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Advances in nanomedicine are providing sophisticated functions
to precisely control the behavior of nanoscale drugs and diagnostics.
Strategies that coopt protease activity as molecular triggers are
increasingly important in nanoparticle design, yet the pharmacoki-
netics of these systems are challenging to understand without
a quantitative framework to reveal nonintuitive associations. We
describe a multicompartment mathematical model to predict strat-
egies for ultrasensitive detection of cancer using synthetic bio-
markers, a class of activity-based probes that amplify cancer-
derived signals into urine as a noninvasive diagnostic. Using a model
formulation made of a PEG core conjugated with protease-cleavable
peptides, we explore a vast design space and identify guidelines for
increasing sensitivity that depend on critical parameters such as
enzyme kinetics, dosage, and probe stability. According to this
model, synthetic biomarkers that circulate in stealth but then
activate at sites of disease have the theoretical capacity to discrim-
inate tumors as small as 5 mm in diameter—a threshold sensitivity
that is otherwise challenging for medical imaging and blood bio-
markers to achieve. This model may be adapted to describe the
behavior of additional activity-based approaches to allow cross-plat-
form comparisons, and to predict allometric scaling across species.

compartmental modeling | activity-based probes | cancer diagnostics |
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The clinical management of cancer is increasingly dependent
on the discovery of new biomarkers and the development of

ultrasensitive technologies to detect them at a stage when ther-
apeutic interventions may be effective (1, 2). However, despite
their growing importance, biomarkers lack predictive power to
impact patient outcomes during the earliest stages of disease.
The challenges are multifaceted: Biomarkers are shed from tu-
mors at rates that vary by four orders in magnitude (3), are
significantly diluted in blood, and circulate for short periods.
Recent mathematical studies showed that tumors may remain
undetectable with blood biomarkers for an entire decade fol-
lowing tumorigenesis, reaching 1–2.5 cm in diameter (4, 5). To
increase sensitivity, major research areas include the develop-
ment of ultrasensitive in vitro diagnostic platforms (6–11), as
well as methods to increase biomarker production by solid tu-
mors (12, 13). These approaches are designed to measure the
quantity, or abundance, of a disease biomarker.
In contrast to abundance-based methods, activity-based

probes are a class of agents that are administered in prodiag-
nostic form but produce strong diagnostic signals after enzymatic
activation (14, 15). These approaches rely on disease-associated
enzymes as catalysts to produce a detection signal, of which
proteases are particularly potent because the cleavage of peptide
bonds is irreversible, and a single protease can cleave many
substrates to amplify signals. However, activity-based probes
operate within a narrow time window and are activated by off-
target tissues. A mathematical model of activity-based probes

may aid in examining the critical parameters that determine
specificity and sensitivity, and predict the use of activity-based
probes in new clinical settings such as predicting disease progres-
sion earlier than standards of care (3).
To date, pharmacokinetic models have been developed for

abundance-based drugs and diagnostics—such as predicting
nanoparticle (NP) targeting to tumor vasculature (11), identify-
ing rate-limiting steps in the distribution of drugs within tumors
(16–18), providing guidelines to increase NP penetration (19),
and modeling NP disassembly at the glomerulus (20). Here, we
establish a mathematical framework for synthetic biomarkers, a
class of activity-based probes that amplify disease-derived signals
into urine for easy analysis (3, 21–24). We use model formula-
tions based on a size-tunable PEG core conjugated with protease
substrates in a mouse model of colorectal cancer (CRC). By
accounting for key nanomaterial, biochemical, and physiological
parameters, our model predicts urine pharmacokinetics and re-
veals nonintuitive behavior of activity-based biomarkers.

Results
Multicompartment Model of Synthetic Biomarkers. Synthetic bio-
markers are made of NPs conjugated with protease-cleavable
peptides. Following administration, a chain of events unfolds to
detect disease: (i) NPs accumulate in diseased tissue, (ii) peptides
are cleaved by local proteases, (iii) the cleavage fragments are
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cleared into urine, and (iv) the urine is analyzed by multiple ana-
lytical platforms. In previous studies (3, 21–23), we engineered
synthetic biomarkers for use in different diseases and methods of
urinalysis. Here we chose to use PEG cores to formally explore the
role of scaffold size, fluorogenic substrates to quantify kinetics by
fluorescent imaging, and a xenograft model of CRC.
Our multicompartment model (Fig. 1 and SI Text) is made of a

blood compartment (compartment i) where synthetic biomarkers
circulate with half-life t1=2, and passively diffuse into the tumor
compartment (compartment ii) by the rate constant kNPtumor. In the
tumor, peptides are cleaved by tumor proteases [e.g., matrix
metalloproteinase 9 (MMP9)] following Michaelis−Menten en-
zyme kinetics (i.e., kMMP9

cat , KMMP9
M , Etumor

MMP9), and passively diffuse
(kreportertumor ) to the blood compartment (compartment iii). These
reporters combine with reporters cleaved in the blood by cir-
culating nonspecific proteases (kbloodcat , Kblood

M , Eblood
n.s. ) and tumor-

secreted proteases (Eblood
tumor) before filtering into urine (kurine). We

assumed negligible nonspecific protease activities within the tu-
mor compartment, and introduced a rate constant, kabsorb, to ac-
count for nonspecific binding (e.g., on blood vessels) and kidney
reabsorption of our reporter. In each compartment, our model
assumes a homogeneous, well-mixed distribution of NPs or re-
porters. A deterministic, well-mixed assumption is valid for
Michaelis−Menten kinetics when a large number of molecules
are involved, which is true for this study involving solution con-
centrations ranging from micromolar to nanomolar. Model pa-
rameters are summarized in Table S1.

Sensing Protease Activity with Peptide−PEG Synthetic Biomarkers. A
key feature of synthetic biomarkers is the use of a nanoscale core
to increase the hydrodynamic diameter of surface-conjugated
peptides beyond the pore size of the glomerulus, which for NPs is
∼5 nm in diameter (25); as a result, peptides conjugated to NPs
appear in the urine after a cleavage event. To explore this size
dependency in a model system, we analyzed amine-terminated
eight-arm branched PEG (10 kDa, 20 kDa, and 40 kDa) by dy-
namic light scattering (DLS) and observed increases in hydro-
dynamic diameters from ∼3 nm to 10 nm corresponding to their
molecular weights (Fig. 2 A and B) that were similar to mea-
surements made in 50% FBS (Fig. S1). Benchmarked against the
size of our previous nanoworm (NW) formulation (∼30 nm),
PEG NPs were smaller by severalfold, which increases passive
diffusion rates (18). To determine renal clearance efficiencies,
we administered fluorescent PEG and NWs and detected urine
levels up to ∼80% of injected dose (ID) for 10 kDa PEG and

∼40% ID for 20 kDa PEG within 60 min (Fig. S2). By contrast,
40 kDa PEG and NWs filtered at negligible levels into the urine
(∼0.09% ID and ∼0.19% ID, respectively), consistent with the
size exclusion limit of the glomerulus (Fig. 2C). Based on these
results, we selected 40kD PEG to develop our model.
Next, we investigated the use of peptide−PEG NPs to sense

protease activity. We selected an MMP substrate PLGVRG
(26) and synthesized a fluorogenic derivative, Q1, containing an
N-terminal fluorophore (FAM), an internal quencher (CPQ-2),
and a C-terminal cysteine residue for thiol-mediated coupling
onto 40 kDa PEG (Q1 = 5FAM-GGPLGVRGKK(CPQ-2)-
PEG2-C). To test substrate cleavage, we incubated Q1–PEG
with MMP9, a gelatinase overexpressed by solid tumors, and
detected a rapid increase in sample fluorescence (Fig. 2D). In the
presence of the MMP inhibitor Marimastat (Fig. 2D, arrow), we
observed an immediate arrest in fluorogenesis, confirming
protease-dependent activation of Q1–PEG. To validate the use
of PEG-based probes to cancer mice, we synthesized F1 (se-
quence, eGvndneeGffsarkGGPLGVRGC), a tandem peptide
made of our MMP substrate PLGVRG and the protease-re-
sistant D-stereoisomer of glutamate−fibrinopeptide B (Glu–Fib;
sequence = eGvndneeGffsar, lowercase = d-isomer) (Fig. 2A).
Glu–fib is a biologically inert peptide we used in past studies to

Fig. 1. Multicompartment model for synthetic biomarkers. Synthetic bio-
markers sense tumor protease activity to produce detection signals in urine.
After i.v. administration, synthetic biomarkers diffuse into the tumor (kNP

tumor)
and are cleaved by tumor-associated proteases (e.g., MMP9) according to
Michaelis−Menten kinetics (kMMP9

cat , KMMP9
M ). The cleaved reporters then dif-

fuse back into blood, where they combine with reporters produced from
nonspecific proteases (kblood

cat , Kblood
M , and Eblood

n.s. ) and secreted tumor-associ-
ated proteases (Eblood

tumor). A fraction of the reporters are reabsorbed by the
kidneys (kabsorb) before clearance into urine (kreporter

urine ). See SI Text for deri-
vation of model equations.

Fig. 2. PEG-based synthetic biomarkers detect cancer from urine.
(A) Schematic of a PEG core conjugated with tandem peptides made of an
MMP-sensitive substrate (red) and a fluorophore-labeled reporter (black).
The reporter fragments are released from the PEG scaffold after cleavage by
proteases. (B) DLS analysis of PEG (blue) and NWs (brown) with hydrody-
namic diameters. (C) Representative images of healthy mice after infusion
with fluorescent 40-kDa PEG or NWs showing negligible clearance into the
bladder. (D) Kinetics of substrate hydrolysis after incubation of Q1–PEG with
MMP9 (red), MMP + Marimastat (blue), or PBS control (black). Arrow in-
dicates time point when Marimastat was added. RFU, relative fluorescence
units. (E) Representative fluorescent images of tumor-bearing and healthy
mice following administration of F1-PEG showing higher urine fluorescence
in tumor-bearing mice.
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promote renal clearance of cleaved peptide fragments (3). In
mice bearing LS174T CRC tumors and given F1-PEG, we ob-
served significant increases in bladder fluorescence compared
with their healthy counterparts (Fig. 2E)—similar to our pre-
vious results using MMP-sensitive NWs (3). Together, our data
indicated that synthetic biomarkers with PEG cores can sense
protease activity and detect CRC from urine.

Extracting Model Parameters in Vivo.We next sought to identify the
values of the parameters for our system of ordinary differential
equations (ODEs). To determine circulation times, we assumed
that systemic clearance is due to renal filtration and clearance by
the mononuclear phagocyte system (MPS). Thus, to identify
clearance rate constants (kNPMPS, k

reporter
MPS , kNPurine, and kreporterurine ), we

administered fluorescent PEG and Glu–fib and fitted their levels
in blood and urine to a simplified three-compartment model (n =
3; error bars, s.d.; Figs. S3 and S4). Consistent with their relative
size, Glu–fib cleared into the urine at a rate approximately
fivefold greater than MPS clearance (kreporterurine vs. kreporterMPS ), but, by
contrast, PEG was characterized by an MPS to renal clearance
(kNPMPS vs. kNPurine) ratio of ∼35 (Table S1). From these values, we
calculated circulation half-lives of ∼18 min and ∼18.7 h for Glu–
fib and PEG, respectively. To determine NP transport rate into
tumors (kNPtumor), we administered fluorescent PEG and NWs into
mice and analyzed tumor homogenates along with major organs
at 0 h, 0.5 h, 1 h, 3 h, 6 h, and 16 h to determine the levels of
localized NPs (n = 3; error bars, s.d.; Figs. S3 and S5). Using a
simplified two-compartment model (Fig. 5A), we determined a
tumor transport rate constant for PEG that was ∼3.5-fold greater
than NWs (Table S1) and consistent with its smaller hydrody-
namic diameter.
To incorporate the role of tumor proteases, we sought to

determine a representative set of Michaelis−Menten constants
to describe the rate at which F1-PEG may be cleaved by tumor
proteases. For simplification, we focused on MMP9, a gelatinase
that is involved in the growth and invasion of solid tumors and
secreted by LS174T cells (n = 3; error bars, s.d.; Fig. S6). To
determine the cleavage efficiency, we incubated different concen-
trations of F1-PEG with MMP9 and extracted initial cleavage ve-
locities to calculate kMMP9

cat and KMMP9
M (n = 3; error bars, s.d.; Fig.

3C), resulting in a catalytic efficiency kcat/KM ∼2.0 × 105 M–1·s–1

that was similar to published values (27, 28). Similarly, we simplified
nonspecific protease activities in blood into a single set of repre-
sentative Michaelis−Menten constants (kbloodcat , Kblood

M , Eblood
n.s. ) whose

values were determined by fitting our system of ODEs against urine
kinetics obtained in healthy mice (Table S1). These values allowed
us to fit for the concentration of tumor-specific proteases in the
tumor and blood compartments (Etumor and Eblood

tumor, respectively)
using tumor-bearing animals (n = 3; error bars, s.d.; Fig. S3D).
Taken together, our experimentally fitted multicompartment
model predicted urine pharmacokinetics that closely aligned
with our experimental observations.

Exploring Synthetic Biomarker Properties in Silico. We next set out
to explore the parameters important for detection sensitivity. In
healthy blood, circulating proteases such as the coagulation and
complement family may cleave peptide substrates. Consequently,
to explore the effect of nonspecific protease activity, we varied
kbloodcat and Eblood

n.s. from their starting values and observed that
background urine signals were reduced to ∼10% of their original
values if either kbloodcat or Eblood

n.s. was reduced by a factor of 16 (n = 3;
error bars, s.d.; Fig. 3A). Under these conditions, the difference in
urine signal (i.e., tumor – control) increased and broadened,
shifting the maximum peak intensity from ∼50–200 min (Fig. 3B).
The time point at which our formulation was predicted to reach
maximum levels (∼50 min, red line, Fig. 3B) was consistent with
our previous studies in which we found maximum disease contrast
to occur at 1 h (3, 22).

Synthetic biomarkers are formulated from nanomaterials
whose properties can be precisely tuned (29); therefore, we ex-
plored how these properties may affect detection sensitivity. We
increased the NP half-life (tNP1=2, Fig. 3C) from 18 h to 300 h by
factors of 2, which had negligible effects, indicating that our
formulation was sufficiently long-circulating to sense protease
activity. By contrast, signal curves broadened and increased in
magnitude when the administered dose of NPs (N, Fig. 3D) was
increased from 2.5 μM (∼0.5 mg/kg) to 20 μM (∼4 mg/kg)—a
range of concentrations for iron oxide nanomaterials that are
well-tolerated in humans (30, 31). Intuitively, larger substrate
reservoirs are created at higher NP doses, consequently pro-
longing and extending peak signal intensities. Similarly, in-
creasing NP transport rates into tumors (kNPtumor, Fig. 3E) in-
creased signal intensities, reaching a limit at values three to four
decades above the starting rate constant (1.4 min–1). At this
point, detection signals are no longer dependent on NP transport
but limited by the rate at which tumor proteases cleave the
probe. Lastly, we increased the concentration of proteases in the
tumor and blood compartments (EMMP9, Fig. 3F), which shifted
signal curves upward and maximum disease contrast earlier.
Varying kMMP9

cat resulted in identical results (Fig. 3G) because

Fig. 3. Model-predicted behavior of synthetic biomarkers. Key parameters
within the mathematical model were varied to explore how they affect
urine signals. (A) Urine signals decrease as background protease activities in
blood (Eblood

n.s. , kblood
cat ) are decreased (n = 3; error bars, s.d.). (B) Normalized

urine signals (Tumor – control) increased as kblood
cat was decreased. Predicted

response of the urine signal as circulation time t1=2 (C), dose N (D), scaffold
transport into tumor kNP

tumor (E), concentration of enzymes EMMP9 (F), and rate
of catalysis kMMP9

cat (G) were increased. Except for dose of NPs, all increases in
the parameters resulted in increased detection signals. Arrows show di-
rection of trend.
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protease activity is directly proportional to kcat and E in the
Michaelis−Menten model. Collectively, our mathematical model
allows us to systematically explore the landscape of synthetic
biomarker properties and identify critical system parameters that
influence detection signals.

Validation of a Model Prediction. To validate the predictions of our
model, we normalized the urine kinetics to examine the signal-
to-noise ratio (SNR). At low concentrations of the administered
dose, N, the SNR started at a peak and decreased exponentially
(light blue, Fig. 4A), and by high N, the SNR kinetic curves
appeared constant (black, Fig. 4A). To explain this nonintuitive
behavior, we hypothesized that at low concentrations of N, the
NPs are quickly degraded in the blood by tumor-secreted and
background proteases, leaving a small fraction of the ID to dif-
fuse into the tumor bed. Therefore, the SNR traces at low N are
largely reflective of blood activity. By contrast, at high N, an NP
reservoir is created in the circulation that saturates probe acti-
vation by circulating proteases, and maintains a sufficiently large
concentration of unactivated NPs to move down their concen-
tration gradient into the tumors. Because this process depends
on passive diffusion, the signal generated from tumor proteases
is expected to occur later than blood cleavage; therefore, the
combined effect of early activation by blood and delayed acti-
vation by tumors results in relatively constant SNR kinetic
curves. To test this in silico, we examined the bounds of our
model at small N and observed that the signal (tumor + blood)
was generated largely by blood but not tumor activation, and
rapidly decayed (Fig. S7A). We then tested large N and observed
that the detection signal resulted from a constant contribution
from blood (i.e., protease activity saturated) and a delayed
activation signal from the tumor (Fig. S7B), consistent with
our hypothesis.
One consequence of this model prediction is that within the

range of reasonable NP doses (< 10 μM or ∼10 mg/kg) that
would be expected to be well-tolerated in humans, the combined

effect of probe activation by the blood and tumor compartments
results in an SNR that would be relatively constant within an
hour following administration (Fig. 4A and blue dots in Fig. 4B).
To validate this prediction, we administered our probe in two
cohorts of tumor-bearing mice at doses separated by an order of
magnitude (1 μM and 10 μM, n = 5 mice, Fig. 4 C and D).
Consistent with our model, the signal of the urine samples col-
lected from tumor animals was significantly higher compared
with the control group, and the difference in SNR was not sta-
tistically different (Fig. 4E). One implication of this result is that
it may be possible to detect disease by administering our probes
at “microdose” levels (≤ 100 μg in humans), a regulatory path-
way created by the US Food and Drug Administration to com-
press the time frame and translational path to the clinic (32).
This approach would require an ultrasensitive analytical method
for urine analysis such as digital ELISA (23). Taken together,
these experiments validate the potential of our quantitative
framework to predict nonintuitive behavior in living systems.

Strategies for Early Cancer Detection. Synthetic biomarker-based
signals are produced by the catalytic activity of tumor proteases
and concentrated into urine; therefore, we hypothesized that this
platform may be used to detect early clinical-stage tumors that
are otherwise challenging to detect using blood biomarkers. To
establish a basis for comparison, we adapted a steady-state ODE
model (5) for the blood biomarker carcinoembryonic antigen
(CEA), a biomarker for CRC. At steady state, the concentration
of CEA depends on its tumor production rate and circulation
half-life (SI Text). To estimate the bounds, we assumed an av-
erage tumor cell density of 106 cells per cubic millimeter, a CEA
retention rate of 90% (5), a half-life of 72 h (33) (tCEA1=2 ), and
minimum (PMin

CEA) and maximum (PMax
CEA) CEA production rates to

be 15 pg and 260 ng per 106 cells per 10 d, respectively, based on
our previous analysis of 24 human CRC cell lines (median value =
1.5 ng per 106 cells per 10 d) (3). At steady state, our model
predicted that tumors smaller than 10 mm in diameter (e.g., 5 mm,
gray box, Fig. 5A) would result in CEA levels beneath the baseline
threshold expected in healthy individuals (34) (5 ng/mL, dashed
line, Fig. 5A) and therefore, indistinguishable. By contrast, tumors
that were 10 mm, 20 mm, and 50 mm in diameter were predicted
to be detectable above normal levels of CEA only if the tumors
produced the biomarker at a rate within the top 11%, 32%, or
60% of the range bounded by the maximum (square, Fig. 5A) and
minimum (triangle, Fig. 5A) production rates, respectively. These
results were consistent with previous mathematical studies, which
established a detection limit of 1–2 cm for blood biomarkers (5).
We next combined both models to analyze 10-mm-sized LS174T
tumors, which produce CEA at a rate 100-fold above the median,
and our model predicted that our activity-based probe would re-
sult in urine signals that would eclipse the steady-state level of
CEA in blood (Fig. 5B). This prediction in humans is consistent
with our prior study in mice, where we showed that synthetic
biomarkers detected LS174T tumors earlier and with significantly
higher predictive power compared with CEA analysis (3).
We next applied our model to calculate its potential to detect

a theoretical human solid tumor of 5 mm in diameter, by con-
sidering the concentration of proteases expected in a tumor of
this size. We chose 5-mm tumors as a target sensitivity threshold
to represent a detection limit that is below the current thresholds
associated with computed tomography (CT) (∼1 cm) (35) or blood
biomarkers (∼1–2 cm) (4, 5). To estimate protease production
rates, we analyzed conditioned media collected from four hu-
man CRC lines and detected MMP9 secretion rates ranging
from ∼1.9 pg/106 cells per day to 12.5 pg/106 cells per day by
ELISA (Fig. S6). To calculate a range of possible protease
concentrations, we assumed an average tumor cell density of
∼106/mm3 and a protease retention rate of 90% (i.e., 10% of
proteases secreted by tumor cells are shed into the blood) (5) and

Fig. 4. Validation of a nonintuitive model prediction. The model prediction
that the SNR is invariant to NP concentrations was validated in a mouse
model of CRC. (A) Kinetic curves of the SNR versus the administered dose N.
At low N, SNR decays rapidly whereas at higher N, the SNR is held at a rel-
atively steady value. (B) At an hour after NP administration, the SNR (blue) is
invariant below an administered dose of 100 μM. The difference in signal
between tumor and control urine samples is shown as black dots. Quantified
urine signals from two cohorts of mice an hour after infusion with NPs at (C)
1 μM or (D) 10 μM (*P < 0.05, two-tailed paired t test, n = 5 mice). (E) The SNR
between the two cohorts of mice was not statistically significant (P = 0.74).

12630 | www.pnas.org/cgi/doi/10.1073/pnas.1506925112 Kwong et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1506925112/-/DCSupplemental/pnas.201506925SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1506925112/-/DCSupplemental/pnas.201506925SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1506925112/-/DCSupplemental/pnas.201506925SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1506925112/-/DCSupplemental/pnas.201506925SI.pdf?targetid=nameddest=SF6
www.pnas.org/cgi/doi/10.1073/pnas.1506925112


arrived at protease levels ranging from ∼0.4 nM to 2.7 nM (gray
box, Fig. 5C). We further adjusted the administered NP dose to
reflect the higher total blood volume (∼5 L) in humans com-
pared with mice (∼2 mL) to maintain an identical starting
concentration.
Using these parameters, we explored how detection signals

depend on the concentration of proteases produced by tumors.
Our selected PEG formulation (red dot, Fig. 5C) produced de-
tection signals in urine at concentrations (∼7 μM) that are
readily detectable by ELISA (21, 22), which has a lower limit of
detection of ∼10 pM (dashed line, Fig. 5C). Using 10 pM as the
lower detection limit, we decreased protease levels from the
empirically fitted value (red) by several decades to reach
the range expected for 5-mm tumors (gray box), and observed
that our model predicted urine signals to fall below the limit of
detection (blue dot) (Fig. 5C). We then tested a 10-fold im-
proved synthetic biomarker formulation by increasing the rates
for tumor proteases and penetration by a factor of 10 (ktumor

cat and
kNPtumor, respectively) while simultaneously decreasing nonspecific
cleavage in blood (kbloodcat ) (Fig. 5D). With these values, the

sensitivity markedly increased, elevating urine signals from 5-mm
tumors to levels (Fig. 5D, blue dot) above the limit of detection
by ELISA. Lastly, to assess the boundaries of our platform, we
tested a 100-fold improved formulation (Fig. 5E) and found that
urine signals were bounded by the maximum plateau (Fig. 5E, blue
dot). Collectively, these data revealed important design variables
for our diagnostic, and identified strategies to formulate ultra-
sensitive synthetic biomarkers for detecting 5-mm tumors.

Discussion
The development of computational techniques in concert with
preclinical testing may provide the abilities to rapidly assess
system parameters, identify tunable nanomaterial properties,
and predict allometric scaling to humans (11, 16–19). Here, we
established a computational framework to describe the pharma-
cokinetics of activity-based synthetic biomarkers and to quantita-
tively explore the parameters that are important for sensitive
detection of disease.
In this study, we used a xenograft model of cancer to fit our

mathematical model. Tumor vessels in both primary tumors
and xenografts are poorly formed and fenestrated, and there is
abundant evidence demonstrating the effectiveness of passive
NP delivery to primary human tumors (36, 37)—results that are
consistent with observations that were first borne out in xeno-
graft tumor models. Based on these studies, xenograft tumors
may be a reasonable first step for building a quantitative frame-
work. Looking forward, our system of ODEs may be readily
adapted for orthotopic or patient-derived xenografts, syngeneic
transplant models, or genetically engineered models—because it is
built from fundamental principles of mass transport—by identifying
the values of the parameters that are specific for these tumors. In
addition, our framework may be extended to describe the behavior
of activity-based biomarkers such as fluorogenic peptide substrates
designed to emit fluorescent signals after cleavage, or chemical
substrates that covalently modify target proteases (14, 15). Here the
model parameters related to probe pharmacokinetics will be dif-
ferent for each probe, and, within the tumor compartment, addi-
tional parameters will need to be incorporated to account for the
mechanism by which the probe produces a detection signal. For
example, for fluorogenic probes, these include the fluorescent in-
tensity of a quenched and cleaved probe, background fluorescence
of the target tissue, and clearance rate of the fluorescent reporter.
The main focus of this model is to address the limit of de-

tection issue; thus we selected MMP9, a protease that is broadly
dysregulated in solid cancers. MMPs have been implicated in
cancer cell invasion and metastasis for over 35 years (38), and
many of the hallmarks of cancer (39) are dependent on MMP
activity. An ultrasensitive diagnostic for MMP9 activity may be
used in clinical settings when the tumor type is known, such as
after primary resection, when the surveillance protocol relies on
CT or magnetic resonance imaging (MRI) despite their diffi-
culties detecting metastasis 1–2 cm in diameter (35). MMP9 is
expressed to activate VEGF ligands (40) during the angiogenic
“switch” that occurs when nascent tumors are 1–2 mm in di-
ameter; therefore, measuring MMP9 activity may allow de-
tection of tumors smaller than the detection threshold of medical
imaging. To address specificity in addition to sensitivity, the
development of a cancer-type-specific diagnostic would require
a multiplexed library of activity-based probes to account for
the over 550 proteases expressed by the human genome that are
dysregulated with disease or are organ-specific. Previous studies
showed that the cleavage signatures of a 10-plex set of activity-
based probes detected disease with significantly improved sen-
sitivity and specificity compared with single probes, and identi-
fied activity-based signatures for CRC, liver fibrogenesis, and its
resolution (3). Expanding our model to include multiple pro-
teases as well as their endogenous inhibitors [e.g., tissue inhibitor
of matrix metalloproteinases (TIMPs)] may allow prediction of

Fig. 5. Strategies for ultrasensitive detection of cancer. Model predictions
for detecting small tumors in humans. (A) Steady-state levels of CEA as a
function of tumor diameter. CEA at levels resulting from tumors smaller than
10 mm in diameter is below the baseline value in healthy patients (5 ng/mL,
dashed line). (B) The urine signal after administration of synthetic biomarkers
showing amplification kinetics that surpass the steady-state concentration of
CEA in blood. (C) Examining the use of synthetic biomarkers to detect tu-
mors 5 mm in diameter, with the limit of detection of ELISA (dashed line),
estimated range of protease concentrations (gray box), and detection signals
in urine (dots). Urine signal versus protease concentration using synthetic
biomarker parameters from study. The theoretical detection signal produced
by 5 mm tumors in humans (blue dot) was below the limit of detection. (D) A
10-fold improved formulation of synthetic biomarkers resulted in over a
two-decade increase in detection signal above the limit of detection. (E ) A
100-fold improvement resulted in a four-decade increase to the maxi-
mum signal.
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disease signatures for use in multiplexed formats by mass spec-
trometry (3).

Methods
Synthetic Biomarker Synthesis. Amine terminated eight-arm PEG (10 kDa,
20 kDa, and 40 kDa; Jenkem Technologies) was dissolved in PBS and passed
through a 0.2-μm filter. DLS measurements were conducted on a Zetasizer
(Malvern) in PBS and 50% FBS. A 20-fold molar excess of succinimidyl
iodoacetate (SIA; Pierce) was reacted to introduce thiol reactive handles.
Excess SIA was removed by FPLC on a Superdex 200 column (AKTA purifier;
GE Healthcare). Cysteine-terminated peptides (Q1 = 5FAM-GGPLGVRGKK(CPQ-2)-
PEG2-C, CPC Scientific; F1 = eGvndneeGffsarkGGPLGVRGC, lowercase =
D-stereoisomer, Tufts University Peptide Core Facility) were then reacted with
PEG at a 20:1 molar ratio before excess peptides were removed by FPLC. F1-PEG
conjugated was further reacted with NHS-Vivotag750 (Perkin-Elmer) for im-
aging applications. NWs were synthesized according to previously published
protocols and functionalized with peptides as above (41). All peptide−NP
formulations were stored in PBS at 4 °C.

In Vitro Protease Assays. Q1–PEG (3 μM by peptide) was mixed with human
MMP-9 (5 μg/mL working concentration; Enzo Life Science) in a 384-well
plate at 37 °C in activity buffer (50 mM Tris, 150 mM NaCl, 5 mM CaCl2, 1 μm
ZnCl2) containing 1% BSA and monitored with a microplate reader (Spec-
troMax Gemini EM). Marimastat (Tocris Bioscience) was dissolved in DMSO
and used at a final concentration of 5 μM. Michaelis−Menten constants were
determined by assessing initial cleavage velocities at different substrate
concentrations followed by mathematical fit using GraphPad 5.0 (Prism).

In Vivo Imaging. All animal work was approved by the Committee on Animal
Care at Massachusetts Institute of Technology (protocol 0414–022-17). To
produce tumor xenografts, LS174T cancer cells (ATCC) were maintained in

10% FBS Eagle’s minimum essential medium (EMEM) and inoculated s.c. (5 ×
106 cells/flank) in NU/NU mice (Charles River). Tumors were allowed to grow
for ∼2 wk before administration of F1-PEG. Urinary kinetics was monitored by
whole animal imaging (IVIS, Xenogen). For absolute quantification of urine
fluorescence, urine samples were collected and quantified against VT-750 Glu–
fib standards on a Licor Odyssey scanner.

Pharmacokinetics. For organ distribution, VT-750-labeled PEG or NWs were
administered i.v. (5 μM, 200 μL PBS) before necropsy. Major organs were
placed in five volumes (wt/vol) of homogenization buffer (20 mM Tris, 1%
SDS, pH 8.0) and homogenized by gentleMACS Octo dissociator (Mitenyi
Biotec). VT-750 fluorescence in the supernatant was quantified against free
VT-750 by Licor scanner. For half-life measurements, fluorescent NWs or PEG
was administered i.v. (5 μM, 200 μL PBS) and ∼10 μL of blood was collected
by retroorbital draws using microhematocrit tubes (VWR). Samples were
transferred into 100 μL of PBS containing 5 mM EDTA and spun at 1,000 × g
to pellet blood cells. Fluorescent VT-750 levels were quantified against a
ladder of free VT-750 by Licor scanner.

Mathematical Modeling. Our system of ODEs was solved with MatLAB using
the differential equation solver ODE15s. The model was fitted to our ex-
perimental data by minimizing the square of the difference with a default
tolerance of 10−20. See SI Text for model equations.
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