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Abstract
The liver plays a central role in iron metabolism. It is the 
major storage site for iron and also expresses a complex 
range of molecules which are involved in iron transport 
and regulation of iron homeostasis. An increasing 
number of genes associated with hepatic iron transport 
or regulation have been identified. These include 
transferrin receptors (TFR1 and 2), a ferrireductase 
(STEAP3), the transporters divalent metal transporter-1 
(DMT1) and fe r ropo r t i n ( FPN) a s we l l a s t he 
haemochromatosis protein, HFE and haemojuvelin (HJV), 
which are signalling molecules. Many of these genes 
also participate in iron regulatory pathways which focus 
on the hepatic peptide hepcidin. However, we are still 
only beginning to understand the complex interactions 
between liver iron transport and iron homeostasis. This 
review outlines our current knowledge of molecules of 
iron metabolism and their roles in iron transport and 
regulation of iron homeostasis.
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INTRODUCTION
Iron is an essential trace element for almost all forms of  

life. However, under physiological conditions, the free 
form of  iron is practically insoluble and potentially toxic. 
Thus, iron is always found bound to specific ligands in 
such a way as to render it both soluble and non-toxic. The 
toxicity of  iron stems from its ability to redox cycle. The 
release of  an electron from ferrous iron, if  uncontrolled, 
may result in the formation of  highly reactive oxygen 
species capable of  oxidising lipids, proteins and DNA[1] 
causing damage to the structures and processes in which 
they are involved. However, many catalytic and other 
biological processes rely on the redox properties of  iron; 
hence, iron must be available in a form which allows it to 
donate and accept electrons without causing non-specific 
damage.

In mammals, iron is transported around the plasma 
bound mainly to the glycoprotein transferrin, although 
other forms are also present in small amounts. In normal 
human plasma, transferrin has a concentration of  between 
25 and 50 µmol/L, and is usually about one-third saturated 
with iron. The remaining, unoccupied, binding sites on 
transferrin provide a large buffering capacity in case of  
an acute increase in plasma iron levels, an important 
consideration given the toxicity of  free iron. Following 
uptake by the tissues, iron is transferred into a cytosolic 
pool (the “transit pool”) from where it is distributed 
to ferritin for storage or to iron-requiring moieties, 
such as haem or iron-sulphur clusters. The majority of  
hepatocellular iron is contained in ferritin (80%) with 
2%-3% present as haem; the remainder is either bound to 
transferrin or present in the transit pool[2].

The liver plays a central role in iron metabolism. It is 
responsible for approximately 8% of  plasma iron turnover 
in humans[3], most of  which is mediated by hepatocytes[4,5] 
and it has long been known that it is the major site for 
storage of  iron. Histologically, iron is distributed around 
the periportal regions of  the liver with a decreasing 
gradient towards the centrilobular regions. In iron overload 
disorders, this gradient becomes more pronounced[6], 
involving mainly hepatocytes with the resident liver 
macrophages, Kupffer cells, loading to a much lesser 
extent[7] .

More recently, it has been shown that the l iver 
expresses a complex range of  molecules which regulate 
iron homeostasis. The liver and, more specifically, 
hepatocytes, also express the vast majority of  genes that 
have been associated with hereditary iron disorders. Our 
understanding of  these disorders as well as the normal 
function of  the liver in iron homeostasis is, as yet, 
incomplete. This review focuses on iron metabolism in 
hepatocytes, with a specific section on the role of  Kupffer 
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TFR1
TFR1 expression is regulated by iron primarily by a post-
transcriptional mechanism. The transcript contains five 
iron-responsive elements (IRE) in its 3’ untranslated 
region (UTR) along with a number of  instability elements 
that facilitate breakdown of  the message[16-19]. Under 
low-iron conditions, iron regulatory proteins (IRP) bind 
to the IREs, placing an inhibition on the instability 
elements[18,19], increasing the half-life of  the mRNA and, 
hence, increasing translation. When iron is abundant, IRPs 
do not bind IREs, resulting in a decrease of  the stability 
of  the transferrin receptor message. Two isoforms of  
IRP have been identified. The first (IRP1) is an iron-free 
form of  cytosolic aconitase[20-22]. The second (IRP2) does 
not exhibit any aconitase activity[23] and appears to be the 
physiologically active IRP since it can respond to iron 
under conditions of  low oxygen tension[24], a situation 
which occurs in the liver in vivo.

TFR1 is also regulated by other mechanisms. The gene 
contains an hypoxia response element in its promoter 
region which mediates up-regulation of  transcription in the 
presence of  hypoxia-inducible factor 1[25-27]. Transcription 
is also up-regulated by cytokines, such as interleukin-2, 
mitogens and growth factors[28-30]. Furthermore, TFR1 

cells, and on the molecules known to be involved in 
iron metabolism in the liver and their role in our current 
understanding of  liver iron transport.

TRANSFERRIN RECEPTOR 1 (TFR1)-
MEDIATED UPTAKE OF TRANSFERRIN
TFR1-mediated uptake of  diferric transferrin is, perhaps, 
the best described process of  iron uptake (Figure 1, 
pathway 1). Briefly, transferrin binds to TFR1 and is 
endocytosed[2,5]. At the pH of  the extracellular fluid, 
diferric transferrin is bound preferentially, the affinity 
of  the receptor being higher for diferric transferrin than 
for either monoferric- or apo- transferrin[7-10]. Following 
formation of  the endosome, it is acidified which results 
in a decrease in the affinity of  transferrin for iron and 
subsequent detachment of  the metal[11,12]. The affinity of  
the receptor for the (now) apotransferrin is increased by 
the acidic environment[7] and apotransferrin remains bound 
to the receptor as the endosome returns to and fuses with 
the plasma membrane. At the higher extracellular pH, the 
affinity of  the receptor for apotransferrin decreases[7] and 
apotransferrin is released back into the circulation[2]. The 
entire process takes between 3.8 and 15 min[13-15].
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Figure 1  Hepatocyte iron transport. (1) TFR1-mediated uptake of diferric transferrin. Diferric transferrin binds to its specific receptor and is endocytosed. The endosome is 
acidified and Fe3+ is reduced by STEAP3. The iron is released and transported out of the endosome via DMT1 and apotransferrin is exocytosed. (2) TFR2-mediated uptake 
of transferrin. This mechanism is similar to the TFR1-specific mechanism except that transferrin binds to TFR2. (3) Uptake of NTBI. Iron is reduced and is transported into 
the cell via a carrier-mediated process. (4) Uptake of ferritin. Ferritin binds to its specific receptor and is endocytosed. The endosome is directed to lysosomes and the 
iron is transferred to the transit pool or endogenous ferritin. (5) Uptake of haem-haemopexin. The haem-haemopexin complex binds to its specific receptor CD91 and is 
endocytosed. Haem is removed and is degraded by haem oxygenase. (6) Uptake of haemoglobin-haptoglobin. The haemoglobin-haptoglobin complex binds to a specific 
receptor. Following endocytosis, the complex may be directed to the canalicular membrane for release into the bile or to the lysosomes for degradation. (7) Uptake of 
lactoferrin. Lactoferrin binds to LRP or RHL-1 and is endocytosed and targeted to the lysosomes for degradation. (8) Iron release Iron is released by FPN and oxidised 
by caeruloplasmin and binds to apotransferrin. TFR1, transferrin receptor 1; TFR2, transferrin receptor 2; STEAP3, six-transmembrane epithelial antigen of the prostate 
3; DMT1, divalent metal transporter 1; NTBI, non-transferrin bound iron; ZIP14, zinc-regulated transporter and iron-regulated transporter-like protein 14; LRP, low-density 
lipoprotein receptor-related protein; FPN, ferroportin.
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expression is increased in proliferating cells and reduced 
in quiescent cells[31-33], consistent with cellular demand for 
iron during periods of  growth.

HFE
A mutation in HFE was the first to be shown to be causative 
for the iron overload disorder, haemochromatosis[34]. 
HFE is a major histocompatibility complex-like protein 
and was originally designated HLA-H. The gene is widely 
expressed, with highest expression in the liver and small 
intestine. HFE requires the protein β2-microglobulin for 
its correct localisation to the cell surface[35].

Despite this knowledge, the normal function of  
the protein has been difficult to elucidate. The crystal 
structure of  the transferrin-TFR1 complex[36] indicates 
that the C-lobe of  transferrin interacts with the helical 
domain of  one of  the TFR1 monomers. In contrast, the 
N-lobe of  transferrin appears to interact partially with 
the helical domain, partially with the protease-like domain 
and, unusually, with the stalk connecting the extracellular 
region of  TFR1 to its transmembrane region. HFE also 
interacts with the helical domain of  TFR1[37,38], competing 
with transferrin for its binding site[39,40]. The resulting 
inhibition causes a reduction in transferrin-bound iron 
uptake in a variety of  cell types[41-44], suggesting that HFE 
is involved in the regulation of  iron uptake by TFR1, 
possibly by limiting the amount of  iron released from 
transferrin[44]. HFE cycles with TFR1[44], but its effect on 
cycling is controversial, with different groups reporting 
no effect[44], a reduction in endocytosis[45] or a reduction in 
exocytosis[43].

The physiological consequences of  the HFE-TFR1 
interaction are difficult to ascertain given that the affinity 
of  TFR1 for HFE is one to two orders of  magnitude 
lower than for diferric transferrin[46], implying that, at 
normal transferrin concentrations, almost no HFE 
would be associated with the receptor. However, these 
measurements were conducted on isolated proteins, so 
it is possible that, in vivo, the local environment of  these 
proteins changes their interactions leading to a shift in the 
balance of  competition between HFE and transferrin.

STEAP3
Following endocytosis and vesicle acidification, iron is 
reduced to its ferrous form prior to being transferred 
across the endosomal membrane. It was suggested 
some years ago that the transferrin receptor appeared 
to facilitate detachment of  iron from transferrin in 
the endosome[47]. More recently, it was shown that, at 
endosomal pH, the reduction potential of  ferric iron 
co-ordinated by transferrin is increased when diferric 
transferrin is complexed to TFR1[48], confirming the earlier 
observation and suggesting that reduction of  iron occurs 
prior to release from transferrin. However, purely chemical 
reduction is unlikely to result in the highly efficient process 
of  iron uptake seen in biological systems.

Despite evidence of  endosomal fer rireductase 
activity[49], it wasn’t until recently that a candidate 
ferrireductase was identified[50]. The gene STEAP3 (“six-

transmembrane epithelial antigen of  the prostate 3”) is one 
of  four genes wholly or partially deleted in the nm1054 iron 
deficiency anaemia mouse. Under normal conditions, it is 
highly expressed in the liver, and its product is a protein 
which co-localises in endosomes with TFR1 and DMT1 
(divalent metal transporter 1; see below). It is predicted to 
be a haemoprotein containing an N-terminal flavin-NADH 
binding domain. Most importantly, ferrireductase activity 
and iron uptake were lower in reticulocytes obtained from 
nm1054 and steap3 knockout mice and overexpression in 
HEK293T cells resulted in increased ferrireductase activity. 
A follow-up paper from the same group[51] showed that the 
remaining three members of  the Steap family (STEAP1, 
2 and 4) were also ferri- and cupric- reductases. The four 
genes are ubiquitously expressed; however, different 
members are expressed more highly in some tissues than 
others. Foetal liver expresses all four transcripts, but 
adult liver expresses predominantly STEAP3 with a small 
amount of  STEAP1[50,51]. Like STEAP3, the other Steap 
proteins co-localise, at least partially, in an endosomal 
compartment with transferrin and TFR1.

Divalent metal transporter 1 (DMT1)
The released ferrous iron is transported from the interior of 
the endosome to the cytosol by DMT1 (also known as “natural 
resistance-associated macrophage protein 2”, NRAMP2, 
“divalent cation transporter 1”, DCT1, or “solute 
carrier family 11 member 2”, SLC11A2). This protein 
is a transmembrane glycoprotein with 12 predicted 
transmembrane helices[52,53] although there is no structure 
currently available to confirm this.

There are four known isoforms of  DMT1, resulting 
from splice variation at the mRNA level. Alternative first 
exons (1 A or 1 B) give rise to the first level of  variation[54]. 
Secondly, each of  the 5′ splice variants may contain one of  
two 3′ splice variations[55]. The first of  these contains an 
IRE in its 3′UTR. The second results in replacement of  the 
final 18 codons of  the open reading frame with a different 
sequence of  25 codons and a different 3′UTR, which, 
importantly, does not contain an IRE[55]. The predominant 
form in the liver is the exon 1B + IRE form, although a 
small amount of  the 1B-IRE form may also be present[54].

Studies comparing the variants of  DMT1 have 
indicated that the +IRE isoform is localised predominantly 
to the plasma membrane, exhibits slower internalisation 
kinetics than the -IRE isoform, and is targeted to 
lysosomes. In contrast, the C-terminal region of  the -IRE 
isoform contains peptide signals which are required for 
efficient endocytosis and subsequent targeting to recycling 
endosomes[56,57]. Thus, it is possible that the +IRE isoform 
is predominantly involved in iron transport across the 
plasma membrane whereas the -IRE isoform is involved in 
endosomal transport.

Evidence that DMT1 is the endosomal transporter 
is supported by the finding that DMT1 co-localises 
with TFR1[58-60] and cycles through the endosomal 
compartment, appearing in acidic endosomes[61]. DMT1 
transports iron optimally at pH 5.5[62], consistent with its 
presence in acidic endosomes and suggesting the energy 
for iron transport may be provided by a proton gradient. 
However, considerable transport also occurs at pH 7.4, 
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and a model for metal transport by DMT1 has been 
proposed which is consistent with symport of  Fe2+ and H+ 
from acidic endosomes and uniport of  Fe2+ from a neutral 
environment[63].

DMT1 appears to be regulated by iron levels with 
protein expression increased in iron loaded liver, lower in 
control liver, and not detected in iron deficient livers[64]. 
Similar results have been obtained with the HepG2 
hepatoma cell line[65]. These findings are inconsistent with 
an IRE located in the 3′UTR of  the transcript, which 
would be expected to result in a decrease in mRNA 
stability in iron loading with a concomitant decrease in 
protein expression. However, regulation of  DMT1 is 
complex, and it is possible that the 5′UTR of  the transcript 
or the N-terminal domain of  the protein may modify the 
regulatory effects of  the IRE in a tissue-specific manner[54]. 
Additionally, regulation based around the stability of  the 
protein cannot be ruled out.

LOW AFFINITY TRANSFERRIN UPTAKE
A second transferrin-mediated route of  iron uptake  
(Figure 1, pathway 2) has been recognised in hepatocytes 
for many years[14,66,67] and is probably responsible for 
the bulk of  iron uptake by hepatocytes since, at the 
concentrations of  transferrin present in the plasma, TFR1 
would be saturated[15,66,68]. The mechanism of  uptake is 
similar to that of  the TFR1-mediated pathway[5,14,69]. After 
binding to the low affinity binding site, transferrin is 
endocytosed and iron is removed following acidification of  
the vesicle. Iron is sequestered away from the vesicle and 
apotransferrin is exocytosed[69].

Transferrin receptor 2 (TFR2)
In 1999, Kawabata and colleagues[70] reported the cloning 
of  transferrin receptor 2 (TFR2), a type Ⅱ transmembrane 
protein which shared significant sequence similarity to 
TFR1. It is currently the best candidate gene to code for 
the low-affinity binding site, with which it shares many 
similarities. TFR2 binds diferric transferrin specifically in a 
pH-dependent manner with an affinity 25-30 times lower 
than TFR1[38,71]. In the liver, it is expressed predominantly 
in hepatocytes[70,72,73] and mediates cellular transferrin and 
iron uptake[70,73].

Regulation of  TFR2 is different from regulation 
of  TFR1. TFR2 mRNA does not contain any iron-
responsive elements and cellular iron levels do not appear 
to change TFR2 mRNA or protein expression. Dietary 
and pathological iron loading do not result in decreased 
hepatic expression of  TFR2 mRNA and neither does iron 
deficiency result in increased hepatic expression[74]. Instead, 
TFR2 appears to be regulated at the protein level by cell 
cycle, with proliferating cells expressing approximately 
twice as many receptors as stationary cells[75] and by the 
presence of  diferric transferrin. Diferric transferrin causes 
an upregulation of  receptor number and a redistribution 
of  the protein to the cell surface in liver and hepatoma 
cells[72,76]. The upregulation is caused by an increase in the 
half-life of  the receptor conferred by its binding diferric 
transferrin. Removal of  diferric transferrin results in a 
return to baseline expression[77]. Consistent with these 

findings, TFR2 protein levels were decreased with iron 
deficiency, and increased with iron loading in genetic 
models of  iron overload, such as haemochromatosis, but 
not in the atransferrinaemic mouse which has impaired 
transferrin synthesis[76]. Evidence suggests that TFR2 
is a sensor of  transferrin saturation and controls iron 
metabolism by regulating hepcidin expression[78,79]. 
However, it is still not known whether changes in levels 
of  TFR2 expression are correlated with changes in 
transferrin-bound iron uptake by the liver.

Given the similarities between TFR1 and TFR2, 
it was thought that, like TFR1, TFR2 may bind HFE. 
Co-localisation studies suggested an interaction in the 
duodenum. TFR2 was shown to co-localise with wild-
type HFE in an early endosomal compartment whereas, 
in the presence of  HFEC282Y, the mutation predominantly 
associated with haemochromatosis type 1, TFR2 was 
distributed mainly to basolateral membrane[80]. Despite 
this, initial in vitro binding studies indicated that there was 
no detectable interaction between soluble HFE and the 
soluble TFR2 ectodomain[38]. More recently, an interaction 
has been demonstrated between the full-length, membrane-
anchored HFE and TFR2 proteins[81] suggesting that HFE 
may, indeed, be involved in TFR2-mediated iron uptake 
and TFR2-dependent regulation of  hepcidin.

It has also been shown that TFR2, unlike TFR1, is 
present in lipid rafts and binding of  diferric transferrin 
to TFR2 can activate the ERK1/2 and p38-MAPK 
signalling pathways[82]. However, any connection of  
this to the hepcidin signalling pathway has yet to be 
demonstrated.

NON-TRANSFERRIN-BOUND IRON UPTAKE
The liver is one of  the major sites of  accumulation of  
iron delivered as low molecular weight chelates (Figure 1, 
pathway 3)[83,84]. The pathophysiological relevance of  such 
a process is apparent in diseases of  iron overload such 
as hereditary haemochromatosis[85]. The form of  this 
low molecular weight plasma pool is likely to comprise 
several species; however, citrate appears to be the major 
component in both normal[86,87] and haemochromatotic[88] 
sera. In experimental situations, hepatocytes and their 
derivatives have been shown to take up iron from a variety 
of  chelators[89-105]. Iron taken up from these chelators 
has been shown to be distributed to haem and ferritin in 
hepatocytes[90,101,103].

NTBI uptake by hepatocytes is linear for at least 
the first 15 to 60 min of  incubation[91,94,101,104]. It is also 
concentration dependent, with both ferrous and ferric 
iron, delivered as a variety of  low molecular weight 
chelates, showing saturation kinetics[95,97,106-108], indicating 
that this process is carrier-mediated. Uptake of  iron 
as ferric citrate has been shown to be most efficient in 
normal rat hepatocytes at neutral pH[92].

DMT1 as a major transporter of NTBI
NTBI uptake is increased in cells in which DMT1 mRNA 
and protein expression are upregulated[109,110]. Furthermore, 
NTBI uptake appears to share at least one common 
pathway with TBI uptake since diferric transferrin has 
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consistently been shown to competitively inhibit uptake of  
NTBI[93,102,111]. These observations, together with findings 
that DMT1 is active at neutral pH[62], are consistent with 
DMT1 being a major transporter of  NTBI in hepatocytes.

The specificity of  NTBI uptake has been investigated 
by a number of  groups and it has been generally observed 
that Cd, Co, Cu, Mn and Zn decrease iron uptake by 
normal and transformed hepatocytes[97,104,108,109,112,113]. 
These observations match the range of  divalent metals 
transported by DMT1[53,114], adding further credence to 
the suggestion that DMT1 is a transporter of  NTBI. 
Indeed, Mn and Cd appear to be transported by DMT1 
with higher affinity than Fe[114]. Although this observation 
is probably not relevant under normal physiological 
conditions, where the concentration of  Fe is considerably 
higher than either Mn or Cd, it may become important 
in pathological conditions such as heavy metal poisoning 
in which competition for the transporter may result in a 
reduction in iron uptake. The alternative N and C termini 
conferred by the splice variants do not appear to affect the 
metal transport abilities[62].

Certain inconsistencies in the data showing that some 
metals cause inhibition in some cell types, but not others 
have led to the suggestion of  a family of  transporters for 
iron and other transition metals[101,111,115]. Several candidate 
transporters have been identified including calcium 
channels and specific transporters of  other metals such as 
the zinc transporter, ZIP14 (zinc-regulated transporter and 
iron-regulated transporter-like protein 14).

ZIP14
ZIP14 (SLC39A14) is a transmembrane protein with 
eight predicted transmembrane helices[112,113]. It is highly 
expressed in the liver, and is localised to the plasma 
membrane[112]. There are two splice variants of  the 
transcript; however, the biological functions of  these 
two forms are yet to be determined. Originally shown to 
transport zinc, ZIP14 has also been shown to transport 
non-transferrin bound iron[112,113,116]. But, it is not currently 
known whether ZIP14 is involved in hepatic iron loading. 
Importantly, ZIP14 has also been shown to be upregulated 
by interleukin-6[112], which also upregulates hepcidin during 
inflammation[117].

Calcium channels
The role of  calcium channels in uptake of  NTBI by 
the liver remains unclear. It has been suggested that 
L-type calcium channels are responsible for a significant 
component of  ferrous iron uptake by cardiomyocytes, 
particularly under iron loaded conditions[118,119]. However, 
information about any role for calcium channels in liver 
iron uptake is scant. Available evidence indicates that 
the transcripts coding for calcium channel subunits are 
expressed at low levels in the liver[120], suggesting their 
participation in iron uptake by the liver is likely to be 
minor. However, levels of  mRNA do not take into account 
any post-transcriptional modifications or functional 
regulation such as gating. Hence, the contribution of  
calcium channels to iron uptake by the liver requires 
further investigation.

It has also been suggested that calcium itself  plays a 
functional role in NTBI uptake; however, this, too, needs 

further clarification. Some studies have reported stimulation 
of  NTBI uptake in cell types including hepatocytes[99,101,104,121], 
whilst other studies have reported inhibition[122] or no 
effect[92]. It is possible that this spectrum of  observations 
is due to variable chelation of  calcium by the variety of  
chelators used to solubilise the iron[123].

TRANSPORT OF OTHER IRON COMPLEXES
A number other forms of  iron are recognised as being 
cleared from the circulation by the liver; however, 
these are likely to be mechanisms of  clearance for their 
respective ligands rather than for uptake of  iron, per se. 
 Specifically, these are ferritin, lactoferrin, the haem-
haemopexin complex and the haemoglobin-haptoglobin 
complex. Circulating ferritin contains very small amounts 
of  iron[124-126] and, as such, it is not a major source of  
iron in the normal human. Nevertheless, the liver clears 
ferritin by a method involving binding to a specific ferritin 
receptor[127-129] followed by endocytosis (Figure 1, pathway 4). 
There are several possible fates for endocytosed ferritin 
including catabolism of  the protein in lysosomes[130-132], 
excretion in the bile or inclusion in the endogenous 
ferritin pool[133]. Any iron released is distributed to the 
mitochondria and endogenous ferritin[130,132].

The uptake of  the haem-haemopexin complex is 
mediated by its specific receptor, CD91 (Figure 1, 
pathway 5)[134]. Following endocytosis, haem is degraded by 
haem oxygenase. Like transferrin, haemopexin was thought 
to be recycled back to the circulation[135-137]; however, this 
fate has recently been questioned with evidence suggesting 
that it is substantially degraded in lysosomes[134].

The haemoglobin-haptoglobin complex also binds to a 
high-affinity specific receptor and is endocytosed (Figure 1, 
pathway 6)[138]. However, from this point, two possibilities 
exist for the fate of  the complex. Both haemoglobin 
and haptoglobin may be directed to lysosomes for 
degradation[139] or transported to the canalicular membrane 
of  hepatocytes where haemoglobin is released into the bile 
and the receptor is recycled to the sinusoidal membrane[140]. 
Clearance of  the haemopexin and haptoglobin complexes 
by the liver is of  importance in haemolytic states, especially 
those associated with intravascular haemolysis.

Lactoferrin is an iron-binding protein similar to 
transferrin which is present mainly in milk. Two lactoferrin 
binding sites have been reported on hepatocytes, although 
neither is specific for lactoferrin. The first is low-
density lipoprotein receptor-related protein (LRP)[141] 
and the second is the major (RHL-1) subunit of  the 
asialoglycoprotein receptor[142]. Lactoferrin appears to 
be cleared via receptor-mediated endocytosis regardless 
of  its binding site (Figure 1, pathway 7)[141,142]. Most of  
the internalised lactoferrin is directed to lysosomes for 
degradation[143].

IRON RELEASE
Ferroportin (FPN)
The transporter, ferroportin (FPN; “solute carrier family 
40 member 1”, SLC40A1; IREG1 or “metal transporter 
protein-1”, MTP1) was reported independently by three 
groups in 2000[144-147] and appears to be the sole mediator 
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of  iron release from hepatocytes (Figure 1, pathway 
8)[148]. Although it has not been shown directly, FPN 
appears to transport ferrous iron. Evidence comes from 
the apparent requirement of  transport for ferroxidase 
activity. Caeruloplasmin knockout mice exhibit impaired 
hepatocellular and reticuloendothelial iron efflux which 
can be rescued by injection of  caeruloplasmin[149]. Similarly, 
mice with mutations in the membrane-bound ferroxidase, 
hephaestin, also exhibit impaired iron efflux[150]. Further, iron 
efflux was stimulated in Xenopus oocytes over-expressing 
FPN in the presence of  caeruloplasmin[147]. There have been 
no reports to date indicating whether FPN-mediated iron 
transport is linked to transport of  any other ion or whether 
there is any energy requirement for the process.

The structure and membrane topology of  FPN 
is currently unclear with various models predicting 
between nine and twelve transmembrane helices[151-153]. 
However, both the N- and C-termini appear to be located 
intracellularly[153,154], which precludes an odd number 
of  transmembrane segments. Similarly, the quaternary 
structure of  FPN has been the subject of  debate. Initial 
reports suggested that FPN was oligomeric[155,156], but later 
reports cast doubt on this, suggesting a monomer[152,157]. 
Recently, a comprehensive study by de Domenico et al[154], 
demonstrated that FPN was most likely a dimer.

The quaternary structure of  FPN may have important 
impl icat ions for regulat ion of  i ron homeostas is. 
Under the oligomeric model, the dominant negative 
phenotype of  FPN-associated haemochromatosis (type 
4) can be interpreted as interaction between wild-type 
and mutant forms of  the protein interfering with its 
normal function[155,156]. The alternative interpretation, 
haplo insuff ic iency, i s less l ike ly g iven that mice 
heterozygotic for a FPN knockout demonstrated a very 
mild phenotype and homozygotic knockout mice died 
in utero[148]. Also, the majority of  reports of  human FPN-
associated haemochromatosis with demonstrable iron 
loading involve heterozygotic point mutations which are at 
least partially functional[156,158,159].

Like ferritin, FPN mRNA contains a functional IRE in its 
5′-UTR[144,147,160] indicating that translation should be augmented 
when iron is abundant. This has been shown to be true in 
HepG2 and Kupffer cells but not in the duodenum[144,160,161] 
suggesting that regulation of  FPN is cell-specific and one or 
more other regulatory mechanisms may be involved.

OTHER MOLECULES INVOLVED IN IRON
HOMEOSTASIS
Hepcidin
Hepcidin is a 25 residue peptide containing four internal 
disulphide bonds which is produced in hepatocytes 
under conditions of  iron sufficiency[162-164]. It is created 
as a pre-pro-peptide which undergoes post-translational 
cleavage[163], and its expression is regulated by inflammation 
and hypoxia as well as iron levels[164,165]. It appears to be 
the focal point of  an iron-regulatory pathway involving 
HFE, TFR2 and HJV, since disruption of  these genes 
in haemochromatosis results in decreased hepcidin 
expression[166-168]. Its expression is enhanced by cytokines 
such as interleukin-6 (IL-6)[117].

In 2004, it was shown that FPN was a receptor for 
hepcidin[169]. In HEK293 cells, the peptide was shown 
to bind to FPN and induce its internalisation in a dose-
dependent manner. The complex was targeted to 
lysosomes for degradation[169]. This is consistent with 
results that show increased FPN in the duodenum under 
conditions of  iron deficiency, when hepcidin levels would 
be low[144], and offers a mechanism for hepcidin-mediated 
anaemia of  inflammation[117,170] in which FPN levels are 
decreased resulting in a reduction of  iron efflux to the 
plasma. The N-terminus of  hepcidin is necessary for 
binding and internalisation of  FPN, and the disulphide 
bonds appear to be necessary for its stability in the 
plasma[171]. It is unclear whether hepcidin acts in vivo as an 
autocrine hormone, signalling to FPN in hepatocytes or as 
a paracrine hormone, signalling to FPN in Kupffer cells.

Haemojuvelin (HJV)
HJV is a protein known to play a very important role in 
hepatic iron homeostasis although its exact function and 
whether it plays a role in iron transport have yet to be 
ascertained. It is expressed in adult skeletal muscle, and 
foetal and adult liver in the periportal hepatocytes[168,172]. 
Both soluble and membrane anchored forms have been 
demonstrated in Hep3B cells[173]. Identified as the protein 
mutated in many cases of  juvenile haemochromatosis[168], 
human HJV shares 48% sequence identity with repulsive 
guidance molecules which are important in retinal 
development[174]. Absence of  functional HJV results 
in increased plasma transferrin saturation and ferritin 
in humans[175,176] and studies in HJV knockout mice 
demonstrate decreased hepatic hepcidin expression and 
increased liver iron loading[172,177]. The major function of  
HJV appears to be regulation of  hepcidin levels, and it 
has been shown that HJV can bind bone morphogenic 
protein-2 (BMP-2), a member of  the TGF-β superfamily 
of  cytokines and activate hepcidin transcription via 
SMAD-4[178,179]. This pathway is independent of  HFE, 
TFR2 and IL-6[180].

KUPFFER CELLS
Kupffer cells are the resident macrophages of  the liver. 
Their main function in iron metabolism appears to be as 
a clearing house for iron from phagocytosed red blood 
cells[181]. Haem breakdown is catalysed by haem oxygenase, 
and the products are ultimately excreted in the bile[182]. Iron 
can be stored in Kupffer cells as ferritin. But, much of  it is 
released back into the circulation[183]. Consistent with this, 
Kupffer cells have been shown to strongly express both 
FPN transcript and protein[184,185]; indeed, FPN is more 
highly expressed in Kupffer cells than hepatocytes[144,184,186].

No functional studies on the role of  FPN in iron 
release by Kupffer cells have been carried out. However, 
a number of  studies have been undertaken using bone 
marrow-derived macrophages or macrophage cell lines. 
Following erythrophagocytosis or experimentally induced 
iron loading, the expression of  many genes involved in 
iron metabolism, including FPN and haem oxygenase 
1, are upregulated[185,187]. In these cells, FPN is localised 
to intracellular vesicles, redistributing to the cell surface 
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following erythrophagocytosis[188]. The upregulation of  
FPN results in an increase in iron release and its down-
regulation results in a decrease in iron release[189], consistent 
with involvement in iron recycling by Kupffer cells.

That FPN has been observed localised to intracellular 
vesicles in the absence of  hepcidin suggests that FPN may 
play a role in intracellular redistribution of  iron within 
Kupffer cells[190] as well as in iron export. Addition of  
hepcidin resulted in rapid disappearance of  FPN from 
the cell membrane, and subsequent degradation of  the 
protein[188], suggesting that in the absence of  hepcidin, 
FPN may be able to cycle to intracellular compartments as 
necessary.

Kupffer cells also express TFR1[191] indicating that they 
can obtain iron from transferrin if  necessary. Interestingly, 
Kupffer cells also express high levels of  HFE[192]; 
however, they appear to be spared the level of  iron 
loading associated with hepatocytes in HFE-associated 
haemochromatosis[7]. This may indicate a difference 
in regulation of  HFE in macrophages compared to 
hepatocytes or simply that iron loading of  Kupffer cells is 
partially negated by the high level of  iron exported from 
these cells[183]. A recent report has suggested that GAPDH 
functions as a transferrin receptor in macrophages[193]. 
However, the affinity of  the interaction was extremely low 
and its importance is yet to be determined.

LIVER IRON TRANSPORT IN DISORDERS 
OF IRON METABOLISM
In the absence of  any relevant genetic defects, an increase 
in plasma iron would result in an increase in transferrin 
saturation followed by a rise in the concentration of  NTBI. 
Gene expression in the liver would change to sequester the 
iron in a non-toxic form, and signal to the duodenum to 
reduce iron absorption. In primary iron overload disorders, 
such as hereditary haemochromatosis, mutations in HFE, 
HJV or TFR2 result in a decrease in hepcidin production, 
and subsequent misregulation of  iron absorption by, 
the duodenum (as, of  course, does a lack of  functional 
hepcidin)[194]. The mechanistic consequences of  this for 
the liver are difficult, if  not impossible, to dissect out from 
the resulting iron overload. This leads to the paradox of  
TFR2, an iron transporter which is sub-functional in type 3 
haemochromatosis, resulting in hepatic iron overload[71,195] 
rather than hepatic iron deficiency. This apparent paradox 
is probably the most telling demonstration of  the liver’s 
repertoire of  iron transport and regulatory mechanisms.

Secondary iron overload is often a consequence of  
blood transfusions required for the treatment of  certain 
types of  anaemia such as β-thalassaemia or sideroblastic 
anaemia. The source of  the excess iron is haem from 
transfused erythrocytes which are broken down in the 
normal way with the haem being catabolised, inter alia, by 
Kupffer cells. As with primary iron overload disorders, 
gene expression in secondary iron overload will change to 
reflect the cellular iron loading and the increase in plasma 
transferrin saturation and NTBI concentration despite the 
underlying anaemia.

Iron deficiency may be caused by a number of  factors 

including genetic disorders, pregnancy, an increased 
requirement for iron during growth, or simply by lack of  
dietary iron intake. The initial stage of  iron deficiency 
corresponds to mobilisation of  storage iron from the 
liver with decreases in hepatocyte ferritin, and an increase 
in iron uptake proteins such as TFR1[196]. Plasma NTBI 
is generally considered to be non-existent or at very low 
levels in iron deficiency[85].

CONCLUSION
Iron transport by the liver is, of  necessity, tightly regulated 
because of  the liver’s myriad of  transport pathways, and its 
role in iron homeostasis. The explosion of  information in 
the past ten years describing many of  the genes involved in 
liver iron transport has not only provided insight into the 
mechanisms involved, but also confirmed the complexities 
evident from the literature from previous decades. 
Nevertheless, much work remains to be done in piecing 
together this information in order to fully understand how 
the pathways of  iron transport, the distribution of  iron in 
the liver and the regulatory pathways interact and how they 
contribute to iron homeostasis.
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