
Emergence of a metalloproteinase / phospholipase A2 axis of 
systemic inflammation

Carlos Fernandez-Patron and
Department of Biochemistry, Cardiovascular Research Group and Mazankowski Alberta Heart 
Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada

Dickson Leung
Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, 
Alberta, Canada

Abstract

We review select aspects of the biology of matrix metalloproteinases (MMPs) with a focus on the 

modulation of inflammatory responses by MMP-2. MMP-2 is a zinc- and calcium-dependent 

endoprotease with substrates including extracellular matrix proteins, vasoactive peptides and 

chemokines. Humans and mice with MMP-2 deficiency exhibit a predominantly inflammatory 

phenotype. Recent research shows that MMP-2 deficient mice display elevated activity of a 

secreted phospholipase A2 in the heart. Additionally, MMP-2 deficient mice exhibit abnormally 

high prostaglandin E2 levels in various organs (i.e., the heart, brain and liver), signs of 

inflammation and exacerbated lipopolysaccharide-induced fever. We briefly review the biology of 

sPLA2 enzymes to propose the existence of a heart-centric MMP-2/sPLA2 axis of systemic 

inflammation. Moreover, we postulate that PLA2 activation is induced by chemokines, whose 

ability to signal inflammation is regulated in a tissue-specific fashion by MMPs. Thus, genetic and 

pharmacologically induced MMP-deficiencies can be expected to perturb PLA2-mediated 

inflammatory mechanisms.
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Relevant aspects of MMP-2 biology

The 1960s saw the demonstration that mammalian systems make collagenases,1,2 a 

discovery followed by the cloning of a superfamily of so-called extracellular matrix 

metalloproteinases (MMPs). Today, over 20 different zinc and calcium-dependent MMPs are 

known, each capable of degrading numerous substrates including (but not limited to) 

extracellular matrix components, and each involved in numerous biological processes and 

disease conditions.3
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The focal point of this review is MMP-2, a ubiquitous and constitutive 72 kDa type IV 

collagenase. MMP-2 binds collagen through the fibronectin type II repeat in its catalytic 

domain and cleaves numerous extracellular matrix components including native collagens 

(types IV, V VII and X), denatured collagens, elastin and heparan-sulfate proteoglycans 

which are extracellular matrix receptors for signaling molecules. MMP-2 mediated cleavage 

of these extracellular components is important for the integrity of the matrix as well as for 

signaling events that impact cell behaviour. An illustrative example is MMP-2-mediated 

cleavage of decorin. Decorin is a multifunctional proteoglycan whose core protein has a 

serine covalently linked to a dermatan/chondroitin sulphate glycosaminoglycan chain. The 

integrity of extracellular decorin is important for normal collagen fibrillogenesis. Decorin is 

cleaved by MMP-2 which impairs decorin’s ability to sequester transforming growth factor–

β, a master regulator of fibrosis signaling through the SMADs.4,5

A striking and most interesting feature of MMPs (and MMP-2 in particular) is its high 

promiscuity in terms of substrates which include non-extracellular matrix proteins and 

peptides.6,7 A relevant example with potential pathophysiological significance is the 

discovery that MMP-2 binds through its hemopexin-like domain and cleaves the CC-motif 

chemokine, monocyte chemoattractant protein-3 (MCP-3, ~9 kDa, encoded by Ccl7). 

Cleavage of MCP-3 at a Gly4/Ile5 bond converts it into a general CC-chemokine receptor 

antagonist which dampens inflammation.8 Interestingly, MCP-3 is also cleaved at the 

Gly4/Ile5 bond by MMP-1, 3, 13 and 14. MCP-1 is cleaved at its Ala4/Leu5 bond by MMP-1 

and MMP-3, while MCP-2 is cleaved at its Ser4/Val5 bond by MMP-3, and MCP-4 is 

cleaved at its Ala4/Leu5 bond by MMP-1 and MMP-3.9 In addition to MCPs, MMP-2 is also 

known to cleave other substrates relating to inflammation. For example, MMP-2 cleaves 

CX3CL1, a pro-inflammatory protein, and possibly allowing for protective effects against 

rheumatoid arthritis through the suppression of macrophage influx. Cleavage of Ym1, 

S100A8 or S100A9 by MMP-2 or MMP-9 reduces the chemotactic activity of these 

proteins..7 Thus, MMPs and substrates such as chemokines likely have interrelated functions 

in the context of inflammation and innate immunity.9,10 In the context of cardiovascular 

regulation, the first MMP-2 substrates to be identified were vasoactive peptides, i.e., big 

endothelin (ET)-1,11 calcitonin gene-related peptide (CGRP) and adrenomedullin (ADM).
12,13 A striking similarity between these peptides is that MMP-2 attacks them at Gly/Leu 

bonds; a peptide bond that is homologous to amino acid sequences targeted by MMP-2 in 

interstitial collagen (Gly-Leu or Gly-Ile), laminin-5 (Ala-Leu) and MCP-3 (Gly-Leu).

Another interesting observation is that the proteolytic cleavage of any of these peptides 

would be expected to impact vascular contractility. Possible mechanisms include promoting 

vasoconstriction or reducing vasodilation, although the promotion of vasodilation is a 

potential outcome in the case of endothelin-1.11–14 When experimental animals with 

spontaneous or agonist-induced hypertension are administered a MMP inhibitor such as 

doxycycline, the severity of their hypertension is consistently attenuated.15–19 MMP-2 

activity may also impact vascular tone in normal physiological processes such as aging20–22 

and pregnancy14,23,24 as well as in hypertensive conditions such as pregnancy-induced 

hypertension.14,20–22,25–27 Whether MMP-2 acts solely through the cleavage and regulation 

of vasoactive substrates or other mechanisms such as inflammation dampening (eg, the 
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cleavage of pro-inflammatory chemokines that exert indirect vascular tone alterations) 

warrants further research.

Although there is a paucity of mechanisms, there is an emerging link between lipid 

metabolic gene expression and activity of MMPs – a topic we reviewed previously.3 For 

instance, MMP-2 may mediate a cardioprotective mechanism involving inhibition of the 

sterol regulatory element binding protein-2 (SREBP-2) pathway in the heart with absence of 

MMP-2 predisposing to hypertensive heart disease and resistance to statins.28 Mice lacking 

MMP-2 show resistance to high fat-induced obesity.29 Different metabolic phenotypes have 

been exposed in mice lacking MMP-2, MMP-9 or tissue inhibitors of MMPs.29–38 

Lipoparticle receptor as well as apoplipoprotein cleavage has been demonstrated for MMP-2 

and MMP-14, and could lead to lipoparticle dysregulation.39–46 We recently reported that 

MMP-2 can cleave proprotein convertase subtilisin/kexin type 9 (PCSK9, Pcsk9, ~70 kDa) 

in the pro-peptide and C-terminal domains.47 An important function of PCSK9 is to bind the 

receptor for low density lipoprotein (LDLR) and reroute it from the recycling to the 

lysosomal degradation pathway. Consequently, PCSK9 binding to LDLR reduces LDLR 

bioavailability and impairs hepatic uptake of plasma LDL-cholesterol. Mutations in PCSK9 

can either cause or protect form hypercholesterolemia.48–50 The observation that MMP-2 

binds and cleaves PCSK9 suggests a role for MMP-2 as an inhibitor of PCSK9-induced 

LDLR degradation and as a modulator of the metabolism of plasma LDL cholesterol and 

atherosclerosis development.47 Overall, there are puzzling links between MMPs (including 

MMP-2) and metabolism, making metalloproteinases attractive targets for changing the 

course of cardiometabolic diseases, whose etiology is notoriously complicated by co-

morbidities such as obesity, atherosclerosis, diabetes and metabolic syndrome.3 The 

challenge lies in determining specific mechanisms of MMPs and establishing their context-

dependent contribution to systemic metabolism.

The number of MMP-2 substrates has kept increasing steadily and the trend might continue 

over time. A recent proteomic approach revealed a number of new potential MMP-2 targets, 

including galectin-1 and insulin growth factor binding protein-4 among others involved in 

angiogenesis.6 MMP-2-mediated cleavage of plasminogen may also yield the angiogenesis 

inhibitor, angiostatin,51,52 The ever increasing number of substrates likely modulated by 

MMPs justifies posing the question of not ‘what MMPs do?’ but rather ‘what do they not 

do?!6,7,51

Relevant aspects of MMP-2 deficiency in humans and mice

Although rare, MMP2 deficiency is a pan-ethnic disorder, first reported in Saudi Arabian, 

Indian and Turkish families – all presenting multicentric osteolysis with nodulosis and 

arthropathy (a condition also known as MONA, Online Mendelian Inheritance in Man no. 

259600).53 Many arthritic syndromes (eg, Torg, Winchester) have since been reported that 

co-develop with MMP-2 deficiency.53–55 This autosomal recessive condition is 

characterized by ‘vanishing bone’ syndrome, carpal and tarsal osteolysis and interphalangeal 

joint erosions, facial dysmorphia, fibrocollagenous nodules and congenic heart defects. Lack 

of MMP-2 in humans results from inactivating mutations. Two family-specific homoallelic 

MMP2 mutations: R101H and Y244X, result in deletion of the substrate-binding and 
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catalytic sites, and the fibronectin type II-like and hemopexin/TIMP2 binding domains of 

MMP-2. Not surprisingly, the deletion of the terminal hemopexin domain of MMP-2 

(comprising 83 C-terminal amino acids) also causes MONA and cardiac dysfunction. 

Human MMP-2 deficiency has no known mechanism, and remains without cure.53

Arguably, work with models of MMP deficiency can tell us much about the physiological 

and pathological functions of MMPs. Work with MMP-2 deficient mice has revealed a 

pronounced inflammatory phenotype while extracellular matrix accumulation due to a 

proteolytic defect seems to be limited.56–58 Mmp2−/− mice exhibit craniofacial 

abnormalities,54,59 are relatively small at birth and have delayed growth vs. age-matched 

wild type mice.29,36 These features are reminiscent of MMP-2 deficient humans that also 

exhibit dwarfism.53–55 Mmp2−/− mice also show propensity to hypertensive heart disease 

with cardiac inflammation and hugely elevated activity of a secretory phospholipase A2 

(sPLA2) in myocardium,28,60 a hydrolase that targets the carbon 2 position of membrane 

glycerophospholipids to release fatty acids which are precursors of eicosanoids and other 

lipid mediators, as well as modulators of lipid metabolic gene transcription.61,62

Furthermore, absence of MMP-2 in mice impairs resolution of lung inflammation induced 

by allergens. This lack in MMP-2 causes the accumulation of eosinophils and TH2 cytokines 

in the lung, affecting lung fibroblasts and smooth muscle cells. Without the appropriate 

chemokines, the lung is unable to form a chemokine gradient that allows for luminal 

clearance of inflammatory cells.57 As a result, Mmp2−/− mice have a reduced ability to clear 

recruited immune cells from the lung, have robust asthmatic reactions and asphyxiate more 

easily than wild type mice when challenged with allergens.56–58 Therefore, MMP-2 

deficiency in both humans and mice is pro-inflammatory in multiple organs as well as 

potentially having a metabolic component.

Why does MMP-2 deficiency cause inflammation?

We develop next a hypothetical answer to this question departing from the ability of MMP-2 

to cleave extracellular matrix components and the chemokine, MCP-3, as well as being an 

endogenous inhibitor of cardiac sPLA2. We end up proposing that MMP-2, MCP-3 and 

sPLA2 activity are interrelated in a potentially novel pathway with ramifications for 

modulation of systemic inflammation and metabolism.

MMP-2 deficiency may cause an extracellular matrix breakdown defect. Paradoxically, 

studies of humans and mice with MMP-2 deficiency show a common predisposition to 

inflammation and arthritis;53–59,63 MMP-2 deficiency also predisposes to cardiac 

hypertrophy and fibrosis in response to angiotensin II but may protect against infarction.
64–66 A study examined the cardiac expression of 56 metabolic and inflammatory genes in 

MMP-2 deficient mice.28 Results showed high levels of SREBP-2 and 3-hydroxy-3-

methylglutarylcoenzyme A reductase (HMGCR), and elevated levels of pro-inflammatory 

genes such as: Ccl5, Ccl2 and Ccl6. MMP-2 was found to negatively regulate a mechanism 

involving SREBP-2 and HMGCR (the rate limiting enzyme in the synthesis of mevalonate) 

– factors predisposing to cardiac hypertrophy. Thus, MMP-2 expression during the 

development of agonist-induced hypertension may be cardioprotective, by preventing the 
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upregulation of the SREBP-2/HMGCR pathway in the heart. Establishing how and when 

MMP-2 is protective vs. deleterious for cardiac function warrants further investigation.
2,28,64–68

MMP-2 deficiency also impacts adipose tissue metabolism: Studies in mice indicate the 

formation of a fibrous cap around adipose tissue that might cause adipocyte hypotrophy and 

delayed growth.33,67 The delayed growth in mice may be present in humans, where the 

phenotype of MMP-2 deficiency is not ‘fibrosis’. Humans and mice with MMP-2 deficiency 

do not exhibit a generalized defect in extracellular matrix breakdown, but primarily crippling 

arthritis and dwarfism.53–55,59

A very attractive hypothesis is that MMP-2 primarily acts by cleaving and regulating 

chemokines, a characteristic shared by multiple MMPs (eg, MMP-2 and MMP-9).8,9,68–70 

Although in vivo data are limited, chemokine cleavage and conversion from agonist into 

general chemokine receptor antagonist (as originally proposed for MCP-3) is an elegant 

mechanism whereby MMP-2 deficiency could exacerbate inflammation.8 Supporting studies 

include one where synthetic peptides with amino acid sequences corresponding to fragments 

of MCP-1, MCP-3 or MCP-4, equivalent to those that would be generated by MMP-

mediated proteolysis, reduced carrageenan-induced paw swelling in rat.9 Similarly, 

Mmp2−/− mice infected with coxsackievirus develop mortal endocarditis within 2 weeks of 

infection.70 This exacerbated endocarditis is associated with elevated cardiac infiltration of 

neutrophils, macrophages and T cells (such as CD4+ and CD8+) and significantly reduced 

by MCP-3–neutralizing antibody treatment.70

Recently, we advanced the hypothesis that a heart-centric MMP-2-mediated mechanism may 

modulate blood pressure homeostasis, inflammatory responses and the severity of fever.60 

We found hugely increased levels of sPLA2 in myocardium of Mmp2−/− mice. Tissue 

distribution analysis showed sPLA2 activity being much higher in the heart than in the liver, 

adipose tissue or kidney of Mmp2−/− mice. The enzyme is readily secreted from cardiac 

specimens ex vivo and has similar size, requirement of calicium and apparent 

MichaelisMenten constant for diheptanoyl thio-PC with plasma sPLA2, suggesting that the 

heart secretes sPLA2, which next acts on distal tissues (such as the liver) as well as on the 

heart to impact their inflammatory and metabolic state.

Linking MMP-2 with the biology of phospholipases A2

To illustrate the emerging connection between MMP-2 and cardiac sPLA2 activity and its 

potential pathophysiological significance, we review briefly some aspects concerning the 

various groups and functions ascribed to the PLA2 family. Phospholipases are membrane 

glycerophospholipid hydrolases which, depending on their site of action, are subdivided into 

type A1, A2, B, C or D. Type A1 releases the fatty acid esterified at carbon-1 (C-1) leaving 

behind a lysophospholipid. Similarly, type A2 releases the fatty acid esterified at C-2 leaving 

behind a lysophospholipid, while type B can release the fatty acid esterified at either C-1 or 

C-2. Type C phospholipase hydrolyses the bond between C-3 and the phosphate group to 

release diacylglycerol and phosphorylated head group. Phospholipase D cleaves the bond 

after the phosphate group releasing diacylglycerol phosphate and head group.
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Current data is consistent with MMP-2 deficiency upregulating a type A2 phospholipase, an 

enzyme type whose existence was demonstrated back in the 19th century when it was found 

as a major component of snake venoms.61,71 Secreted PLA2 family has at least 11 isoforms 

in humans and mice:61,71,72 PLA2G1B, PLA2G2(A, C, D, E, F), PLA2G3, PLA2G5, 

PLA2G10, and PLA2G12(A, B). Members of the sPLA2 family have a molecular mass of 

16–18 kDa, require calcium, have 6–8 disulphide bridges, and a histidine-aspartate dyad that 

catalyzes the hydrolysis and the release of fatty acids from the C-2 position of membrane 

glycerophospholipids. As a reflection of the multiple isoforms, sPLA2s target a spectrum of 

membrane phospholipids, with each individual phospholipase having distinct substrate 

selectivity and biological functions.72 This notion is best supported by studies72 with gene 

knock-out models and mass-spectrometry-based lipidomics to functionally characterize 

individual members of the sPLA2 family. The data gathered for PLA2G1B, PLA2G2(A, D, 

E), PLA2G3, PLA2G5, PLA2G10 now enables a functional subdivision of these isoforms as 

“digestive”, “inflammatory or bactericidal”, “resolving”, “metabolic”, “reproductive or 

anaphylactic”, “TH2-prone or metabolic”, and “asthmatic, reproductive or gastrointestinal”.
72

The identity and amino acid sequence of the PLA2 upregulated in Mmp2−/− mice remains 

elusive.60 Enzyme inhibition assays with indoxam suggest that cardiac sPLA2 in Mmp2−/− 

mice is a mixture of sPLA2s (excluding PLA2G2A whose gene is disrupted in C57BL mice) 

or a completely novel enzyme with very interesting characteristics. For instance, the specific 

activity is elevated in excess of 102 fold in the heart regardless of sex and in a wide variety 

of dietary conditions vs. wild type (Mmp2+/+ C57BL/6) mice. Haplo-insufficiency 

(Mmp2−/+) lessens the specific activity of cardiac sPLA2, while pharmacological MMP 

inhibition increases both plasma and cardiac sPLA2 activity in wild type (Mmp2+/+) but not 

in Mmp2−/− mice. However, the activity is not elevated in many organs such as the liver or 

adipose tissue even though the Mmp2−/− mice are a whole body gene knock-out model. 

Therefore, a cardiac-specific mechanism (perhaps, an agonist), which is under MMP-2 

control, must be responsible for the cardiac-specific upregulation of sPLA2 activity in 

MMP-2 deficient mice.

The emerging picture is one where, given the same pathophysiological context, sPLA2s each 

have unique induction profiles and functions, despite catalyzing the same type of 

biochemical reaction. What then is the biological function of cardiac sPLA2 expressed in 

MMP-2 deficiency? Evidently, cardiac sPLA2 is both pro-inflammatory and metabolic in the 

heart.60 MMP-2 deficiency results in cardiac overexpression of inflammatory marker genes, 

eg, Tnfa and Il1b, which are downregulated by the pan-sPLA2 inhibitor, varespladib. 

Similarly, MMP-2 deficiency results in cardiac dysregulation of lipid metabolic genes, eg, 

elevated Srebf2 (encodes sterol regulatory binding protein-2) and target genes which are 

enzymes of the mevalonate pathway. The expression of these genes is normalized by 

varespladib. Moreover, cardiac sPLA2 pro-inflammatory effects appear to be systemic. 

MMP-2-deficient mice exhibit increased levels of prostaglandin E2 (PGE2) at baseline heart, 

brain and liver. Keeping in mind that cyclooxygenase and PGE2 synthase are important in 

the regulation of PGE2, 8-isoprostanes (prostaglandins not produced directly by 

cyclooxygenase) were also measured, once again showing elevated levels in Mmp2−/− mice 

compared to WT mice.60 Further, MMP-2 deficient mice develop exacerbated fever in 
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response to low-dose bacterial lipopolysaccharide. This fever response is completely blunted 

by systemic administration of varespladib. In fact, the effect of cardiac sPLA2 on fever 

appears to be so dominant that only MMP-2 deficient mice, but not wild type mice, show 

blunted fever in response to varespladib. Thus, it is not surprising that MMP-2 deficient 

mice rely on prostanoids for blood pressure homeostasis and develop acute hypertension 4 

hours after treatment with either varespladib or indomethacin. A corollary of these 

observations is that the inflammatory state of the heart impacts the inflammatory and 

metabolic state at systemic levels as well as blood pressure homeostasis, at least in part, 

through the MMP-2/sPLA2 axis. These observations bear potential significance for the 

understanding and clinical management of human conditions associated with reduced 

MMP-2 expression; particularly, human MMP-2 deficiency.60

The MMP-2/cardiac sPLA2 regulatory system is not an artefact of life-long MMP-2 

deficiency. Cardiac sPLA2 activity is readily activated in mice treated with the 

pharmacological broad-spectrum MMP inhibitor doxycycline – the only MMP inhibitor with 

US Food and Drug Administration (FDA) approval. In these mice treated with doxycycline, 

plasma sPLA2 is significantly increased in 2–3 days and cardiac sPLA2 is hugely 

upregulated after 2 weeks. These observations also suggest mechanisms for cardiac specific 

effects of MMP-2 inhibitors, such as doxycycline, which currently has FAD-approval and is 

widely used for its many actions including as an antibiotic and a non-antibiotic/disease 

modifier drug with the capacity to inhibit the expression and activity of MMPs.73–77

Unanswered research questions

Beyond surmounting the challenge of identifying cardiac sPLA2, there are research 

opportunities on the biology of MMP-2 and the phenotype induced by its deficiency: What 

agonist(s) induce cardiac sPLA2 activity? How does MMP-2 inhibit such agonist(s)? What is 

the mechanism elicited by the agonist(s)? Why is sPLA2 activity so highly elevated in the 

MMP-2 deficient heart? Are cardiac and plasma sPLA2 the same enzyme (or enzyme 

mixtures)? How does the heart impact the inflammatory status of distal tissues and organs? 

If the heart impacts the inflammatory status of distal tissues through the secretion of sPLA2 

from myocardium, the further question of how does cardiac sPLA2 affect inflammation on 

target sites remains to be answered. Many pathologies exhibit dysregulation of either 

MMP-2 or sPLA2, eg: arteriosclerosis, diabetes, obesity, arthritis, asthma, anaphylaxis and 

pain. It is tempting to speculate that the interaction between MMP-2 and sPLA2, which is 

released from myocardium, may contribute to the pathophysiology of these conditions. What 

is the actual contribution of the MMP-2/sPLA2 axis in these pathologies relative to other 

established mechanisms? Does the emergent link between MMP-2 and cardiac sPLA2 imply 

that the heart plays a more central role in systemic physiology and disease than previously 

suspected?

Explaining inflammation in MMP-2 deficiency

Previous research has shown that monocyte chemotaxis is significantly influenced by 

MCP-1.78–80 It has been shown that MCP-1 acts, at least in part, by binding to CC-

chemokine receptor 2 to induce the intracellular translocation and activation of cytosolic 
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calcium-dependent PLA2 (cPLA2) and calcium-independent PLA2 (iPLA2) isoforms.79 

Interestingly, MCP-1 is cleaved and regulated by MMP-1 and MMP-3.9 Therefore, we 

hypothesize that MMPs, such as MMP-1 and MMP-3, may be important in the process of 

monocyte chemotaxis by cleaving MCP-1.79,80

A similar mechanism may apply to other MMPs and MCPs. MMP-2 cleaves MCP-3 and it is 

conceivable that MCP-3 shares with MCP-1 the ability to induce PLA2 activity in target 

cells (be it calcium-dependent, calcium-independent or secreted PLA2 activity). 9 If MCP-3 

triggered the activity of secreted PLA2 in target cells, then cardiac MCP-3 could be an 

agonist of cardiac sPLA2 maturation and secretion in MMP-2 deficient hearts with MMP-2 

acting as an inhibitor through MMP-2-mediated proteolysis of MCP-3.

We postulate (Figure, Table) that, since various MCP chemokines are susceptible to MMP-

mediated proteolysis,9 tissue-specific MMP/MCP/PLA2 mechanisms might exist, whereby 

MCP triggers PLA2 activity under the control of MMP-mediated proteolysis of MCP. The 

existence of such mechanisms is supported by reports of MCP-1 actions in monocytes and 

regulatory loops, where cytokines produced downstream MCPs or PLA2s modify the 

expression of MCPs, PLA2s and MMPs, and PLA2 activity impacts MMP expression.81–84 

Focusing on MCP-1, cytokines like TNF-α and IL-1β are major regulators of MCP-1 

production in many systems, at least in part, via the nuclear factor-κB pathway.85,86 

Similarly, cPLA2 activity via the prostanoid pathway is known to regulate MMP-9 

production in macrophages, while sPLA2 activity induces MMP-2 and MMP-9 thus 

facilitating fibroblast proliferation and chondrocyte development, respectively.81–84 Thus, 

MMPs, MCPs and PLA2s depict a signaling network with the potential to affect 

inflammatory and metabolic responses through local and distal actions.

Though this MMP/MCP/PLA2 axis is plausible, alternate mechanisms may be at play. 

Cytokines may act on distal organs directly to cause effects unrelated to the release of PLA2. 

Several MCPs can be cleaved by more than one subtype of MMP; for instance, MCP-3 

cleavage can be brought about by MMP-1, MMP-3, MMP-13 and MMP-14 acting on their 

own or in concert, not just MMP-2.9 Thus, in principle, absence of MMP-2 may be 

compensated by the concurrent activity of other MMPs. However, given the overt 

inflammatory phenotype of MMP-2 deficient mice, one can only speculate that 

compensation is not a major mechanism at play in MMP-2 deficiency.

The MMP-2/cardiac sPLA2 system as a new endocrine function of the heart

In the 17th century, William Harvey established the heart as a pump – a concept now familiar 

to all. However, through further research during the century, new exciting discoveries were 

made pointing to the heart as a gland. The mammalian heart was shown to be able to both 

store and release norepinephrine when stimulated, causing sympathetic peripheral effects.87 

This concept of the heart possibly being a neuroendocrine organ was proven when in 1983, 

atrial natriuretic factor (ANF) or atrial natriuretic peptide (ANP) was first isolated and 

sequenced in rat. Similar to other endocrine organs, the heart was also found to contain a 

high number of developed endoplasmic reticulum, Golgi complex and storage granules.88 

This complex of systems allows the processing of peptides and then eventual release through 
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the atrial-specific granules found in atrial cardiomyocytes. ANF and brain natriuretic peptide 

(BNP) are part of the family of cardiac natriuretic peptides (cNPs). These peptides are found 

primarily in the heart and when secreted, cause systemic effects such as hypotension, 

natriuresis and diuresis. On the other hand, peptides such as ADM and ET-1 are also found 

in the heart and have systemic effects, but are not truly endocrine products of the heart as 

they are found mainly in blood vessels rather than cardiomyocytes.88

The proposed MMP-2/sPLA2 axis mechanism points again to the heart as an endocrine 

organ. We propose that this function is normally masked by the omnipresence of MMP-2 in 

the myocardium but is readily exposed when MMP-2 deficiency is induced by either gene 

deletion or pharmacological blockade.60 Cardiac sPLA2 activity in mice deficient in MMP-2 

is elevated by orders of magnitude. In addition, there is no difference in sPLA2 activity 

between WT and Mmp2−/− mice in liver, kidney and skeletal muscle. Thus, in addition to 

MMP-2, there must be heart-specific determinants of sPLA2 maturation and secretion from 

myocardium, whose discovery warrants further research. Similar to other heart-centric 

endocrine secretions where a peptide in the heart is activated by a protease and then secreted 

from storage granules to act on distal tissues and the heart itself, cardiac sPLA2 is negatively 

regulated by MMP-2 and secreted from the heart through the conventional endoplasmic 

reticulum-Golgi pathway to affect fever, blood pressure homeostasis and cardiac 

inflammatory/lipid metabolic gene expression.60 Notably, these functions of cardiac sPLA2 

are different from those exerted by natriuretic peptides and other peptidic cardiac secretions.

MMP-2 overexpression as well as MMP-2 deficiency may cause 

inflammation

In principle, three scenarios can be distinguished: 1) Normal physiology, 2) MMP-2 

deficiency and 3) MMP-2 overexpression with scenarios 2) and 3) contributing to 

inflammation.

In MMP-2 deficiency the likely cause of the inflammation is an effective excess of cytokines 

that would otherwise be kept at low levels through MMP-2-mediated proteolysis. This 

excess is a likely trigger of cardiac sPLA2 release, which may promote systemic 

inflammation (Figure).

In MMP-2 overexpression the cause of the inflammation may be excessive or 

disproportionate cleavage of extracellular matrix and, perhaps, other cellular components 

(such as membrane receptors and growth factors) by MMP-2.3,7 Many conditions including 

arthritis, obesity, diabetes, tissue injury, cardiomyopathies, and hypertension have been 

associated with an upregulation of MMP-2 as well as inflammation.3,7,10 However, there is a 

paucity of reports on the exact mechanisms by which MMP-2 promotes the inflammation in 
vivo. One suggestive example is, however, the setting of a vascular aneurysm where the 

overexpression of MMP-2 is deleterious.63,64 Purportedly, the pathological overexpression 

of MMP-2 creates an excess of collagen relative to elastin thus also increasing stiffness, 

decreasing distensibility in the vasculature and increasing the risk of aneurysm rupture.89,90 

Additionally, a self-perpetuating loop may be created as smooth muscle cells release 

proteases that further break down the vascular intima. Chemoattractants attach on to the 
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degraded intima and stimulate the migration of inflammatory and smooth muscle cells 

ultimately exacerbating aneurysm development.89

In situations of MMP-2 overexpression, MMP-2 pharmacological inhibition may protect 

from inflammation if MMP-2 activity is restored to normal physiological levels. However, if 

MMP-2 activity were decreased beyond physiological levels, inflammatory signals mediated 

by chemokines and cardiac sPLA2 (discussed earlier in the review, Figure) may dominate 

the phenotype induced by MMP-2 inhibitor treatment. This could explain part of the 

contradictions between reports pertaining to the use of pharmacological MMP inhibitors, 

such as doxycycline, for therapeutic purposes and emphasizes the need for titrating as 

opposed to completely inhibiting MMP-2 activity when treating inflammatory disease.
60,91–93

Conclusion

Further research should refine the view of the heart as an endocrine organ that modulates 

systemic inflammatory responses through the secretion of sPLA2, a process that is under the 

control of MMP-2. The resultant knowledge should help to understand the mechanisms of 

MMP inhibitory drugs, such as doxycycline, as well as enhance the clinical management of 

human MMP gene deficiencies, which are rare but very debilitating and ineffectively treated 

conditions.53
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Figure. 
The postulated mechanism of PLA2 regulation by MMPs via cytokines gives rise to many 

plausible PLA2 mediated signaling events that can impact target tissues at short and long 

distances. Alternate signaling pathways and feed–back regulatory loops (dashed arrows) are 

likely part of the complex regulation of target tissues by MMPs.
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