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Abstract Microorganisms and the viruses that infect

them are the most numerous biological entities on Earth

and enclose its greatest biodiversity and genetic reservoir.

With strength in their numbers, these microscopic organ-

isms are major players in the cycles of energy and matter

that sustain all life. Scientists have only scratched the

surface of this vast microbial world through culture-de-

pendent methods. Recent developments in generating

metagenomes, large random samples of nucleic acid

sequences isolated directly from the environment, are

providing comprehensive portraits of the composition,

structure, and functioning of microbial communities.

Moreover, advances in metagenomic analysis have created

the possibility of obtaining complete or nearly complete

genome sequences from uncultured microorganisms, pro-

viding important means to study their biology, ecology,

and evolution. Here we review some of the recent devel-

opments in the field of metagenomics, focusing on the

discovery of genetic novelty and on methods for obtaining

uncultured genome sequences, including through the

recycling of previously published datasets. Moreover we

discuss how metagenomics has become a core scientific

tool to characterize eco-evolutionary patterns of microbial

ecosystems, thus allowing us to simultaneously discover

new microbes and study their natural communities. We

conclude by discussing general guidelines and challenges

for modeling the interactions between uncultured

microorganisms and viruses based on the information

contained in their genome sequences. These models will

significantly advance our understanding of the functioning

of microbial ecosystems and the roles of microbes in the

environment.
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Introduction

Metagenomics is the study of genetic material recovered

directly from environmental samples in an untargeted

(shotgun) way. Current developments increasing the depth

and breadth of metagenomic shotgun sequencing have

facilitated the identification of complete or nearly complete

microbial and viral genome sequences from environmental

samples without the need to first cultivate these organisms.

Here we name these sequences the ‘‘uncultured genome

sequences’’ that can either be obtained from metagenomic

datasets or from single-cell sequencing. While they fre-

quently have a draft status, and depending on the approach

may represent a locally occurring metapopulation rather

than a single clone, uncultured genome sequences can

supplement the genome sequences obtained by sequencing

pure or nearly pure cultures of microbial isolates (Fig. 1),

therewith greatly increasing the amount of data that is

available for comparative genome analyses. Moreover, by

providing reference sequences for the alignment of both
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known and unknown metagenomic shotgun sequencing

reads [1], they greatly enhance the breadth of our under-

standing of microbial ecosystems. Uncultured organisms

may, or may not have close cultured relatives, but isolating

complete or nearly complete genome sequences from

metagenomes invariably identifies genetic novelty,

revealing flexible pan-genomes, genetic variants, and new

subpopulations of microbes.

The goal of this review is to introduce some of the

recent landmarks of metagenomics in providing new

insights into the uncultured microbial biosphere, and

highlight the promises and challenges these new genome

sequences bring for modeling natural microbial ecosys-

tems. A historic perspective of the discovery of new

microbes and viruses before and after metagenomics is

given, followed by a discussion of the innovative tools that

have been recently used by several research groups to

obtain uncultured genomes from metagenomic datasets.

Metagenomics is primarily a science of microbial com-

munities, and a key interest is to describe and predict the

interactions between different populations of microbes and

viruses [2]. Thus, in the further sections of this review we

focus on the use of metagenomics and uncultured genome

sequences to understand the ecological and evolutionary

Culturable microbes

 Culturable viruses

Genome / metagenome 
sequencing

Samples collected from environment

Assemble genome sequences

Isolated single-cells

Initial metagenome 
assembly

Binning metagenomic 
contigs

DNA extraction

Culturing-based genomics Uncultured genomics

Fig. 1 Illustration of simplified pipelines to obtain genome

sequences from cultured and uncultured microbes and viruses. There

are many variations of each protocol and additional steps, such as

filtering samples according to molecular size cutoffs and

normalization of data which are not illustrated in this diagram. The

purpose is to illustrate simplified general steps to obtain uncultured

genomes, which are common in most of the studies discussed in this

review
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dynamics of microbial populations within the context of

their natural environments. We conclude by discussing the

recent developments and perspectives of genome-guided

systems biology modeling frameworks to functionally

couple the biological knowledge obtained from uncultured

genome sequences with systems-level predictions of the

dynamics of microbial communities.

Before metagenomics: culturing-dependent
discovery of new microbes and viruses

The first accounts of the microscopic world beyond the

resolution of the human eye were made by direct obser-

vations of microbes in environments such as water, soil, or

diseased tissues. Antonj van Leeuwenhoek, a Dutch

tradesman, was the first to build microscopes capable of

viewing single-celled organisms. In the late seventeenth

century when he reported his observations of ‘‘little ani-

mals’’ in water, he was ridiculed by the scientific

establishment. Only after his observations were validated

by an independent committee did scientists begin to believe

that invisible single-celled organisms could be hidden in

many habitats in our planet [3]. Before long, microorgan-

isms were recognized as the causative agents of many

poorly understood phenomena, particularly in human dis-

ease. More powerful microscopes and staining methods

were further developed, including the Gram stain in the

19th century, which is still used widely as a first classifi-

cation scheme for bacteria [4].

Despite the dominance of direct observation and culture-

independent methods in early years [5–7], microbiology

soon became a science of microbial isolates. After Robert

Koch pioneered methods for the isolation of microbial

colonies and established postulates to link diseases with

causative microbial agents, isolation and cultivation

became the most common approach for microbial charac-

terization [8]. Today, many taxonomic and strain typing

schemes depend on culturing, as do most laboratory

methods for determining the identity and biological char-

acteristics of microbial species.

Virology has followed a path that is very similar to

bacterial microbiology. Much of the known viral biodi-

versity encompasses medically relevant viruses. Before the

advances of PCR and DNA sequencing methods, sampling

from diseased phenotypes and inoculating into tissue cul-

tures or susceptible animals was the main source of

isolation and discovery of new viruses [9]. Additionally,

many bacterial viruses (known as bacteriophages) were

discovered in rapidly growing, cultivable bacteria, thereby

attributing the majority of the recognized bacteriophage

biodiversity to fast growing hosts [10]. Thus, by the use of

cultivation as a dominant technique in both bacterial and

viral microbiology, much of the scientific knowledge has

been based on cultivable species, biasing our understanding

of microbial biodiversity towards the biology and ecology

of the ‘‘easy growers’’ [11].

Caveats in studying cultured isolates

The study of cultured isolates has propelled microbiologi-

cal research. The success of culturing microbial species and

studying them in isolation is a consequence of the diffi-

culties that would be involved in analyzing them within

their natural environment, which is complex and contains

many unknown variables. Reproducibility of results, con-

trol of external variables, and simple design of laboratory

experiments are all advantageous properties that are greatly

facilitated in pure culture studies. Nevertheless, studies of

environmental microbes and viruses repeatedly confirm

that the large majority has not been cultured and is thus

poorly understood. The early studies that pointed to an

abundance of unculturable microorganisms in the envi-

ronment were largely forgotten by the scientific community

[12–14]. As a result, the development of modern culture-

free methods including metagenomics, have sometimes led

to surprises in the past 20 years. For example, by visual-

izing and counting the microscopic biological particles in

the environment and comparing these counts to the number

of archaeal and bacterial isolates, or to the number of phage

plaques that grew on a bacterial lawn, a great numeric

discrepancy was observed between what was counted in the

wild, and what could be cultured on a plate [10, 11]. Dif-

ferent environments, such as seawater, soil, or marine

sediments, showed that only about 0.01–1 % of the

microorganisms seen in the microscope could be isolated

on artificial media, while the vast majority remained

intractable to culture-dependent techniques. These dis-

crepancies have been named the ‘‘great plate count

anomaly’’ [11] and the ‘‘great plaque count anomaly’’ [10],

respectively. Clearly, we do not yet truly understand

microbial biodiversity, which begs basic questions such as,

which bacteria or viruses are out there? What is a microbial

species? How do microbes and viruses interact with each

other? And how do they interact with their environment?

It is particularly relevant to broaden the phylogenetic

breadth of cultured isolates in order to have more diversity

available for experimental testing [15]. Moreover, since the

majority of viruses in natural environments consist of

bacteriophages, having a greater diversity of cultured

bacterial isolates will also allow for a higher throughput in

virus isolation strategies [16]. Given the observations of a

vast, uncultured majority of microbes and viruses as out-

lined above (the great plate/plaque count anomaly), a

natural question to ask is ‘‘Why do most bacteria, archaea,

and viruses not grow in synthetic media?’’ [17]. Another
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related question is ‘‘How can we increase the recovery of

environmental microbes in pure culture?’’ Many authors

who discuss these and similar questions suggest that there

are no single answers, and that many answers are appli-

cable only to specific taxonomic groups or hold only in

particular environments [17]. Among the commonly sug-

gested causes for the plate count anomaly, we can list (1)

lack of essential nutrients in the isolation media [18–20];

(2) lack of an essential biological interdependency with

other species, such as auxotrophs or obligate mutualists

[21–23]; (3) poor correlation between the in vitro growth

condition and the environment: e.g. the media are too rich

or too poor in nutrients, or they have inappropriate pH,

salinity, or temperature [19, 24, 25]; (4) microbe-specific

features, such as small non-cultivable cells, or extremely

slow growers [26]. Some of these causes are interrelated

and may be addressed together (see below).

Methods to increase the plate count

Early approaches to increase the plate count were based on

extensive testing of different media, such as the R2A media

for drinking water biofilms [24], and low-throughput

screening for compounds and co-factors that could increase

the plate count for different environments [27]. Promising

technologies are being developed, some of which can be

extended to high-throughput approaches [28, 29]. These

technologies allow for many different conditions and

samples to be screened in parallel. Simultaneously

screening bacterial phenotypes in different conditions is

one example of a high-throughput approach that can be

used to identify optimal culturing conditions [30]. Other

approaches involve the cultivation of bacteria in their

natural environment or the use of supplements and specific

growth factors such as iron-chelating siderophores [19, 20].

Fe(II) is severely limited in most aerobic environments and

some bacteria release siderophores to scavenge for Fe(II),

which is then transported back into the cells. Siderophores

from neighboring species induce growth of uncultured

marine bacteria. By inoculating marine bacteria with high

concentrations of Fe(II) as a surrogate for siderophores,

D’Onofrio et al. [20] reported the isolation of many colo-

nies of previously uncultured bacteria, including three with

16S rRNA gene sequences that were highly divergent from

any known species [20].

Allowing small metabolites or signaling molecules from

the natural sites of isolates to diffuse into inoculated sur-

faces was shown to recover up to 50 % of bacteria from

some environmental samples, where traditional methods

would only recover 0.01–0.05 % [18, 19]. In order to

achieve these expressively higher colony yields, diffusion

chambers built with washers, sandwiched between 0.03 lm
pore membranes were used, and incubated together with

the sediment collected from marine environments in a

marine aquarium. Some bacteria grow in diffusion cham-

bers only when paired with so-called ‘‘helper’’ species [22].

One of these bacteria, Psychrobacter sp. strain MSC33,

started growing in isolation after successive co-cultures

with its helper strain, Cellulophaga lytica. After acquiring

the capacity to grow in isolation, Psychrobacter MSC33 in

turn could be used as a helper strain for other bacteria. This

phenomenon was reproduced with other strains that could

only grow in co-culture and, importantly, it was also

observed in rich media, suggesting that nutrient limitation

was not the underlying mechanism for the initial inability

of these strains to grow in isolation. Indeed, the authors

identified a five-amino-acid signaling peptide, LQPEV, as

responsible for inducing the growth of the otherwise

unculturable Psychrobacter [22].

One example of nutrient interdependency as the limiting

factor for obtaining pure bacterial cultures was found with

Treponema primitia. This bacterium is a hydrogen con-

suming, carbon dioxide-reducing homoacetogenic

spirochete from the termite hindgut, and relevant for the

host due to nitrogen-fixing and acetate production func-

tions. Graber and Breznak [21] showed that T. primitia

only grows when folate is available and they suggest that

this nutrient is provided by other microbial members in the

termite hindgut [21].

A promising device for high-throughput isolation of

microbes from natural environments is the iChip, which

consists of hundreds of miniaturized diffusion chambers

[29]. Recently a previously uncultured proteobacterium,

Eleftheria terrae, was discovered by using this technology

[25]. This bacterium produces a potent antibiotic named

Teixobactin, which has was found to be active against

Gram-positive bacteria not amenable to treatment, and is

being suggested as an effective drug against methicillin-

resistant Staphylococcus aureus MRSA [25].

Genome-guided culturing efforts

Finding the right culturing conditions or hosts to isolate

novel microbes and viruses can be guided by mining

uncultured genome sequences for clues of potential nutri-

ent requirements. An example is provided by the SAR11

clade, which is the most abundant clade of heterotrophic

bacteria in the ocean. As of 2002, these bacteria were

known solely from evidence based on environmental

sequencing data [31]. Although SAR11 isolates were

obtained by using sterile seawater with several supple-

ments [32], genome mining showed that these bacteria

lacked assimilatory sulfate reduction genes, thus requiring

exogenous sources of reduced sulfur, such as methionine or

3-dimethylsulphoniopropionate (DMSP) for growth.

DMSP is provided by other plankton members and its
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addition to the culture media significantly increased the

biomass yield of SAR11 bacteria [23]. These results sug-

gest that the availability of complete or nearly genome

sequences for different representatives of the uncultured

groups could guide isolation strategies for these different

microbes.

Besides providing access to uncultured genome

sequences, metagenomics can also be used to study

microbes and viruses in the context of their interactions

with other members of the biological community. This

makes metagenomics a fundamental tool to be integrated

with environmental microbiology and the study and dis-

covery of novel microbial biodiversity. Ideally, there is a

feedback loop between bioinformatic approaches that

obtain uncultured genome sequences from shotgun

metagenomic datasets, and the laboratory where these

genome sequences are exploited to guide the cultivation

efforts of new microbial species (Fig. 2). First, the phe-

notypic and genetic characterization of cultured microbial

isolates can populate databases with data that help to

increase the accuracy of the information that can be

obtained from their genome sequences. Second, obtaining

uncultured genome sequences from metagenomes can

uncover the gene composition of a species and its putative

phenotype space, providing meaningful information for

attempts to isolate microbial species. Moreover, the dis-

tribution across environments can also be retrieved from

metagenomic analyses, which can be used to predict eco-

logical interactions and lifestyles.

Genome-guided culturing is a vastly underexplored area

in the field of metagenomics. Examples of uncultured

genomes that could be amenable to these approaches

include the candidate phyla OD1, OP11, and BD1-5 [33].

These three candidate phyla are part of a monophyletic

group of widespread uncultured bacteria that have only

recently been recognized by metagenomic sequencing, and

were shown to comprise a super-phylum that encompasses

an estimated 15 % of the bacterial domain [34]. Genomic

evidence suggests that these bacteria have small genomes

and may depend on other community members for

Fig. 2 Diagram of the feedback

loop between experimental

studies on cultured isolates and

genome-based evidence

retrieved from sequenced

genomes. Uncultured genomes

can educate genome-guided

culturing attempts, which are

suggested in the main text
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essential nutrients [34, 35]. Deep sequencing revealed that

besides remarkably small genomes, they lack many known

biosynthetic pathways [36] and analysis of their ultra-

structure suggests that they are indeed naturally ultra-small

cells with median volumes of 0.009 lm3, but are biologi-

cally active [35]. Enrichment for a member of the BD1-5

bacteria in a chemostat containing a mixed culture [37]

suggests that these bacteria could be amenable to cultiva-

tion under laboratory conditions. Even before uncultured

genome sequences were available, Harris et al. [33] sug-

gested using the environmental distribution patterns

inferred from 16S rRNA amplicon sequencing to develop

isolation strategies for these groups.

To conclude, cultured isolates are critical for repro-

ducible experimental studies. Isolates are useful for many

biotechnology and health applications, such as genotype-

phenotype screening, gene knockouts, screening for sec-

ondary metabolites, and phage-host assays. Nevertheless,

there are many difficulties in the process of obtaining

cultured representatives for the vast diversity of microor-

ganisms and viruses, which can thus only be studied by

using culture-independent methods.

Metagenomics approaches to study new microbes
and viruses

Marker genes and the phylogenetic identity

of uncultured bacteria and archaea

Estimates of the size of the environmental microbial and

viral biodiversity that remains to be discovered are vast. In

bacteriophages, for instance, it has been estimated that

there are on the order of 100 million undiscovered types

with possibly billions of new genes [38]. Knowledge of the

microbial world is dependent on tools that increase the

signal-to-noise ratio of the uncultured genome sequences in

metagenomes that represent the hidden members of

microbial communities. While the first studies that

addressed uncultured microorganisms could only infer their

presence by the shapes and stains under the microscope, in

the past 50 years, developments in molecular biology have

provided advanced tools to survey and quantify this hidden

majority. The developments of the polymerase chain

reaction (PCR), fluorescence in situ hybridization (FISH)

[39], advances in DNA sequencing technology, and use of

the 16S rRNA gene as a taxonomic marker [40, 41], have

enabled the genetic identification of bacteria and archaea

that are found in different environmental samples. By

isolating DNA samples from whole communities of

microorganisms and further amplifying and sequencing

fragments of the 16S rRNA gene selected with degenerate

primers, the genetic identity of a representative portion of

the microbial community can now be known (for a review

see ref [42]).

The 16S rRNA gene and other taxonomic marker genes

have provided the means both to identify microbes by

sequence similarity, and to cluster them into taxonomic

groups in a phylogenetic context. Moreover, these marker

genes have enabled estimates of the proportion of biodi-

versity that remain uncultured, revealing whole phyla that

lack cultured representatives [34, 43]. Importantly, these

phyla cannot be classified with conventional taxonomic

approaches, which rely on polyphasic phenotypic and

genetic typing schemes that are currently inaccessible for

uncultured microbes [44, 45]. Uncultured groups suggested

by this method are thus termed candidate phyla. Currently,

more than half of the known bacterial and archaeal phyla

lack cultured representatives.

Uncultured genome sequences come into play

A metagenome consists of the genomic sequences of all the

organisms present in a given environment. Metagenomics

can be defined as the application of high-throughput

sequencing and analysis pipelines to elucidate a represen-

tative, random fraction of the genome sequences in a

biological sample [46].

Before shotgun metagenomics, environmental sequenc-

ing efforts focused on the processing of amplified

phylogenetic marker gene sequences. Since then, metage-

nomics has evolved into the application of shotgun

sequencing aimed at obtaining sequencing reads from a

comprehensive fraction of the nucleic acids in a sample

(for general reviews about metagenomics see refs. [47–

49]). Some of the first metagenomic studies consisted of

shearing environmental DNA from soil samples into large

fragments, cloning these fragments into BAC vectors and

screening for functional traits [50, 51]. This approach of

enriching and screening for functional genes is now named

functional metagenomics to differentiate it from approa-

ches that were aimed primarily at discovering the global

sequence content of environmental samples [52–54].

One of the first comprehensive shotgun metagenomics

studies was conducted on eight large water samples from

different sites of the Sargasso Sea [54]. Fosmid libraries

were generated from isolated and fragmented DNA from

this community and sequenced by the dideoxy chain-ter-

mination method (Sanger sequencing). More than 1.5 Gbp

of sequences were generated, many of which could be

assembled into scaffolds, suggesting the presence of

countable, discrete species rather than a genomic contin-

uum [54]. These were among the first sequences of

uncultured microorganisms and contained partial genome

sequences from phyla that had no cultured representatives,

such as the SAR86 clade. Using the term ‘‘genomic
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species’’, the authors clustered genome fragments by using

a similarity cutoff and found direct evidence that at least

451 different uncultured genome sequences were sampled.

Additionally, many new genes were discovered and

assigned to functional categories.

Since these first endeavors, DNA sequencing of micro-

bial communities has evolved from the Sanger sequencing

methods, which rely on a labor-intensive cloning process,

to Next Generation Sequencing (NGS) technologies such

as the 454/Roche, Illumina/Solexa, and Ion Torrent/Ion

Proton platforms [55]. These short read approaches are

particularly suited for taxonomic and functional profiling

of metagenomic samples, as they provide a random sample

of the sequences therein [56, 57]. Thus, and as a result of

the rapidly decreasing cost of short read sequencing, such

profiling analyses have been the driver of the field of

metagenomics in the past decade. With the further decrease

in cost and increase in sequencing volumes and read

lengths, for example by PacBio and Oxford Nanopore

sequencing technologies, assembly of (draft) uncultured

genome sequences is now becoming increasingly accessi-

ble. We will discuss new promising methods for

identifying and characterizing these uncultured genome

sequences in the paragraphs below.

Bioinformatic approaches to obtain uncultured

genome sequences

Assembly of uncultured genome sequences from complex

shotgun metagenomes is progressing with the rapid

development of new sequencing methods and bioinfor-

matics pipelines [58]. Below we will review approaches

that have been developed and used by several research

groups to build uncultured genome sequences de novo. A

metagenomic sample consists of random fragments of

multiple genomes from different organisms. These gen-

omes contain signals such as phylogenetic or sequence

based signals that have been acquired in the course of

evolution [59–61], signals that are the result of the eco-

logical process [62, 63], or signals resulting from the

sampling strategy [64]. These signals may be exploited to

group metagenomic sequence fragments belonging to the

same organism together, in order to bin and assemble the

original uncultured genome sequences.

The naturally occurring sequence diversity of microbial

genomes, whether derived from co-existing strains or from

a (viral) quasispecies, often prohibits the assembly of

longer contigs [65]. In bioinformatics, the process of

grouping genomic fragments such as reads or assembled

contigs putatively derived from the same organism based

on sequence signals, is called binning, and many bioin-

formatic tools are available to do this [64, 66–69]. From a

bioinformatics point of view, the most important signals

available for contig binning are: homology to a reference

sequence, paired sequencing read information, oligonu-

cleotide composition, and differential abundance patterns

across metagenomic samples. Moreover, an experimental

approach that was recently developed exploits Hi-C, a

technology that was developed to detect chromosomal

organization in eukaryotic cells, to identify DNA sequen-

ces that are co-localized within microbial cells of an

environmental sample [70–72]. We expect that additional

experimental and bioinformatic approaches will be devel-

oped for binning uncultured genome sequences from

metagenomes, as the opportunities for interpreting and

analyzing uncultured genome sequences improve (see

below).

Binning approaches can be classified into supervised

and unsupervised methods. Supervised methods generally

use a reference database of known genomes as a training

set, and apply statistical classification methods, such as

hidden Markov models [73, 74] or similarity/distance

matrix models [75], to classify reads. These classification

approaches can be used to remove or isolate clusters of

sequence fragments according to a specific signal and thus

reduce the complexity and size of the assembly challenge.

Supervised methods can also be used to classify reads and

assemble genomes from the resulting bins [73, 76, 77].

Homology-based signals consist of aligning sequencing

reads or contigs to a reference sequence that can consist of

the genome of a known species, or of contigs assembled

from the same or a similar metagenome [78–80]. An

obvious limitation of the supervised approaches is that they

are restricted to discovering genomes that are similar to the

genomes which were used as training sets, making them

unsuitable to discover completely novel genome sequen-

ces. Nevertheless, these algorithms tend to improve as an

increasing number of reference sequences become avail-

able, particularly of uncultured organisms, and they can be

continuously calibrated towards more adequate training

sets.

Unsupervised methods do not depend on a database of

known reference genomes [81]. These methods are gener-

ally dependent on sequencing strategy, or on sequence

content and sample composition. For example, as in cul-

tured genome assembly, paired sequencing reads are

commonly exploited for scaffolding assembled contigs, by

mapping read pair sequences to the assembled contigs, and

linking the contigs that share many paired sequencing reads

[82]. The computational performance of alignment-based

approaches that depend on alignment of many sequences is

also rapidly improving thanks to innovative bioinformatic

tools [83, 84].

Binning signals based on sequence content include the

percentage of G and C nucleotides in the contig, as well as

the oligonucleotide usage profile that are both relatively
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consistent along the length of the genome. For these

approaches, larger fragments or contigs result in better

approximations of the genomic oligonucleotide usage

profile, and better binning. These alignment-free methods

can be very fast and memory-efficient, because binning is

achieved by simple binary vector operations, which com-

puters perform extremely fast. An example of an

unsupervised approach that exploits oligonucleotide usage

profiles is emergent self-organizing maps (ESOMs) [85–

88].

Signals that are based on differential abundance pat-

terns of a genome within or across metagenomic samples

exploit the consistency in the expected depth of coverage

of contigs that are derived from the same genome.

Because different genomes are present in different fre-

quencies in a sample, fragments from one genome are

expected to have the same depth of coverage in the

metagenomic dataset, thus reflecting the abundance of

that genome in the original sample. If multiple metage-

nomic samples are obtained from a similar environment,

each with variations in the abundances of the different

members of the microbial community, the depth of

coverage of contigs derived from one genome is expected

to vary consistently across samples. This allows for

fragment binning based on co-abundance across multiple

metagenomic samples [64]. This differential abundance

signal, in combination with oligonucleotide usage profiles

were used to identify 49 nearly complete uncultured

bacterial genome sequences from an acetate-amended

aquifer [62].

The assembly of high quality uncultured genome

sequences from metagenomic datasets is still a relatively

low throughput process that usually yields only a few

nearly complete genomes. In part, this depends on the

sequencing volume and the species richness of the sampled

community, which together determine the expected

assembly depth of the uncultured genome sequences. The

greatest bottleneck, however, is the effort that goes into

finishing a genome sequence. For bacteria and archaea, the

completeness and redundancy of an assembled uncultured

genome sequence consisting of a cluster of binned contigs,

can be assessed by identifying universal single copy mar-

ker genes [34, 89, 90]. The percentage of these universal

genes identified in the assembled genome corresponds to

the expected genome completeness, while duplicates

among these single copy genes indicate redundancy. For

viruses, such universal marker genes are not available, and

currently the most reliable way to establish completeness

of an assembled genome sequence is by validating that the

assembled contig represents a circular genome [63, 91, 92].

However, with new bioinformatic advances [64, 66–69],

the recovery of uncultured genome sequences, whether in

draft or complete form, is increasingly yielding new

knowledge about natural microbes and viruses, as outlined

below.

Examples of landmark uncultured genome
sequence assemblies

Tyson et al. [53] were the first to assemble nearly complete

uncultured genome sequences from a metagenome library

of small-insert plasmid clones. The isolation and recon-

struction of genomes was possible because the sampled

community consisted of low-complexity biofilms contain-

ing few different species. After an initial assembly of

shotgun reads, the larger contigs were binned based on the

GC content and read coverage, allowing the recovery of

nearly complete genomes of Ferroplasma type II and

Leptospirillum group III. These organisms had never been

cultivated. With these genome sequences, the phylogenetic

origin of these organisms could be inferred, as well as their

relative dominance across similar samples. Based on gene

annotation, the authors suggested metabolic functions

across genomes and inferred ecological cross-feeding

interactions between organisms involved in the commu-

nity’s carbon and nitrogen cycles [53].

Narasingarao et al. [93] obtained scaffolds from Sanger

sequencing of size-fractionated samples from a hypersaline

lake in Victoria, Australia. By binning these scaffolds

based on the GC content, they found two distinctive GC

profiles from very small cells that passed a 0.8 lm filter but

were retained at 0.1 lm pore sizes. Using a phylogenetic

binning approach, they recovered two draft uncultured

genome sequences, which were representatives of a totally

new branch of uncultured Halobacteria. Nearly 60 % of

the predicted genes in these archaea had no homology with

proteins in Genbank and they exhibited a very distinctive

codon usage profile when compared to other archaea [93].

Although most genes in these microorganisms were

unknown, the fraction of annotated genes suggested a

predominantly aerobic heterotrophic lifestyle and also the

presence of a complete pentose phosphate pathway, which

had not previously been found in archaea [94]. These

genomes were compared with other databases, suggesting

that these archaea belong to a new, widespread class for

which the authors coined the name ‘‘Nanohaloarchaea’’.

At least eight distinct clades of this class have been found

in hypersaline environments across different continents

[93].

In a recent article, Spang et al. [89] reconstructed three

partial uncultured archaeal genome sequences from marine

sediment metagenomes, which together comprise the

Lokiarchaeota, a candidate archaeal phylum that, based on

phylogenomic analyses, encompasses the base of all

eukaroytes. Comparative genomic analyses of the

4294 D. R. Garza, B. E. Dutilh

123



uncultured genome sequences identified eukaryotic signa-

ture genes, including genes that are involved in membrane

remodeling and vesicular trafficking. Based on these

genomic observations, the authors proposed that the

uncultured Lokiarchaeota contain a complex cellular

machinery that may have facilitated the acquisition of the

proto-mitochondrial endosymbiont into the ancestor of all

eukaryotes. This example from the field of evolutionary

biology highlights that metagenomic discovery of uncul-

tured genome sequences can impact all areas of biology

and is not limited to microbial ecology.

The new taxonomic groups identified by metagenomics

can be vast. In a recent study, Brown et al. [34] assembled

8 complete and 789 draft genome sequences from tiny

uncultured bacteria in size fractioned samples from an

aquifer adjacent to the Colorado River. These genomes are

members of a new super-phylum of at least 35 different

bacterial phyla that was estimated to encompass 15 % of

the bacterial domain [34]. Phylogenetic evidence suggests

that this phylum forms a monophyletic group, which the

authors named the candidate phyla radiation (CPR).

Analysis of these uncultured genomes revealed many

unusual features. For example, several nearly universal

ribosomal genes [95] were absent from many draft gen-

omes, such as rpL9 that was not detected in any of the 16

uncultured genome sequences from the WS6 candidate

phylum [34]. Although the uncultured genome sequences

were estimated to be only C50 % complete (median

completeness 91 % for WS6), the authors suggest that it is

highly unlikely that all draft genome sequences lack the

same gene by chance. Moreover, analysis of the 16S

sequences of these uncultured genomes revealed the wide-

spread presence of large introns within the 16S rRNA

genes. It was suggested that the commonly used primers for

16S amplicon sequencing would miss a large fraction of

these bacteria due to primer mismatching and the presence

of these introns [34].

It may be expected that similar metagenomic investi-

gations into the vast, uncultured microbial biosphere,

including archaea and viruses that remain poorly repre-

sented in current databases, will yield many new and

exciting discoveries in the near future.

Minority groups

It is important to realize that the uncultured genome

sequences obtained from metagenomes represent consen-

sus sequences of closely related genomes [65]. If there are

multiple highly similar strains within a sample, metagen-

ome assembly approaches tend to collapse these genotypes

into a single consensus sequence. Indeed, most genome

sequences that are available today represent consensus

genome sequences, including the reference genomes of

many bacteria and animals. For most applications this is

sufficient and allows firm conclusions to be drawn. How-

ever, some applications may require genotypes of

individuals, for example in population genomics, and an

alternative to obtain uncultured genome sequences of such

individual genotypes is to perform single-cell sequencing

[15, 96, 97]. In this approach, single-cells are separated by

cell sorting, their genomic content is randomly amplified

by multiple displacement amplification (MDA) that

exploits the phage-derived U29 DNA polymerase and

random short primers, and subsequently sequenced. Sev-

eral groups have used single-cell sequencing combined

with metagenomics to simultaneously obtain consensus

sequences and individual genotypes [98–100]. Like with

genome assembly from metagenomes, the completeness of

single cell genomes can vary widely from\10 to 98 % [15,

96–98, 100].

The identification of minority groups that are under-

represented in the community, and thus in the bulk of

shotgun metagenomic sequencing reads is a challenge

when identifying uncultured genome sequences in

metagenomes. Single cell sequencing may not be a good

approach in these cases because isolation strategies tend

to favor the majority, although the identity of cells can

be determined by using probes before sequencing [101–

103]. The genome sequences of some minority members

from a marine community were recovered by using

mate-paired reads sequenced on a SOLiD platform [82].

In this study, 58.5 Gb of mate-paired reads were gener-

ated and assembled into contigs. The mate-pairing

information was used to link the contigs into intercon-

nected graphs, and oligonucleotide usage profiles and

read-coverage statistics were used to bin the contigs into

larger linear scaffolds. Several candidate genomes were

assembled with this approach, including a member of

uncultured group II Euryarchaeota, whose genome

indicated that this microbe is photoheterotrophic with

aerobic metabolism and the ability to degrade lipids and

proteins [82]. Other uncultured genomes of this group

were later sequenced and assembled from metagenomic

fosmid clones, confirming similar features [104]. This

approach of deep mate-paired sequencing combined with

partial-assembly and binning based on compositional

features was also used to assemble 15 draft genomes

from samples enriched for biomass-degrading microbes

from cow rumen [99]. The completeness of one of these

genome sequences was assessed by single cell sequenc-

ing, showing that a significant part of the genome was

present in the original draft assembly and that no spu-

rious reads had been incorporated. These results

demonstrate the validity of this assembly pipeline to

produce draft genomes of minority groups within the

microbial community.
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A similar approach for obtaining the uncultured genome

sequences of rare minority groups uses binning based on

the relative depth of coverage of fragments from two dif-

ferent DNA extractions of the same sample [64]. This

approach was followed by principal component analysis of

tetranucleotide usage profiles, and information from

paired-end reads were used to isolate 13 nearly complete

genomes, including four rare genomes (0.06–1.58 % rela-

tive abundance) of uncultured representatives of the TM7

phylum [64].

Data recycling

In the examples above, metagenomic datasets were newly

sequenced and analyzed to discover species in environ-

ments that were of particular interest to the researchers.

Due to the invaluable efforts of these and other research

groups, many metagenomes are now becoming available in

the public databases that can be used in secondary analy-

ses. Public databases [105, 106] now contain thousands of

metagenomic datasets that can be mined for novel micro-

bial and viral genome sequences. The opportunity for data

recycling is strongly driven by the development of new

bioinformatic tools and methods for metagenomic analysis.

We turn now to some significant examples of uncultured

genome sequences that were obtained from recycled

datasets.

Cross-assembly (crAss) of different samples from sim-

ilar environments is one example of a strategy that can

point to co-occurring sequences that are shared between

environments and may not be identified with other methods

such as reference mapping [67]. Our group cross-assem-

bled previously published viral metagenomes of human

fecal samples from four homozygotic female twin pairs and

their mothers, and found a previously unknown viral

sequence that was highly prevalent in human gut micro-

biomes from different continents, named crAssphage [63].

Up to 24 % of the viral shotgun metagenomic sequencing

reads in samples from Korea, and up to 22 % of the reads

in unrelated total fecal community metagenomes from

USA aligned to the crAssphage genome sequence. The

complete genome assembly and the metagenomic context

in which it was isolated allowed the prediction of candidate

host species, suggesting that it may infect Bacteroides

hosts.

An alternative approach to analyze multiple metage-

nomic datasets was used to extract co-abundance gene

groups (CAGs) from 396 gut metagenomes [107]. In this

approach, metagenomes were first assembled and genes

extracted to create a comprehensive non-redundant gene

catalog of almost four million gut microbial genes. Genes

were then picked randomly, and the abundance profiles

across the 396 gut metagenomes of all other genes was

compared to the query gene by using Pearson correlation.

Highly correlating genes (r[ 0.9) were iteratively grouped

into CAGs, and their abundance profiles averaged until the

CAG stabilized. The size distribution of CAGs showed a

bimodal distribution with peaks at approximately 50 and

1700 genes, respectively. The CAGs that contained more

than 700 genes were re-assembled, and 238 of those yiel-

ded genome sequences that met the criteria for high-quality

draft genome sequences as defined by the Human Micro-

biome Project. A total of 181 of these uncultured genome

sequences were derived from species that had no previ-

ously sequenced representative. Many of the smaller

CAGs, potentially representing bacteriophages and mobile

genomic elements such as plasmids or integrons, were

observed to be dependent on the large CAGs, i.e. they were

only present in the samples if the larger CAG was also

present [107].

Metagenomics and omics-related approaches are

increasingly advancing fields ranging from human and

veterinary medicine, to microbial ecology and evolutionary

biology. The availability of data and new analytic

approaches not only provides new uncultured genome

sequences as discussed above, but also enables the char-

acterization of novel clades of archaea, bacteria, and

viruses. Identifying the genome sequence of an uncultured

organism allows us to ask questions about its diversity,

genomic evolution, preferred environments, relative abun-

dances, and co-occurrence with other species. For example,

a recently published web tool, Phage Ecol-Locator, allows

the investigation of bacteriophage genes across environ-

ments in order to answer questions about phage biology,

lifestyle, and ecology [108]. These and other questions can

be addressed by leveraging publicly available metage-

nomic datasets. We expect that new tools for metagenomic

data recycling will increasingly become available to exploit

the knowledge contained in large public databases, with the

potential to describe the identity, evolution, and ecological

interactions of cultured, as well as uncultured microbes and

viruses.

Top-down approaches to study uncultured genome
sequences

Metagenomes can be studied by using top-down and bot-

tom-up approaches. Top-down approaches are based on

metagenome-wide statistical patterns that are obtained

from the sequence fragments of metagenomic reads, and

can, for example, be used to study the structure of the

ecosystem, as well as the identity and relative abundances

of microorganisms [109]. Bottom-up approaches begin

from flexible pre-defined structures of the system, such as

genome-scale metabolic models and aim to mechanistically
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reconstruct patterns and signals that can be measured from

the system as a whole by integrating its constitutive parts

into a model [110]. Bottom-up approaches will be dis-

cussed in a further section.

Obtaining a metagenomic sample, i.e. a random, mini-

mally biased sample of the genomic sequence content of a

microbial community, allows for direct and statistical

estimates of ecological and evolutionary variables that help

explain the structure and function of the microbial

ecosystems [78, 111]. With more and better metagenomic

data becoming available from sites across the planet, there

is an unparalleled wealth of data available in the digital

space for scientists to generate, test, and evaluate new

hypotheses about microbial ecosystems [112]. Examples of

ecological and evolutionary parameters that can be studied

in metagenomic datasets include microbial species abun-

dances, richness, evenness, and diversity [113, 114].

Moreover, eco-evolutionary processes can be studied,

including competition, cooperation [115, 116], Red Queen

dynamics [117, 118], structure and function of communi-

ties, as well as patterns of assembly, colonization, and

composition of the microbiota [119–121]. Below we out-

line some of these patterns and emphasize that

metagenomics provides not only a comprehensive window

to discover and isolate new uncultured genome sequences

as outlined above, but also provides the principal data to

characterize the ecological context in which these genomes

are found.

Global abundance and distribution patterns

The ecological context of uncultured organisms can be

studied by exploiting metagenomic datasets. Many dis-

coveries in this young field have changed established

textbook frameworks of microbial relationships with the

earth’s physics and chemistry, revealing a less biased view

of the structure and function of microbial ecosystems.

Light harvesting in the ocean is one example where non-

chlorophyll pathways based on bacteriorhodopsin were

shown by metagenomics to be a widespread mechanism in

the ocean, not only limited to Proteobacteria or Archaea

[54, 122]. Another example is the elucidation of the bio-

geography and ecology of specific uncultured microbial

groups. For example, a group of archaea, (previously called

Crenarchaeota because of a somewhat close relationship

with this phylum [123, 124] but now known as Thaumar-

chaeota, see below) was found by metagenomics to be

present in many different environments, such as freshwater

[125], sediments [126], ocean water [54], and the digestive

tract of aquatic and terrestrial animals [127, 128]. One

representative was cultivable in a marine aquarium when

grown as a symbiont to the sponge Axinella mexicana

[127]. Several genomic surveys and later the cultivation of

one marine representative of this phylum showed that

many of these species encoded ammonia-oxidizing genes

[129, 130]. Given the abundance of this phylum in several

environments, they have recently been suggested to be

major players in the global cycling of nitrogen through

ammonia oxidation [131]. Before this group was discov-

ered, ammonia oxidation was thought to be performed

almost exclusively by autotrophic ammonia oxidizing

bacteria [132]. Later, the assembly of several uncultured

genomes and genomic evidence from different sequencing

projects rooting this group further apart from the Crenar-

chaeota, led to the recognition of a new archaeal phylum,

the Thaumarchaeota [133].

Niche-driven and neutral community assembly

Metagenomic data can be used to determine the mode of

assembly of a microbial community. Processes of assembly

are relevant to the study of community ecology because

they indicate which forces have shaped biological com-

munities and likely influence their structure and function

[134]. Two different types of processes are commonly

distinguished that shape the composition of microbial

ecosystems: deterministic niche-driven, and stochastic

neutral processes [135]. Both processes, and combinations

thereof, can predict the distribution curve of the relative

abundances of species. If a neutral stochastic process has

shaped the community, the relative abundances of species

are expected to fit a zero-sum multinomial (ZSM) distri-

bution [136, 137]. In the niche-driven process, species are

related to environmental changes and the relative abun-

dances are expected to fit a log-normal or a zipf distribution

[138]. In the healthy lung, for example, the composition of

the microbiota was shown to fit a neutral model with

species derived mainly from the oral cavity, while samples

from the lungs of patients with cystic fibrosis and idio-

pathic interstitial pneumonia could not be explained by the

neutral model [139]. Mendes et al. [140] compared soil and

soybean rhizosphere microbiomes and found a log-normal

distribution in the rhizosphere community, while the bulk

soil community fit the ZSM distribution. Metagenomics

has provided evidence of niche-driven or neutral-processes

in several other environments [141–143].

Biodiversity and ecosystem stability

Biodiversity is another important ecological parameter that

can be measured by top-down metagenomics. Biodiversity

can be defined as the species richness, i.e. the number of

different species that are present in an environment; as the

relative abundances of the different species; or as the

evenness, a measure that incorporates the phylogenetic

breadth of the species [144]. Biodiversity is often related to
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the stability of an ecosystem [145]. This is the basis of the

insurance hypothesis, in which greater diversity insures

ecosystems against losses of functionality due to environ-

mental fluctuations and perturbations [146, 147].

Uncultured bacterial and archaeal genomes can be readily

inserted into a biogeographic and evolutionary context by

comparing their marker genes across these datasets. Data

for species richness in microbial ecosystems based on

marker genes provides a wide spectrum of information

about their distribution patterns, as well as the alpha and

beta diversity, and can shed light on migration and colo-

nization patterns [148].

The relative abundance of functional categories of genes

in a microbial ecosystem is an alternative parameter of

biodiversity, which can be related to the concept of even-

ness if one assumes that phylogenetic distance is correlated

with functional distance [149]. Note that it is not necessary

to make this assumption when analyzing shotgun meta-

genomes because the relative abundance of different

categories of genes can be directly measured. When the

phylogenetic and functional measures of biodiversity are

compared, very complex interplays between stability and

environmental functioning can be revealed, providing the

starting material to evaluate and test hypotheses about the

ecological role of uncultured genomes obtained from

metagenomes. An interesting example of the potential of

metagenomics to simultaneously discover new species and

provide a broad description of their ecology and natural

history is provided in a recent study by Lynch et al. [150].

The authors characterized an uncultured genome sequence

obtained from metagenomic data of a volcanic deposit

collected 6 km above the sea level in the Atacama Desert.

Their study suggested that this uncultured bacterium was

indigenous to this harsh environment, with a chemoau-

totrophic metabolism dependent on trace atmospheric

gases [150].

The ecological concept of ecosystem stability is related

to biodiversity, and it can be interpreted and measured in

different ways [151]. For example, Wittebolle et al. [152]

measured the relationship between evenness and stability

in different microcosm experiments with denitrifying bac-

teria. In their study the microcosms were subject to

temperature and salt stress, and the stability of the micro-

bial ecosystem was measured as the maintenance of the

nitrifying function under stress. The authors showed that

the effect of stress on functional stability differed

depending on the kind of stress, and that microbial com-

munities with an even functional profile tended to be more

resilient to salt induced stress than functionally uneven

communities [152]. In the human microbiome, which has

become one of the best studied microbial ecosystems,

widely different taxonomic compositions have been

observed to lead to very similar functional profiles across

individuals [153]. This observation of a functional stability

supports the insurance hypothesis, being driven by the

potential of phylogenetically divergent gut bacteria to

acquire similar functions [154, 155]. The relationship

between stability and biodiversity is an open research field

in microbial community ecology. Top-down metagenomics

is providing the means to study this relationship across

many different microbial ecosystems, particularly through

studies that analyze fluctuations of the taxonomic and

functional profiles of communities in space and time [156–

159].

Integrating uncultured genome sequences
into a systems biology modeling platform

While the top-down statistical approaches described above

provide fundamental information to understand the distri-

bution and ecology of uncultured microorganisms and

viruses, they are limited to providing broad-scale predic-

tions that are not always mechanistic. The predictive power

of such statistical models can be improved by including

more omics data from an environment, such as gene

expression, proteomics, and metabolite concentrations

[156, 160, 161]. Furthermore, incorporating time series

datasets or environmental data such as physicochemical

parameters can also contribute to more mechanistic and

predictive models [162]. However, a deeper understanding

of the biology of new uncultured genomes would come

from mechanistic descriptions of the dynamics and bio-

chemical interactions of each subpopulation [163, 164].

Such bottom-up approaches employ computational models

to identify robustly predicted patterns in an ecosystem that

can subsequently be studied ex silico, for example by

exploiting metagenomic datasets. Progress in building

genome-scale models for small microbial consortia is

beginning to provide a roadmap for describing microbial

communities in terms of their individual sub-populations.

Below we will discuss several approaches for integrating

uncultured genome sequences into computational models,

towards describing and understanding the interactions that

shape a microbial ecosystem.

Computational models of microbial cells

The most complete computational model of a cell that

integrates several components of the cellular dynamics,

such as protein synthesis, and gene expression, was built by

Karr et al. [165] for Mycoplasma genitalium. This model

describes a single organism and reconstructs several pat-

terns of the bacterial cell cycle that are consistent with

measurements in vitro [165]. Whole cell models with such

level of detail are not currently feasible for most microbes
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because the roles of novel genes, poorly characterized

proteins, and kinetic enzyme parameters remain unknown.

Nevertheless, draft biochemical models that propagate and

integrate knowledge from known genes that are charac-

terized in other organisms already show significant

potential to predict and explain patterns observed in

experimental systems [166, 167].

Several different modeling approaches exist that build

mechanistic metabolic models of a microbial cell by

starting from the genomic sequences, but are beyond the

scope of this review [168]. Here we will only point to some

of the general principles and possible directions to build

predictive models of uncultured genome sequences, and

address their role in the community. Our goal is to high-

light directions that will position these newly discovered

genomes on in silico experimentation platforms. This will

accelerate the characterization of these organisms by pro-

viding the means to quantitatively describe their

interactions with other microbes and the environment, and

guide experimental follow-up by providing testable

hypotheses about species interactions and their responses to

environmental changes.

Models based on individual genome sequences

When uncultured genome sequences are recovered from an

environment by using e.g. metagenomics or single-cell

sequencing, the component of their genes that can be

annotated can be integrated into a basic biochemical model

of directional interactions between proteins and metabo-

lites (for a review of these steps see Refs. [167, 169]). If we

assume that several of these models can be inferred for

microbes that co-occur within an environment, an impor-

tant feature that describes their interaction are the exchange

reactions that reflect the flow of metabolites in and out of

cells. Moreover, the rate by which the cells synthesize

biomass components, and the flow of byproducts and sec-

ondary metabolites that leave the cell can also be captured.

Such metabolic flow models might be used to make pre-

dictions about which species grows faster in a given

environment [170], the secretion of a products of interest

under given conditions [171], the expected biochemical

effect of adding or removing a species or metabolite [172],

as well as the conditions of the external environment that

are required for (mutual) growth [173].

The flow of metabolites

While some of the information about the metabolic flows

can be assessed from the biochemical networks, these

networks do not contain information about the kinetic rates

of uptake, secretion, and the flow of the metabolites, nor do

they contain information about the rates of biomass con-

version. In practice, and especially for novel species that

contain many unknown genes, we can only reconstruct

partial blueprints of the biochemical networks [174]. This

suggests that the real flow of metabolites between the

organisms consists of complex functions that integrate

protein concentrations and affinities, resulting in different

reaction rates [175]. Another challenge is capturing the

simultaneous reactions from many different biochemical

networks within a single model that could contain multiple

solutions. Thus, comprehensive models of microbial com-

munities based on individual metabolic networks are not

yet available.

Tackling the complexity of microbial communities

Small scale models of interacting consortia of few

microbes are paving the way for applications to larger

communities [171–173, 176–178]. Three important general

principles may be extracted from these studies and applied

to larger-scale models (Fig. 3). First, the multi-dimensional

attractor landscape should be constrained to reduce the

degrees of freedom of the solution-space. Second, opti-

mization approaches should be applied to deal with

multiple solutions. Third, computational simulations

should be used instead of analytical approaches to sample

from the possible solution space of multi-level models.

As explained above, the functional insurance hypothesis

suggests that there are different possible solutions to how

microbial communities may fulfill an environmental niche.

In terms of modeling the microbial ecosystem, this can be

thought of as different domains of attraction of a highly-

dimensional system. This system is subject to important

constraints that need to be incorporated in the model. For

example, there are hard constraints like the stoichiometric

balance of chemical reactions between the metabolites and

the second law of thermodynamics, but there are also softer

constraints like the spatial boundaries of the system and the

diffusion of metabolites that may be captured by stochastic

models. Integrating these constraints into systems biolog-

ical models of the microbial ecosystem can significantly

reduce the degrees of freedom of the system, therewith

constraining the landscape of its domains of attraction

(Fig. 3c). A further way to constrain these models would be

to use additional omics datasets to assess gene expression

and/or metabolite concentrations [179, 180]. However,

even with a constrained landscape of solutions, models of

interacting microorganisms could potentially hold an infi-

nite number of solutions. To deal with this degeneracy of

solutions, a heuristic approach can be applied that identifies

local optima within the attractor landscape that represent

biologically meaningful solutions [181, 182].
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Objective functions

Different biological objectives can be defined and expres-

sed as functions in a system of equations with a goal to

maximize or minimize this objective, including the objec-

tives that are used in single-species systems [183].

Moreover, approaches to model multiple objectives within

a single model have also been explored [184]. The math-

ematical formulation of a reasonable objective function

allows for the optimization of the system for this objective,

and depending of the relation of this objective with other

variables, the optimization may limit the values and states

that may be assumed by the other variables in the system

[183]. For example, in a genome-scale model of three gut

bacteria, Shoaie et al. [185] used as an objective function

the minimization of the uptake of nutrients while main-

taining fixed concentrations of biomass. By setting up this

configuration, they accurately predicted the concentration

of butyrate, CO2, and H2 obtained from experimental data

of germ-free mice colonized with these bacteria [185].

Optimization of objectives in simple systems, such as

single-species models, is a straightforward process that

usually involves minimizing or maximizing an objective

function, while constrained by systems of linear, mixed

Fig. 3 Theoretical

representation of the guidelines

to build genome-guided

simulation-based models for

microbial communities applied

to a simple model. a The model

was built for a hypothetical

community of biochemical

networks corresponding to

uncultured genomes. b In this

model, the variable of interest is

the flow-rate of metabolites

through exchange reactions in

steady-state conformations.

Random initial flow-rates were

chosen and the growth of the

community in a media

containing this concentration of

metabolites is simulated as in

[178]. After equilibrium is

reached, the relative abundance

of each species is compared to

the actual relative abundance

from the metagenomic data-set.

New values for exchange flow-

rates are chosen and simulated,

and accepted or rejected

according to a stochastic rule or

if the predicted relative

distribution of species is closer

to its actual value. c Simulations

with or without constraints

significantly reduce the solution

landscapes indicated by the

contour plots. The correlations

are also significantly higher and

have a small number of high-

correlation solutions, which can

be further studied individually
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integer-linear, or simple nonlinear equations. However,

optimizing multiple and potentially different objectives

from many interacting species that grow at different rates

and consume and secrete metabolites at the same time is a

significantly more challenging problem. Some of the

studies yielding the most promising results have applied

approaches that were based on simulating the system,

rather than solving it [178, 186]. In simulation-based

approaches, the current state of the system is sampled and

transition rules are applied that determine its state in the

next time point. The system is updated based on these rules

and sampled again; this goes on until the system stabilizes

in a pattern or distribution.

Models of microbial consortia: linking

to experiments

Using a simulation-based approach for pairs of species,

Chiu et al. [178] coupled metabolic networks to Michaelis–

Menten dynamics for exchange reactions of the metabolites

across the cell membrane. In small time steps, each species

would take up, and secrete metabolites proportionally to its

biomass and the concentration of the metabolite in the

medium. The medium and the biomass of each species

were then updated and simulated again, until metabolites

were depleted and the growth-rates became zero. This

approach predicted the relative abundances of the two

bacteria, their temporal growth-rates, and the dynamics of

metabolites inside and outside of the cells [178]. A similar

approach was used by Harcombe et al. [186], with the

addition that they incorporated a spatial lattice into the

model where all species could diffuse stochastically. This

framework consistently predicted the rate of colony

diameter increase in various carbon sources for E. coli, as

well as the outcome of co-culture experiments of two and

three species. Interestingly, an unexpected emergent

behavior of the in silico model was confirmed experi-

mentally, showing that the species with the lower growth-

rate dominates the co-culture in the long run.

Linking uncultured viruses to their cellular hosts

Viruses necessarily depend on a cellular host organism for

replication, and these virus-host associations can be very

specific. Until recently, virus discovery involved isolation

of the virus, e.g. by using cell culture or plaque assays,

leading to a clear link between a virus and its host. How-

ever, with the advent of metagenomic approaches to

identify the uncultured viral genome sequences, as

described above, virus discovery is no longer dependent on

culturing. New bioinformatic approaches are being

explored to link viruses to their hosts, based on the infor-

mation contained in their uncultured genome sequences

(Edwards et al., submitted). Signals for virus-host associ-

ation that have been used in recent studies include the co-

occurrence profiles across samples, as described above [63,

107, 187]. Moreover, homology between virus and host

genes can indicate a recent gene exchange between their

genome sequences, possibly during a recent infection

event, and thus homology has also been used to identify

virus hosts [63, 188]. For bacteria and archaea, CRISPR

spacers that are identified within their genomes can be used

to identify the phages that infect them [187, 189], because

short fragments from the phage genome sequence are

incorporated into CRISPR arrays of the host. Finally,

oligonucleotide usage profiles also contain a signal that can

be exploited to link an uncultured virus to its cellular host.

This depends on viruses ameliorating their genomic

oligonucleotide usage to that of the host they infect, for

example to avoid recognition by host restriction enzymes,

or to adjust their codon usage to match the availability of

host tRNAs [190, 191].

Linking uncultured viral genome sequences to a cellular

host organism, cultured or uncultured, is an important step

towards understanding the microbial ecosystem. Phage-

bacterial infection networks (PBIN) describe which phages

infect which bacterial hosts [192]. A recent meta-analysis

of PBIN showed a characteristic structuring that is globally

modular and locally nested [193, 194]. This means that

bacteria and phages from different locations are mostly

incompatible (global modularity). Within one location,

phages co-exist with varying host specificity (local nest-

edness), e.g. generalist phages that infect many bacteria,

and specialist phages that infect only one bacterium. Phage

predation can have a huge impact on microbial ecology,

maintaining biodiversity through Kill-the-Winner dynam-

ics [195], and releasing nutrients through the viral shunt

[196]. Incorporating phage predation into ecosystem

models will allow the effects of this important parameter in

microbial ecology to be studied [196, 197].

Conclusions

Obtaining the genome sequences of uncultured microbes

and viruses in metagenomes is one of the most promising

areas of research in microbiology. Novel strategies to

sample and sequence environmental metagenomes as well

as significant advances in bioinformatics and data recycling

are increasing our knowledge of uncultured microorgan-

isms. With metagenomic approaches, we can discover the

identity, evolution, gene composition, distribution, and

ecological patterns of uncultured microbes and viruses. Our

challenge now is to integrate this knowledge into predictive

analytical models of microbial ecosystems that incorporate

the knowledge that can be mined from both uncultured and
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cultured genome sequences [163]. It is still difficult to

realistically capture important properties of microbial

ecosystems in analytical models, such as spatial structur-

ing, diffusion of nutrients, energy barriers, selective sweeps

by bacteriophages, and the immune system in case of host-

associated microbiota. Recent progress has shown that the

way forward is to apply modeling through multi-step

simulation-based approaches. Although there are still many

caveats to these approaches, we believe that future devel-

opment in this area will provide outstanding tools to

mechanistically understand the biology of uncultured

microbes. Some of the variables that could be predicted by

these models and experimentally validated are energy flux

patterns, cross feeding patterns, and the dynamics of

diversity within the community of study. If a community is

described in terms of energy and matter flow, it can also be

compared in these terms, providing not only a unique

insight into the evolutionary processes that have shaped

microbial communities, but also informing in a precise and

mechanistic manner how these balances could be changed,

or how changes in these balances impact biodiversity.

Systems biology platforms with these potentials are the

immediate goals for further advances in discovering and

understanding the microscopic and submicroscopic bio-

sphere. The major remaining challenges include providing

the expanding number of sequences available with reliable

annotations, and incorporating these into consistent models

of interacting microbes and viruses in the natural ecosys-

tem. To conclude, the exciting field of uncultured microbe

and virus discovery, and the study of interactions in natural

microbial ecosystems has grown with metagenomics

throughout the past decade, and recent developments hold

promise of many more discoveries in the near future.
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31. Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA,

Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates

ocean surface bacterioplankton communities. Nature

420:806–810. doi:10.1038/nature01240
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González JM, Luo H, Wright JJ, Landry ZC, Hanson NW,

Thompson BP, Poulton NJ, Schwientek P, Acinas SG, Gio-

vannoni SJ, Moran MA, Hallam SJ, Cavicchioli R, Woyke T,

Stepanauskas R (2013) Prevalent genome streamlining and lat-

itudinal divergence of planktonic bacteria in the surface ocean.

Proc Natl Acad Sci 110:11463–11468. doi:10.1073/pnas.

1304246110

121. Afshinnekoo E, Meydan C, Chowdhury S, Jaroudi D, Boyer C,

Bernstein N, Maritz JM, Reeves D, Gandara J, Chhangawala S,

Ahsanuddin S, Simmons A, Nessel T, Sundaresh B, Pereira E,

Jorgensen E, Kolokotronis S-O, Kirchberger N, Garcia I, Gan-

dara D, Dhanraj S, Nawrin T, Saletore Y, Alexander N, Vijay P,
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