 

association.2 The international Consortium of Psychiatric Epidemiology found a negative 

correlation in the United States and the Netherlands,3 which was confirmed in a recent study 

in the Netherlands.4

The association of lower EA and increased MDD risk could result from multiple, not 

necessarily independent, effects; including causal, environmental or pleiotropic genetic 

effects. Lower EA could lead to an increased MDD risk (social causation), for example via 

stress associated with lower socioeconomic status, or via less effective coping strategies or 

unhealthier lifestyles among those with lower EA.5,6 However, lower EA could also be the 

result of MDD vulnerability, for example when the onset of MDD is at an early age before 

educational goals would have been achieved. Alternatively, a third factor could be in play 

impacting on both, such as personality characteristics or less developed cognitive abilities, 

causing lower EA and increased risk for MDD. Such a third factor could also consist of 

pleotropic genetic effects (or linkage disequilibrium between effective variants) resulting in 
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genetic correlation (the part of the phenotypic correlation caused by shared additive genetic 

effects), because EA7 and MDD8–10 both have a confirmed genetic basis.

It is relevant to understand the mechanisms of the association between lower EA and MDD, 

because this can have important implications for prevention strategies of MDD and its 

consequences. When lower EA would increase MDD risk, the responsible mechanisms 

should be studied and subsequently addressed, for example by providing psycho-education 

about these mechanisms to those with lower EA. However, when shared genetic effects 

would link EA and MDD no responsible mechanisms can be addressed, and prevention 

would be restricted to general advice to prevent MDD.

The possible impact of pleiotropic genetic effects on lower EA and increased MDD risk has 

not received much study. We are aware of three such studies, of which two find a substantial 

negative genetic correlation between EA and cross-sectional measures of depressive 

symptoms obtained via self-report questionnaires.11,12 One study used DSM-IV based 

diagnosis of MDD with a twin design and generally supported the social causation model 

and found only a small genetic correlation.5 To the best of our knowledge, no study 

combined DSM-IV based diagnosis and genome-wide SNP data to test for pleiotropic 

genetic effects between lower EA and MDD risk.

The current study was conducted to test for pleiotropic genetic effects between lower EA 

and MDD diagnoses in a large sample of ~25,000 subjects from the Psychiatric Genomics 

Consortium13 with additional Estonian and Dutch data. We applied the following SNP-

based methods: genetic profile risk score (GPRS) analyses, bivariate Genomic-Relationship-

Matrix Restricted Maximum Likelihood (GREML) analysis, and SNP effect concordance 

analysis (SECA).

Methods

Subjects

Genotype and phenotype data of ten cohort studies were combined: eight cohorts14–21 

included in the Psychiatric Genomics Consortium (PGC)13 plus two additional cohorts. The 

first additional cohort was from the Netherlands and combined additional independent data 

from the Netherlands Study of Depression and Anxiety22 and the Netherlands Twin 

Registry23 (NESDA/NTR-2). The second additional cohort was a population-based sample 

from Estonia (EGCUT).24 The numbers of cases and controls per cohort are displayed in 

Table 1.

MDD cases and controls

All cases (N=9,662) had a DSM-IV or ICD-10 based diagnosis of MDD in lifetime 

according to a structured diagnostic instrument. Most controls (N=14,949) were randomly 

selected from the population and screened for a lifetime history of MDD. A more detailed 

description of the PGC-cohorts was given previously13 and is summarized in Supplementary 

Table 1. For the NESDA/NTR-2 cohort, MDD-cases were diagnosed with the DSM-IV 

based CIDI interview (CIDI, version 2.1), and controls scored low on various mental health 

screening questionnaires (NTR)25 or had no diagnosis of a psychiatric disorder in their 

Peyrot et al. Page 3

Mol Psychiatry. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lifetime (NESDA). For the EGCUT cohort, MDD-cases were identified using International 

Classification of Diseases (ICD-10) codes F32 (depressive disorder) and/or F33 (recurrent 

depressive disorder), and MDD-controls excluded all subjects with a lifetime ICD10 

psychiatric diagnosis (category F).24

Educational attainment

Educational attainment (EA) was assessed in seven of the ten contributing cohorts (EGCUT, 

GenRED, GSK, NESDA/NTR-1, NESDA/NTR-2, QIMR, and STAR-D). For NESDA/

NTR-1 and NESDA/NTR-2, EA was defined as the years of education required for the 

highest diploma attained following the Dutch educational system. For QIMR and EGCUT, 

EA was defined as the US years of education required for the highest diploma attained 

following the international ISCED classification.7 For GSK, EA was defined as the number 

of years that school was attended. For STAR*D, EA was expressed in years of education. 

For GenRED, EA was assessed in controls only as the highest diploma attained and ranged 

from 1 to 5 labeling the following educational levels: lower than high school (1), high 

school (2), some college (3), bachelor degree (4), higher than bachelor degree (5).

The EA measure was corrected per cohort for year of birth and sex, in line with the recent 

meta-analysis from the Social Science Genetic Association Consortium.7 Thereby, the 

standardized residuals were obtained after regression of EA on sex, year of birth (YOB), 

YOB2, YOB3, and the interaction of sex with YOB, YOB2, and YOB3. For STAR*D and 

GSK, YOB was not available and substituted with age. In all cohorts, EA was defined in 

individuals over 25 years of age only, so that they had time to achieve their educational 

potential. The distribution of EA z-scores is displayed in Supplementary Figure 1.

Genotyping, quality control, and imputation

Genotyping, quality control, and imputation were performed in line with previous 

publications and are described in detail in the Supplementary Materials. In short, quality 

controlled SNPs with a MAF > 0.01 from the HapMap3 reference panel26 were imputed and 

yielded information on 884,105. With these SNPs the Genomic-Relationship-Matrix was 

estimated and unrelated subjects selected (with maximum pairwise genetic relationships 

0.05, which is approximately equivalent to second cousins), using the GCTA software.27 All 

of the subsequent genetic analyses were corrected for possible confounding cohort- and 

genotyping effects by including a categorical covariate labeling the ten cohorts, and within 

cohorts the different genotyping batches, where applicable (i.e. three batches within 

NESDA/NTR-2, two batches within EGCUT, and two batches within QIMR). Ancestry-

informative principal components were based on the Genomic-Relationship-Matrix and 

estimated with the GCTA software.27

Genetic Profile Risk Scores (GPRS)

Preparation of the genetic profile risk scores based on EA discovery results (EA-GPRS) and 

MDD discovery results (MDD-GPRS) is described in detail in the Supplementary Materials. 

In short, the procedure from Purcell et al28 implemented in Plink29 was applied. The 

independent EA discovery results were from the recent meta-analyses on US years of 

schooling from the Social Science Genetics Association Consortium (SSGAC)7 containing 
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around 120,000 subjects. EA-GPRS analyses were not conducted for BMH, GenRED, and 

STAR*D, because no independent discovery results were available. To obtain the MDD 

discovery results was slightly more elaborate, because no large MDD cohort exists that is 

independent from PGC. Therefore, a ten-fold leave-one-cohort-out approach was followed, 

and the discovery results were thus based on around 8,000 cases and 12,000 controls.

The GPRS were based on the same set of independent SNPs. First, the SNPs were selected 

with results available for all of the discovery sets. Second, this set of SNPs was pruned to a 

set of 76,516 independent SNPs with a maximum pairwise r2 of 0.25 based on a sliding 

window of 200 SNPs with steps of 5 SNPs.29 The EA-GPRS and MDD-GPRS were then 

estimated based on all SNPs up to p-value thresholds (PT) in the respective discovery results 

of 0.001, 0.01, 0.1, and 1 respectively. Consequently, all GPRS with PT = 1 were based on 

the exact same SNPs, but GPRS with different PT were based on different sets of SNPs 

depending on the respective discovery results (see Supplementary Table 2). The GPRS were 

standardized per cohort to a mean of 0 and standard deviation of 1 to aid interpretability of 

results.

Statistical analyses

The association of EA to MDD risk (phenotypic correlation) was assessed with logistic 

regression within EGCUT, GSK, NESDA/NTR-1 and 2, QIMR, and STAR*D separately, 

and in the combined sample correcting for covariates labeling the cohorts.

Genetic Profile Risk Score analyses—In the first method to test for pleiotropic 

genetic effects we estimated the across-trait effects of EA-GPRS on MDD and, vice versa, 

the effects of MDD-GPRS on EA. For comparison, we also estimated the within-trait effects 

of EA-GPRS on EA and MDD-GPRS on MDD. The effects of GPRS on EA and MDD were 

assessed with linear and logistic regression respectively. For the full sample, the effects were 

assessed for the GPRS based on PT of 0.001, 0.01, 0.1, and 1; for the individual cohorts, the 

effects were only assessed for the GPRS based on PT = 1.

The proportions of variation explained in EA and MDD were estimated as additional 

measures of the impact of GPRS. For EA, this proportion was derived as the R2 of the linear 

regression model including the covariates and the polygenic risk score, minus the R2 of the 

model including the covariates only. For MDD, Nagelkerke’s pseudo R2 were derived and 

corrected for the covariates by substituting the null (or intercept) model in Nagelkerke’s 

equation for the model including the covariates (adjusted equation in Supplementary 

Materials). Lee at al indicated that Nagelkerke’s pseudo R2 can be biased by ascertainment, 

when the proportion of cases in the study sample differs from the population disease 

frequency.30 Therefore, they proposed an R2 measure that is robust against ascertainment 

bias and interpretable on the liability scale. This liability R2 was obtained by rescaling 

Nagelkerke’s R2 for an MDD population prevalence of K=0.2 (see Supplementary 

Materials).30

Bivariate Genomic-Relationship-Matrix Restricted Maximum Likelihood 
(GREML)—The GREML mixed linear model method was used (i) to assess the proportion 

of variation in EA and MDD explained by genome-wide common SNPs (SNP-h2) and (ii) to 
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assess the pleiotropic genetic effects between MDD and EA (genetic correlation), as 

implemented in GCTA.27,31,32 The MDD SNP-h2 was expressed on the liability scale for a 

population prevalence of K=0.2 by converting the SNP-h2 on the observed scale (controls 0; 

cases 1) with equation (23) from Lee et al.33 Bivariate GREML estimates of the genetic 

correlation are approximately the same on the liability scale as on the observed scale,32 

which implies that (i) its value does not depend on population disease prevalence K and (ii) 

that the genetic correlation between the binary MDD status and continuous EA measure 

could be estimated. The genetic correlation was, first, estimated with EA information from 

both cases and controls. This estimate could, however, potentially be confounded by case 

ascertainment (which may not be education independent). Therefore, the genetic correlation 

was estimated a second time with EA information from controls only and MDD status from 

both cases and controls. The GPRS- and GREML-analyses were corrected for sex, the first 

10 (GPRS) or 20 (GREML) principal components and covariates labeling the cohorts and 

genotype batches. The necessity to correct for the principal components is indicated by a 

significant correlation between some of the GPRS with some of the principal components 

(Supplementary Table 3).

SNP effect concordance analysis (SECA)—In SNP effect concordance analysis 

(SECA; http://neurogenetics.qimrberghofer.edu.au/SECA)34 association results are 

analyzed, rather than individual genotyped data, to test for concordance between two traits 

with respect to the SNP effects significance as well as their directions. We applied SECA on 

the EA meta-analyses results from the Social Science Genetics Association Consortium 

(SSGAC)7 and MDD association results on our own sample.

Results

The overall sample consisted of 9,662 patients with MDD in lifetime and 14,949 controls 

with a mean age of 46.2 (SD 15.6) and 59.4% female; information on EA was available for 

5,373 cases and 9,765 controls (Table 1). In all cohorts with EA information available for 

both cases and controls, the phenotypic associations between EA and MDD was negative, 

with an overall odds ratio of 0.78 (95%CI: 0.75–0.82, p=2.2e-31) per standard deviation 

increase in EA (Figure 1). This negative association was consistent for MDD cases with 

known age of onset > 30. The strongest association was found in GSK with an OR of 0.45 

(95%CI: 0.40–0.50). When GSK was left out of the analyses, the overall association 

remained significant with an OR of 0.88 (95%CI: 0.84–0.92). The association was 

comparable in male and female (Supplementary Figure 2).

GPRS analyses

The GPRS had within-trait predictive effects as expected. The MDD-GPRS predicted MDD 

with most predictive power for the polygenic risk score including all SNPs (PT=1), with an 

odds ratio of 1.13 (p=1.7e-16) and an R2 of 0.4% on the liability scale (Table 2A). The EA-

GPRS predicted EA also in the expected direction, again with most predictive power for 

GPRS including all SNPs, with a beta of 0.11 (p=2.7e-37) and an R2 of 1.2% (Table 2A). 

However, we found no significant across-trait prediction: the MDD-GPRS did not predict 

EA (beta=−0.01 p=6.7e-2) and the EA-GPRS did not predict MDD (OR=0.99 p=5.9e-1, 
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Table 2A). Secondary analyses, performed within all cohorts separately, indicated that the 

within-trait predictive effects were consistent in all cohorts, and that the lack of across-trait 

predictive power was also consistent for all cohorts (Table 2B). In addition, no correlation 

was found between the MDD-GPRS and the EA-GPRS themselves (PT=1; correlation 

coefficient of 0.006, p=0.413). In additional analyses, across-trait predictive effects on MDD 

were tested for GPRS based on the SSGAC EA outcome tagging College completion 

(College-GPRS).7 College completion distinguishes more in the extreme end of the EA 

distribution, and has a confirmed genetic basis.7 However, no predictive effects of the 

College-GPRS on MDD were found (OR=0.99, p=0.74 for PT=1; Supplementary Table 4).

GREML analyses

GREML analyses in the overall study sample generated an estimate of MDD SNP-h2 of 

0.173 (SE=0.017, p<1e-16) on the liability scale (K=0.2); this finding was not solely driven 

by one of the individual cohorts, because the MDD SNP-h2 was estimated at consistent 

values when one cohort was left out at the time (Table 3). The MDD SNP-h2 was larger 

when expressed on the liability scale (0.173) than on the observed scale (0.126), with a 

larger SNP-h2 for larger values of disease frequency (as expected from equation (23) from 

Lee et al33; Supplementary Table 5). The EA SNP-h2 was estimated at 0.124 (SE=0.019, 

p=2.8e-11) when EA information in both cases and controls was taken into account (Table 

3A), and at 0.144 (SE=0.030, p=1.5e-6) when EA information of controls only was utilized 

(Table 3B). Again, these estimates were not solely driven by one of the individual cohorts 

(Table 3). The genetic correlation between MDD and EA was estimated at −0.253 

(SE=0.087, p=0.004) when EA information of both cases and controls was taken into 

account (Table 3A). Since a correlation between genetic and environmental factors is likely 

to be partitioned into the genetic variance and covariance components, we explored the 

robustness of this estimate by limiting EA to be measured only in controls. When taking into 

account EA of controls only and MDD status from cases and controls, the genetic 

correlation dropped considerably and was no longer significantly different from 0 with an 

estimate of −0.110 (SE=0.105, p=0.298; Table 3B). In post-hoc analyses we tested if EA 

moderated the polygenic effects on MDD, but found no such evidence with neither GPRS- 

nor GREML-analyses (Supplementary Materials).

SNP effect concordance analysis

SECA showed no evidence for genetic correlation. The primary SECA test divided the SNPs 

in 144 subsets based on significance of association with MDD and EA smaller than 

respectively 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. Not a single of these 

subsets contained a larger number of SNPs than expected by chance, i.e. no concordance 

was found with respect to the MDD and EA SNP effect significances. When comparing the 

directions of SNP effects, only four of the 144 subsets showed nominally correlated 

directions of effect, which is not more than expected by chance (permuted empirical p-value 

0.244), indicating no concordance with respect to the MDD and EA SNP effect directions.
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Discussion

This study tested the existence of pleiotropic genetic effects (genetic correlation) between 

major depressive disorder (MDD) and lower educational attainment (EA) on individual 

genotype data from a large sample of approximately 25,000 subjects from Western 

countries. To start, a strong negative phenotypic association was found with an OR for 

MDD of 0.78 per SD increase in EA, which is in line with findings from a meta-analysis of 

37 studies from mainly western countries by Lorant et al.1 Our first test for genetic 

correlation was negative with no across- trait predictive power of the GPRS: EA-GPRS did 

not predict MDD, and MDD-GPRS did not predict EA. In the second test for genetic 

correlation, GREML analyses did not show consistent evidence for genetic correlation. The 

third test, SNP effect concordance analysis (SECA), also showed no evidence for 

concordance of EA and MDD SNP effects with respect to their significance or direction.

The GPRS in our study had within-trait predictive power in line with previous findings,7,13 

and were based on an independent EA discovery sample from the SSGAC7 of approximately 

120,000 subjects and independent MDD leave-one-cohort-out discovery samples of 

approximately 8,000 cases and 12,000 controls. These numbers seem adequate, but the 

discovery sets would ideally have been even larger, because most predictive power was still 

found for the GPRS including all SNPs (PT=1) indicating that true effect SNPs were 

associated in the discovery sample with p-values close to 1.28 Nevertheless, Dudbridge 

power calculations suggested that the EA-GPRS were well powered to predict MDD when 

the genetic correlation would have been around −0.2 (Supplementary Figure 3).35 Our 

GPRS results, therefore, indicate that a large genetic correlation between EA and MDD is 

unlikely, but could not exclude a small genetic correlation of around −0.1.

We performed GREML analyses to estimate the MDD SNP-h2, EA SNP-h2 and genetic 

correlation. The MDD SNP-h2 found (0.17) was considerably smaller than the one 

previously found by Lubke et al (0.32),10 which could well be due to the actual differences 

in SNP-h2 across cohorts; the sample of Lubke was included in the current study as 

NESDA/NTR-1 and indeed had the largest contribution to the overall SNP-h2 of all cohorts 

(Table 3). The EA SNP-h2 (0.14 in controls only) was of the same magnitude (less than 2 

SE difference) as the SNP-h2 found by Rietveld et al (0.2).7 The GREML estimate of the 

genetic correlation was somewhat complicated to interpret. A significant negative genetic 

correlation was found (−0.25, p=0.004) when EA information of both cases and controls was 

taken into account, but we fear this finding could be biased particularly in the context of 

genotype and environment correlation. In fact, when taking EA information of only controls 

into account, the estimate of genetic correlation dropped considerably and was no longer 

significant (−0.11, p=0.30). However, we note that this estimate was conservative as it 

reduced variation in EA, and we note the negative point estimate and high standard error 

showing that this analyses was underpowered to draw definitive inference. Taken all 

together, the GREML analyses could be in line with a small genetic correlation of around 

−0.1. In addition to the two methods based on individual level genotype data, we also 

performed analyses on GWAS summary statistics with the recently published SECA 

method34 and found no evidence for genetic correlation.
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To the best of our knowledge only three previous studies tested for a genetic correlation 

between MDD and EA. López-León et al used a family based approach in 2,383 subjects to 

find a negative genetic correlation of −0.65 and −0.50 between EA and self-reports of 

depressive symptoms based on respectively the Center for Epidemiologic Studies 

Depression Scale (CES-D) and the Hospital Anxiety and Depression Scale (HADS-D).11 

Boardman et al also used cross-sectional CES-D assessments and found a genetic correlation 

of −0.7 with GREML-analyses.12 Mezuk et al used a twin design with depression assessed 

with the DSM-IV based Structured Clinical Interview for Diagnostic and Statistical Manual 

of Mental Disorders (SCID-I), and their study generally supported social causation as cause 

for the link between lower EA and increased MDD risk, and found only a small genetic 

correlation of −0.22.5 The studies of López-León et al and Boardman et al contrast our 

finding of no, or at most a small, genetic correlation, but this could be because they tested 

symptom reports of depressive state at a specific point in time, whereas our study tested the 

presence of a more clinical construct: DSM-IV or ICD-10 based lifetime diagnosis of MDD. 

Indeed, our results appear in line with the findings from Mezuk et al who also used DSM-IV 

based diagnoses of MDD. Furthermore, we found that the association between lower EA and 

MDD remained when cases with an age of first MDD onset > 30 were taken into account 

exclusively. This indicates it is unlikely that MDD directly causes a lowering of EA, as it 

can be assumed that one reaches his or her education potential before the age of 30, which is 

in line with the suggested social causation by Mezuk et al.5

The finding that there is no, or at most a small, genetic correlation between lower EA and 

MDD is relevant, because this implies that non-genetic factors play an important role, and 

that underlying mechanisms may possibly be accessible to interventions. For example, when 

the social causation model would be studied in more detail, this could potentially lead to 

underlying clues on how lower socioeconomic status could contribute to vulnerability for 

MDD, or alternatively how higher socioeconomic status may buffer against vulnerability for 

MDD. For instance, lower socioeconomic status has shown to be associated to less healthy 

life styles (less physical exercise, more smoking, higher BMI, and more use of alcohol),36,37 

less adequate medical treatment seeking behavior,38 less knowledge about MDD,39 and 

higher vulnerability to experience stressful life events.40 These factors could all contribute 

to increased MDD risk. However, future research should be conducted to elucidate the most 

important underlying mechanism as these may hint to either public or personal actions to 

best prevent MDD amongst individuals with lower EA. Yet another mechanism underlying 

the link between lower EA and MDD could possibly be found in a third factor other than 

genetic effects, such as a certain personality characteristic or less developed cognitive 

abilities, that causes both lower EA and increased MDD risk.

Our study has several strengths, but also some limitations. First, our study is one of the first 

and largest studies to test for pleiotropy between lower EA and MDD, and we used 

individual level genotype data. In addition, we used clinically relevant DSM-IV and ICD-10 

based diagnoses of MDD. Furthermore, we applied three distinct methods that essentially 

lead to the same conclusion. A limitation of our study is that the discovery samples of the 

polygenic risk score analyses were not optimally sized with maximum predictive power of 

the GPRS including all SNPs (PT=1). However, this is a limitation of most current genetic 

studies, and we feel our discovery samples were adequately powered given the availability 
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of relevant genetic cohorts up to date. Furthermore, the genetic basis of MDD is strong 

enough to study pleiotropy, as has been indicated in previous work from the Psychiatric 

Genomics Consortium that indicate a genetic correlation between MDD-schizophrenia 

(0.43±0.06), and MDD-bipolar disorder (0.47±0.06) with both GREML-41 and GPRS-

analyses.42 Another limitation is that we could have missed pleiotropic effects amongst rare 

SNPs with a MAF < 0.01. This limitation could be addressed with a family or twin study, 

but it would be surprising when SNPs with MAF < 0.01 would have large pleiotropic effects 

while SNPs with MAF > 0.01 show no such evidence.

To conclude, we did confirm a negative phenotypic association between MDD and EA, but 

found no evidence that this association is due to genetic factors, which indicates that a large 

genetic correlation between lower EA and MDD is unlikely, but does not exclude a small 

genetic correlation of around −0.1. Understanding of the possible pathways between lower 

EA and MDD risk requires further research including twin analyses for an additional 

estimate of the upper bound of the genetic correlation. Nevertheless, we believe that the 

finding of the absence of large pleiotropic genetic effects underlying the established 

correlation of lower EA with increased MDD risk may be relevant, as it points to non-

genetic mechanisms that may be accessible to interventions aimed at breaking this 

deleterious link.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Forest plot of the phenotypic association between EA and MDD
The OR for MDD per SD increase in EA is displayed for the individual cohorts, as well as 

for the overall sample. The ORs were estimated with logistic regression of MDD on the 

corrected EA z-scores, which were defined as the standardized residuals of the regression of 

EA on sex, year of birth (YOB), YOB2, YOB3, and the interaction of sex with YOB, YOB2, 

and YOB3.
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