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Abstract
AIM: To study the effects of palmatine, a known inhibitor
on delayed rectifier potassium current and L-type calcium
current (ICa,L) in guinea pig ventricular myocytes, on the
potassium and calcium currents in isolated rat hepatocytes.

METHODS: Tight-seal whole-cell patch-clamp techniques
were performed to investigate the effects of palmatine on
the delayed outward potassium currents (IK), inward rectifier
potassium current (IK1) and Ca2+ release-activated Ca2+

current (ICRAC) in enzymatically isolated rat hepatocytes.

RESULTS: Palmatine 0.3-100 µM reduced IK in a concentration-
dependent manner with EC50 of 41.62±10.11 µM and nH,
0.48±0.07 (n=8). The effect of the drug was poorly reversible
after washout. When the bath solution was changed to
tetraethylammonium (TEA) 8 mM, IK was inhibited.
Palmatine 10 µM and 100 µM shifted the I-V curves of IK

downward, and the block of IK was voltage-independent.
Palmatine 0.3-100 µM also inhibited ICRAC in a concentration-
dependent manner. The fitting parameters were as follows:
EC50=51.19±15.18 µM, and nH=0.46±0.07 (n=8). The peak
value of ICRAC in the I-V relationship was decreased by
palmatine 10 µM and 100 µM. But the reverse potential of
ICRAC occurred at Voltage=0 mV in all cells. Palmatine 0.3-
100 µM failed to have any significant effect on either inward
or outward components of IK1 at any membrane potential
examined.

CONCLUSION: The inhibitory effects on IK and ICRAC could
be one of the mechanisms that palmatine exerts protective
effect on hepatocytes.
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INTRODUCTION
There are many natural drugs for liver diseases currently used
in popular medicine. For example, quaternary protoberberine

alkaloids from Flissitigma and Goniothalamus have been used in
popular medicine for hepatomegaly and hepatosplenomegaly[1,2].
The uses of alkaloids from Berberis aristata for liver injury
induced by chemical carcinogenesis and alkaloids from
Enantica for disorders of bilirubin have also been reported[3,4].
      Palmatine, the protoberberine class of isoquinoline alkaloids,
has been found in plants of various families, and mainly
presents in the rhizomes of Fibrarurea Tinctoria Lour. These
medicinal plants have been used as folk medicine in treatment
of jaundice, dysentery, hypertension, inflammation and liver-
related diseases[5,6]. The previous studies have shown that
palmatine could block the delayed rectifier potassium current
and had inhibition effect on L-type calcium current (ICa,L) in
guinea pig ventricular myocytes[7-11]. Pauli et al reported a
protoberberine alkaloids mixture from Enantia chlorantha,
called Hepasor, containing palmatine, columbamine and
jatrorrhizine prevented liver from chemically induced
traumatization and also promoted the healing process in the
hepatic injury models selected. Hepasor improved the blood flow
and mitotic activity in thioacetamide-traumatized rat livers[12].
However, the hepatoprotective mechanism of palmatine still
remains unknown. And there are no data available to the
relationship between ion currents in hepatocytes and the
hepatoprotective effect of palmatine.
      In the present study, we investigated the effects of palmatine
on whole-cell currents recorded from isolated rat hepatocytes
to explore its mechanisms against liver injury. We tried to
develop not only an effective hepatoprotective agent but also
a promising leading compound against liver injury while
maintaining a low side-effect profile.

MATERIALS AND METHODS
Cell preparation
The rat hepatocytes were enzymatically isolated from Sprague
Dawley (SD) rats of either sex (150 to 200 g) by slightly
modified procedures described previously[13-18]. Briefly, adult
animals were anesthetized with an intraperitoneal injection of
pentobarbital sodium (30 mg/kg) in strict accordance to the
guidelines established by the Institutional Animal Care and
Use Committee, which follow all applicable state and federal
laws. The portal vein and the inferior vena cava were
cannulated. The liver was initially perfused at a flow rate of
25 mL·min-1 with a constant-flow system with modified
oxygenated Ca2+, Mg2+-free Hanks’ solution containing (in
mM): NaCl 137, KCl 5.4, NaH2PO4 0.5, Na2HPO4 0.58,
NaHCO3 4.16 and Glucose 5.5 (pH 7.3) for several minutes,
followed by perfusion with a Ca2+, Mg2+-free Hanks’ solution
containing collagenase (0.3 g·L-1; type I) for 10 min. The
solutions were gassed with 100 % O2 and warmed to 37 .
After these perfusions, the liver was excised and then minced in
Ca2+, Mg2+-free Hanks’ solution at 0 . The cells were filtered
through a 200 µm nylon mesh, and washed three times by
centrifugation at 50 g for 2 min. The cell pellets were resuspended
in Kraft-bruhe (KB) solution containing (in mM): L-glutamic
acid 70, KCl 130, taurine 15, KH2PO4 10, MgCl2 0.5, Glucose
11, 4-(2-hydroxyethyl)-1-piperazine-N’-2-ethanesulfonic acid
(HEPES) 10 and ethylene glycol-bis (β-aminoethyl ether)-N,
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N, N’, N’-tetraacetic acid (EGTA) 0.5 (pH 7.4) that yielded
approximately 85 % to 95 % viable hepatocytes. A small aliquot
of the medium containing single cell was transferred into a 1
mL chamber mounted on the stage of an inverted microscope
(XD-1012B, Nanjing, China). The spherical, smooth cells were
used for the whole-cell voltage-clamp studies. All experiments
were performed at room temperature (20 to 22 ).

Voltage-clamp recording
A programmable vertical puller (pp-83, Narishige, Japan) was
used to pull the electrodes. The resistance of the capillary glass
electrodes (GG-17, Nanjing, China) used was 2 to 4 MΩ when
filled with internal solution. A patch-clamp amplifier (PC-II,
Wuhan, China) was used to record whole-cell currents with
four-pole Bessel filter set at 1 kHz, digitized at 5 kHz. The
protocols for voltage clamp and data analysis were established
with routines using software (pClamp 6.0, Wuhan, China) and
data were stored on computer for subsequent analysis. Drug
actions were measured only after steady-state-conditions were
reached, which were judged by the amplitudes and time courses
of currents remaining constant with further perfusion of drug.

Drugs and solutions
Palmatine hydrochloride was obtained from Zhonglian
Pharmaceutical Company of China as base powders, dissolved
in distilled water and made a stock solution at 0.1 M. Palmatine
was added to bath solution for extracellular application. All drugs
were from Sigma Chemical Co unless otherwise indicated.
       With studies of IK, the bath solution was a modified Tyrode’s
solution contained (in mM): NaCl 144, KCl 4.0, CaCl2 1.8,
MgCl2 0.53, Na2HPO4 0.33, HEPES 5 and Glucose 5.5 (pH 7.3).
The patch pipette solution contained (in mM): KCl 130, K2ATP
5.0, creatine phosphate 5.0 and HEPES 5.0 (pH 7.4).
       For experiments on IK1, both the bath solution and the pipette
solution contained (in mM): KCl 7, MgCl2 2, EGTA 1, K-
glutamate 130 and HEPES 10 (pH 7.4).
       For ICRAC recording, the bath solution was (in mM): NaCl 140,
KCl 2.8, CaCl2 10, MgCl2 0.5, Glucose 11 and HEPES 10 (pH 7.4).
The pipette solution used (in mM): K-glutamate 145, NaCl 8,
MgCl2 1, MgATP 0.5, EGTA 10 and HEPES 10 (pH 7.2).

Statistics
All values are expressed as mean ±S.E.M and error bars were
plotted as S.E.M. Student’s t test was used to evaluate the
statistical significance of differences between means. A value
of P<0.05 was considered to be statistically significant.
Concentration-response curves were fitted by the Hill equation:
Inhibition of current (%)= 100/[1+(EC50/C)nH]
     Where EC50 is the concentration of palmatine for half-
maximum block, C is the concentration of palmatine, and nH,
the Hill coefficient.

RESULTS

Effects of palmatine on IK

IK was evoked in isolated rat hepatocytes by depolarizing pulse
to +140 mV for 900 ms from a holding potential of -50 mV.
The current at the end point of the test pulse was measured as
the amplitude of IK

[19].
       To better the concentration of palmatine necessary for half-
maximal effect, six concentrations (0.3-100 µM) were studied.
The percentage block of IK was defined as (IControl-Ipalmatine)/IControl

and plotted as a function of logarithm [palmatine] in Figure
1B. At +140 mV, palmatine exerted a concentration-dependent
inhibition of the current, which was poorly reversible after
washout (Table 1). The data points are fitted according to the Hill
equation with an EC50 for palmatine on IK is 41.62±10.11 µM

and nH, 0.48±0.07 (n=8). When the bath solution was changed
to tetraethylammonium (TEA) 8 mM, IK was inhibited.
      Figure 1C shows the effects of palmatine 10 µM and 100 µM
on the steady-state I-V relationship for IK generated by applying
12 depolarizing pulses from +30 mV to +140 mV for 900 ms
with a 10 mV increment from a holding potential of -50 mV.
In the presence of palmatine 100 µM, the amplitude of IK was
significantly reduced from +70 mV through +140 mV (n=8,
P<0.05 or P<0.01 vs control). The currents were inhibited in a
voltage-independent manner at the potentials tested. For
example, at +100 mV, IK was reduced by palmatine 100 µM from
1 319.52±192.60 to 575.37±133.29 pA (56.40 % reduction), and
at +140 mV, current was reduced from 1 861.42±215.76 to
879.37±172.30 pA (52.76 % reduction). The relative reductions
of IK were illustrated in Figure 1D. Currents after addition of
10 µM and 100 µM palmatine were normalized to currents
under control conditions at a given voltage, and it can clearly
be seen that the currents were inhibited to the same degree at
all potentials tested.

Table 1  Effects of palmatine on IK at a test potential of +140
mV and ICRAC at -100 mV

Concentration (µM) Inhibition of IK (%) Inhibition of ICRAC (%)

      0.3       3.36±1.96          3.81±0.40

      1     11.04±3.03        10.19±2.03

      3     23.97±4.62        21.42±3.22

    10     36.75±5.12        37.39±3.95

    30     49.58±7.98        47.50±4.38

  100     55.40±8.97        52.10±5.98

Effects of palmatine on IK1

Hyperpolarizing and depolarizing potentials over a range from
-200 mV to +175 mV were applied from a holding level of
0 mV[20]. The absolute value at the end of test pulse was
measured as the amplitude of IK1. Palmatine 0.3-100 µM failed
to have any significant effect on either inward or outward
components of IK1 at any membrane potential examined.

Effects of palmatine on ICRAC

When the holding potential was 0 mV, and the cells were
depolarized to -100 mV for 200 ms at a frequency of 0.2 Hz,
the ICRAC was evoked[21]. As shown in Figure 2, ICRAC also was
blocked by palmatine in a concentration-dependent fashion,
and the current was less sensitive to palmatine than IK with an
EC50 of 51.19±15.18 µM and nH=0.46±0.07 (n=8). Table 1 also
showed the effects of palmatine on ICRAC at a test potential of
-100 mV. Figure 2C showed the effects of palmatine on the
steady-stated I-V relationships generated by applying a series
depolarizing pulses from a holding potential of 0 mV to
different membrane potentials (-100 mV to +80 mV) with a
20 mV increment. The peak value of ICRAC in the I-V
relationship was decreased by palmatine 10 µM and 100 µM
(n=8, P<0.05 or P<0.01 vs control). But the reverse potential
of ICRAC occurred at voltage=0 mV in all cells.

DISCUSSION
In this study we have, for the first time, characterized the effects
of palmatine on the hepatocyte IK, IK1 and ICRAC by patch-clamp
techniques and demonstrated that palmatine effectively
inhibited IK and ICRAC in isolated rat hepatocytes.
      Membrane potential is important in regulating metabolic
processes in the liver, including gluconeogenesis, amino acid
transport, and the rate of uptake of bile salts[22,23]. Changes in



K+ permeability can affect the transmembrane potential.
Transcellular bile acid transport is integrated in the regulation
of intracellular pH, K+ homeostasis and membrane potential.
Hepatocellular K+-depletion can result in inhibition of bile acid
secretion despite rising intracellular concentration[24-26].
      During ischemia and hypoxia, hepatocellular volume and
K+ conductance are increased. It was reported that the
extracellular K+ increase would result in hyperpolarization and

hyperexcitabillity of cells. This would lead to cell death[27-29].
Nietsch et al demonstrated membrane potential change by
modulation of K+ channel activity might be involved in the
mechanism of apoptosis in human hepatoma cells[30,31]. The
inhibition of K+ channels could delay hepatocyte apoptosis
and death.
      Calcium has been demonstrated to play an important role
in hepatocyte damage. Elevation of intracellular Ca2+

Figure 1  Effects of palmatine on IK. (A) Family of IK recorded with changes in the absent or present of palmatine 100 µM. Dotted
line indicates zero current level. (B) Dose-response curve for the effects of palmatine on IK. The data are mean values from n=8
cells. (C) I-V relationship of IK under control ( ) and palmatine 10 µM ( ), 100 µM ( ). The voltage steps used to elicit IK are
shown in the inset of panel (B). bP<0.05, cP<0.01 vs control (n=8). (D) Dependence of palmatine effects on test potential. The values
for the mean percentage reductions in IK induced by palmatine 10 µM ( ) and 100 µM ( ) are plotted against the corresponding
test potential. No significant voltage-dependence was observed for the blocks induced by palmatine.

Figure 2  Effects of palmatine on ICRAC. (A) Family of ICRAC recorded with changes in the absent or present of palmatine 100 µM.
Dotted line indicates zero current level. (B) Dose-response curve for effects of palmatine on ICRAC. The data are mean values from
n=8 cells. (C) I-V relationship of ICRAC under control ( ) and palmatine 10 µM ( ), 100 µM ( ). The voltage steps used to elicit IK

are shown in the inset of panel (B). bP<0.05, cP<0.01 vs control (n=8).
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concentration was associated with the development of cell
damage and apoptosis[32-35].
      Recent developments suggest that an early disturbance in
hepatocellular Ca2+ homeostasis might be involved in the
hepatocellular damage induced by CCl4

[36-38].
     Hepatocytes as the nonexcitable cells are short of the
voltage-dependent Ca2+ channels but possess plasma membrane
Ca2+ channels that have a high selectivity for Ca2+, and are
activated by a decrease in the concentration of Ca2+ in
intracellular stores, which named ICRAC

[39, 40]. The gating of ICRAC

is independent of membrane voltage, there is, nevertheless, a
strong dependence of Ca2+ influx on the driving force exerted
by the membrane potential, ie, the influx rate increases with
hyperpolarization and decreases with depolarization, which is
different from cardiac myocytes that Ca2+ influx increases with
depolarization and decreases with hyperpolarization[41].
      Palmatine inhibits ICRAC with EC50 of 51.19 µM, which is
higher than the EC50 of ICa,L in cardiac myocytes[42]. The
differential drug sensitivity of the two currents also provides
further support for the idea that ICRAC is different from voltage-
gated Ca2+ channel.
       In conclusion, palmatine blocks K+ channel and decreases
the extracellular K+ to regulate the metabolic processes in the
liver. Palmatine also inhibits ICRAC effectively and protects
hepatocytes from calcium overload via the inhibition of ICRAC.
The inhibitory effects on IK and ICRAC may partly contribute to
the hepatoprotective action of palmatine.
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