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Metabolites provide a direct functional signature of cellular state.
Untargeted metabolomics experiments usually rely on tandemMS to
identify the thousands of compounds in a biological sample. Today,
the vast majority of metabolites remain unknown. We present a
method for searching molecular structure databases using tandem
MS data of small molecules. Our method computes a fragmentation
tree that best explains the fragmentation spectrum of an unknown
molecule. We use the fragmentation tree to predict the molecular
structure fingerprint of the unknown compound using machine
learning. This fingerprint is then used to search a molecular structure
database such as PubChem. Our method is shown to improve on the
competing methods for computational metabolite identification by
a considerable margin.
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Metabolites, small molecules that are involved in cellular re-
actions, can provide detailed information about cellular state.

Untargeted metabolomic studies may use NMR or MS technolo-
gies, but liquid chromatography followed by MS (LC/MS) can de-
tect the highest number of metabolites from minimal amounts of
sample (1, 2). Untargeted metabolomics comprehensively compares
the mass spectral intensities of metabolite signals (peaks) between
two or more samples (3, 4). Advances in MS instrumentation allow
us to simultaneously detect thousands of metabolites in a biological
sample. Identification of these compounds relies on tandem MS
(MS/MS) data, produced by fragmenting the compound and re-
cording the masses of the fragments. Structural elucidation remains
a challenging problem, in particular for compounds that cannot
be found in any spectral library (1): In total, all available spectral
MS/MS libraries of pure chemical standards cover fewer than
20,000 compounds (5). Growth of spectral libraries is limited by the
unavailability of pure reference standards for many compounds.
In contrast, molecular structure databases such as PubChem (6)

and ChemSpider (7) contain millions of compounds, with PubChem
alone having surpassed 50 million entries. Searching in molecular
structure databases using MS/MS data is therefore considered a
powerful tool for assisting an expert in the elucidation of a com-
pound. This problem is considerably harder than the fundamental
analysis step in the shotgun proteomics workflow, namely, searching
peptide MS/MS data in a peptide sequence database (8): Unlike
proteins and peptides, metabolites show a large structural variability
and, consequently, also large variations in MS/MS fragmentation.
Computational approaches for interpreting and predicting MS/MS
data of small molecules date back to the 1960s (9): Due to the
unavailability of molecular structure databases at that time, struc-
ture libraries were combinatorially generated and then “searched”
using the experimental MS/MS data. “Modern” methods for this
question have been developed since mid-2000. Particular progress
has been made for restricted metabolite classes such as lipids (5),
but as with peptides, results cannot be generalized to other me-
tabolite classes. For the general case, several strategies have been
proposed during recent years, including simulation of mass spectra
from molecular structure (10, 11), combinatorial fragmentation
(12–17), and prediction of molecular fingerprints (18, 19).

Searching in a molecular structure database is clearly limited to
those compounds present in the database. Fragmentation trees
have been introduced as a means of analyzing MS/MS data with-
out the need of any (structural or spectral) database (20–22). In
this paper, the term “fragmentation tree” is exclusively used to
refer to the graph-theoretical concept introduced in ref. 20, not
“spectral trees” that describe the dependencies of multiple MS
measurements; see Vaniya and Fiehn (23) for a review. In more
detail, our fragmentation trees are predicted from MS/MS data
by an automated computational method such that peaks in the
MS/MS spectrum are annotated with molecular formulas of the
corresponding fragments, and fragments are connected via as-
sumed losses. Clearly, there exist other approaches with the
broad aim of identifying metabolites, such as network-based
methods (24–26) and combined approaches (27); see Hufsky
et al. (28) for a review of computational methods in MS-based
metabolite identification.
It is undisputed that MS/MS data alone are insufficient for full

structural elucidation of metabolites. We argue that elucidation of
stereochemistry is currently beyond the power of automated search
engines, so we try to recover the correct constitution (bond struc-
ture) of the query molecule, that is, the identity and connectivity
(with bond multiplicities) of the atoms, but no stereochemistry in-
formation. Throughout this paper, we refer to the constitution of
the molecule as its structure. In practice, orthogonal information is
usually available, both analytical (retention time, ion mobility drift
time, infrared and UV spectroscopy, and NMR data) and on the
experimental setup (extraction procedure and organism) (29, 30).
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We assume that this information is not presented to the search
engines but rather used in a postprocessing step to manually select
the best solution from the output list of the engine. This is com-
parable to the everyday use of search engines for the internet.
Here, we present CSI (Compound Structure Identification):

FingerID for searching a molecular structure database using
MS/MS data. Our method combines computation and comparison
of fragmentation trees with machine learning techniques for the
prediction of molecular properties of the unknown compound
(19). Our method shows significantly increased identification
rates compared with all existing state-of-the-art methods for the
problem. CSI:FingerID is available at www.csi-fingerid.org/. Our
method can expedite the identification of metabolites in an
untargeted workflow for the numerous cases where no reference
measurements are available in spectral libraries.

Results
Methods Overview. Recently, we used fragmentation trees to
boost the performance of molecular fingerprint prediction using
multiple kernel learning (19). Here, we further combine this
method with a kernel encoding chemical elements, a kernel
based on recalibrated MS/MS data, five additional kernels based
on fragmentation tree similarity, and two pseudokernels based
on fragmentation tree alignments (31). We then add PubChem
(CACTVS) fingerprints (881 molecular properties) and Klekota–
Roth fingerprints (32) (4,860 molecular properties) to the pool of
predictable fingerprints. This results in 1,415 molecular properties
that can be learned from the data; we will refer to these molecular
properties as the fingerprint of a molecular structure. Finally, we
use maximum likelihood considerations and Platt probabilities to
refine the fingerprint similarity scoring.

Fig. 1. Workflow of our method CSI:FingerID. During the learning phase, we use MS/MS reference data to train a set of predictors for molecular properties
(the fingerprint). In the prediction phase we use MS/MS data of an unknown compound to find a fragmentation tree and to predict the fingerprint of the
unknown. In the scoring phase we compare the predicted fingerprint of the unknown to fingerprints of molecular structures in a structure database,
searching for a best match. See Materials and Methods for details.
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Our method can roughly be divided into three phases (Fig. 1):
one phase for training the method on some reference set of known
compounds and two phases for identifying unknown compounds.
In all cases, MS/MS spectra of each compound are first trans-
formed into a fragmentation tree by the automated method de-
scribed in refs. 22 and 33, and both the MS/MS spectra and the
fragmentation tree of the compound are used as input for the
subsequent analysis. In the learning phase, we use a database of
reference compounds with known molecular structure. The
used machine learning method falls into the class of kernel
methods (34), where a kernel denotes a similarity measure for
either MS/MS spectra or fragmentation trees. We compute several
such similarity measures for each pair of compounds in the ref-
erence data and also determine weights to combine all similarity
measures into one (multiple kernel learning) (19). In addition, we
compute the molecular fingerprint of each reference compound
using its known structure. For each molecular property in the
fingerprint, we then train a support vector machine (35) (SVM)
that, using the kernel similarities, tries to separate compounds into
those that exhibit the molecular property and those that do not.
Platt probabilities (36) allow for a more fine-grained prediction,
replacing the 0/1 predictions of classical SVM by some (posterior)
probability for the presence of the molecular property.
The second part, where we want to find an unknown compound

in a database of molecular structures, consists of two phases. In the
prediction phase, we are given the MS/MS spectra of an unknown
compound. We compute kernel similarities of the unknown com-
pound against all compounds in the reference dataset, based on
MS/MS spectra and fragmentation trees. We then use SVMs
trained above to predict the (probability of the) presence or ab-
sence of each molecular property for the unknown compound. This
results in a predicted fingerprint of the unknown compound. In the
scoring phase, we compare the predicted fingerprint of the un-
known compound against fingerprints of compounds in a molecular
structure database such as PubChem. For each candidate molecular
structure, its fingerprint is scored against the predicted fingerprint;
candidate structures are sorted with respect to this score and
reported back to the user. We stress that the unknown compound
is usually not part of the training data; in our evaluation below, we
make sure that this is never the case, using cross-validation.

Identification Quality. We first evaluate each method using com-
pounds from the combined Agilent and GNPS (Global Natural
Products Social) dataset. Our method strongly outperforms all other
available tools for searching MS/MS data in a molecular structure
database (Fig. 2). Compared with the runner-up, FingerID, the
number of correct identifications is 2.5-fold higher (34.4% vs.
13.8%) when searching PubChem. CFM-ID reaches third place
with 13.2% identification. We achieve 63.5% correct identifica-
tions in the top five output; next come FingerID with 36.1% and
CFM-ID with 36.0%. Our method reaches an identification
rate of 50% at the fractional rank 2.23, far ahead of CFM-ID

(fractional rank 13.5) and MAGMa (13.7). It reaches an iden-
tification rate of 66.7% for fractional rank 6.38, again far ahead
of CFM-ID (50.0) and MAGMa (51.0). See Fig. S1 for identi-
fication rates for all ranks. Searching biocompounds in the bio-
database, we achieve 68.5% correct identifications, compared
with 59.5% and 57.4% for the two next-best methods, MAGMa
and CFM-ID, respectively (Fig. 2). For 92.3% of the query
compounds, the correct answer is contained in the top five for
our method, compared with runners-up FingerID (86.1%) and
CFM-ID (84.2%). Searching the complete combined dataset in
the biodatabase, this corresponds to 55.2% correct identifications
for our method (Fig. S1).
The Agilent dataset is proprietary and, hence, cannot be used to

evaluate future methods. We therefore repeated our analysis, this
time searching with query instances from the two datasets in-
dividually (Figs. S2–S4). For the Agilent dataset, we reach 39.3%
correct identifications, compared with 19.6% for FingerID and
15.3% for MAGMa. For the GNPS dataset, all methods suffer a
slight loss in identification quality, but trends are highly similar
to those reported above. For example, identification rates when
searching PubChem decrease to 31.8% for our method, 12.1% for
CFM-ID, and 11.8% forMAGMa, making the identification rate for
our method 2.6-fold higher than for the runner-up. Our method
achieves an identification rate of 50% for fractional rank 2.59, with
the next-best being MAGMa (fractional rank 15.5) and CFM-ID
(17.5). Our method reaches 66.7% identifications for fractional rank
7.62, compared with MetFrag (58.5) and MAGMa (63.1). When
searching biocompounds in the biodatabase we reach 64.3% correct
identifications, compared with 56.5% for MAGMa; the correct an-
swer is in the top five for 90.2%, with runner-up FingerID (81.1%).
We also evaluated against the baseline method of randomly

ordering candidates with the correct molecular formula. Ran-
dom ordering performs well for searching biocompounds in the
biodatabase, with 30.7% correct identifications and 64.3% in the
top five for the combined dataset. This demonstrates the power
of knowing the correct molecular formula for structure eluci-
dation when searching in a restricted structure database.
Next, we compare methods for each individual query instance.

See Fig. 3 for the overlap in identifications of our method, CFM-ID,
and MAGMa; our method reaches 5.4-fold more unique identifi-
cations (correctly identified compounds not identified by one of the
other two methods) than CFM-ID and MAGMa for the combined
dataset. A method outperforms another for some query instance if
it places the correct structure on a better rank. On the combined
dataset, our method outperforms CFM-ID for 65.6% of the in-
stances, whereas CFM-ID outperforms our method for 23.8% of
them. Our method outperforms MAGMa for 66.1% and is out-
performed for 24.1% of the instances. For MIDAS, MetFrag, and
FingerID, our method outperforms each of these methods for more
than 68.9% of the instances and is outperformed for at most 20.6%.
In all cases, the significance (sign test P value) is below 10−127. See
Table S1 for an all-against-all comparison of methods. In Fig. S5 we

A B

Fig. 2. Methods evaluation: percentage of correctly
identified structures found in the top k output of the
different methods, for maximum rank k= 1, . . . , 20.
Searching N= 5,923 compounds from the combined
Agilent and GNPS dataset in PubChem (A) and the
N= 4,773 biocompounds from the combined dataset
in the biodatabase (B). Identification rates 50% and
66.7% marked by dashed lines.
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show nine exemplar compounds that were correctly identified by
our method, but not by any other method in this evaluation.
We evaluated several new scoring functions for CSI:FingerID

and found three that perform better than the function proposed in
refs. 18 and 19 (Fig. 4). Among these, “modified Platt” achieves
the best identification rates and was therefore selected as the
default scoring function for CSI:FingerID. Compared with the
original scoring function based on predictor accuracy (18, 19), we
reach 17.0% (4.99 percentage points) more correct identifications.
Because our method employs machine learning to predict

molecular properties of the query compound, additional data can
improve the performance of the predictors. To estimate the scale
of this effect, we repeated the learning step for all predictors but
this time presented the method with only a fraction of the data for
learning. Average accuracy and F1 score of the predictors, as well
as their performance for searching PubChem, are shown in Fig. 5.
Varying the amount of training data, a monotonic increase is
observed in accuracy and F1 score of the molecular property
predictions. This growth does not saturate with the amount of data
available in our experiments. For the resulting identification rates,
we observe an almost linear increase when varying relative training
data size between 40% and 90%, whereby 400 additional com-
pounds in the training data result in an increase of roughly one
percentage point in the identification rate.
We found that the performance of our method is influenced by

more than just the amount of available training data: To a great ex-
tent, our method depends on “useful” molecular properties it can
predict. Whether or not a particular molecular property is “useful” is
determined by a multitude of parameters, such as discriminating
power in PubChem (a molecular property that is inherited by the vast
majority of compounds in PubChem is of little use in filtering out
wrong candidates) or availability of training data for both the presence
and absence of the property. To estimate how additional molecular
properties can further improve the power of our method in the future,

we artificially restricted the properties available for prediction and
evaluated the method for the reduced sets of molecular properties
(Fig. 5). We find that increasing the available molecular properties
causes a monotonic, logarithm-like increase in the identification rate.
Finally, we evaluated all methods on an independent dataset

from MassBank (Fig. S6). For this dataset, our method reaches
39.5% correct identifications searching PubChem, compared with
19.0 and 5.77% for the runners-up FingerID and MIDAS. For 267
compounds, we find corresponding structures in the training data;
our method correctly identifies more than two-thirds (68.8%) of
these compounds. We observe a major drop in identification ac-
curacy for all methods but ours and FingerID on the complete
MassBank dataset, and a similar behavior for all methods on the
“novel” compounds: Searching for the 358 “novel” compounds in
PubChem, our method reaches 17.7% correct identifications,
followed by FingerID (8.34%) and MetFrag (5.70%).

Discussion
When searching a molecular structure database using MS/MS
data, CSI:FingerID achieves significantly better results than exist-
ing state-of-the-art methods. We observe a 2.5-fold increase of
correct identifications compared with the runner-up method when
searching PubChem and a 6.0- to 7.8-fold fractional rank decrease
when trying to recover the correct solution for 50% or 66.7% of the
instances, respectively.
It must be understood that finding the correct molecular struc-

ture in a molecular structure database as enormous as PubChem,
being four orders of magnitude larger than existing MS/MS li-
braries, is highly challenging and will never be possible without a
certain fraction of bogus identifications. We have deliberately left it
to the expertise of the user to select the best molecular structure
from the suggested candidates. Additional information such as ci-
tation frequencies or “number of PubChem substances” (16) can
further assist the user in identifying the most promising candidates.
We did not use such information in our evaluation to avoid over-
estimating the method’s power: Spectral libraries mostly contain
well-described compounds where pure reference standards are
available, and such compounds also receive many citations and
have many PubChem substance entries.
For the independent dataset, our method shows good identifi-

cation performance, but for the 358 “novel” compounds where no
corresponding structure is present in the training data, we observe
a severe drop in identification rates for all methods. We manually
inspected the MS/MS data but detected no peculiarities. Currently,
we cannot convincingly explain the drop of identification rates,
despite testing numerous possible explanations such as number of
candidates of an instance, or structural similarity of candidates to
the true solution. The only peculiarity we found is distinctively reduced
identification rates for flavonoid compounds in the “Washington”
subdataset.
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Running times of FingerID are fastest, whereas our approach,
MetFrag, and MAGMa are roughly on par; in contrast, those of
CFM-ID and MIDAS are two orders of magnitude higher (Table
S2). This is not a problem for CFM-ID because spectrum simu-
lation is done only once for each molecular structure during
preprocessing, whereas comparison of spectra is very fast, but it
can severely hinder the use of MIDAS in practice.
We found that choosing the correct cross-validation setup has a

huge impact on our evaluation: If we choose cross-validation batches
solely based on the individual measurements of the compounds,
ignoring that two batches may contain the same structure, then our
identification rate for searching in PubChem increases to a staggering
58.5% (Fig. S7). Manual inspection confirmed that different
compounds with identical structure (constitution) often show
highly similar MS/MS data.
Molecular structure databases keep growing at a pace beyond

synthesizing capacities. To this end, CSI:FingerID and other
methods for searching in molecular structure databases represent
a paradigm shift in the metabolomics field. Clearly, CSI:FingerID
can and should be combined with other search engines. In par-
ticular, it should be accompanied by a search in spectral libraries
(37) such as GNPS itself, and alternative methods for structural
elucidation (24–26). In cases where the class of the query compound
is known, more specialized approaches may be available, such as
LipidBlast for lipids (5), or database searching and de novo se-
quencing for small peptides (38).
Compared with the original FingerID method of 2012 (18),

identification rates of our method are 2.5-fold higher. With this
and our experiments on limiting training data and molecular
properties (Fig. 5), we predict that CSI:FingerID will reach even
better identification rates in the near future. Our method can
open up new paths beyond searching in structure databases such
as PubChem: An obvious next step will be to search in structure
databases containing hypothetical compounds (39, 40), poten-
tially allowing us to overcome the limits of molecular structure
databases.

Materials and Methods
For training the method, we use a set of 4,138 small compounds from the public
GNPS Public Spectral Libraries (https://gnps.ucsd.edu/ProteoSAFe/libraries.jsp) and
2,120 compounds from theMassHunter Forensics/Toxicology PCDL library (Agilent
Technologies, Inc.). Evaluation is carried out by 10-fold cross-validation, such that
no two batches may contain the same structure. We evaluate all methods using
3,868 compounds fromGNPS and 2,055 compounds from the Agilent dataset. We
present results for the combined Agilent and GNPS dataset, and for the two

datasets individually. As an independent dataset, we use MS/MS data of 625
compounds from MassBank (41). We search a version of PubChem (downloaded
on September 15, 2014) containing 52,926,405 compounds and 40,805,940
structures, and a filtered version of PubChem (biodatabase; see Table S3 and
Fig. S8) containing 268,633 structures of biological interest (about 300,000
compounds); 1,010 compounds from the GNPS dataset and 140 compounds
from the Agilent dataset cannot be found in the biodatabase. We refer to the
remaining 2,858+ 1,915= 4,773 compounds as biocompounds. Searching the
biodatabase was performed using both the complete datasets and the subsets
of biocompounds.

We assume that we are able to identify up front the molecular formula of
the unknown compound. For this, several approaches have been developed
that analyze the MS/MS and isotope pattern data of the compound (42); for
example, CFM-ID (10) identified the correct molecular formula for more than
90% of 1,491 nonpeptide metabolites using MS/MS data, and SIRIUS (43) was
able to find the correct molecular for 10 out of 12 instances of the CASMI
(Critical Assessment of Small Molecule Identification) 2013 contest. For all
evaluated tools, molecular structure candidates are extracted from PubChem
using the known molecular formula of the query.

We evaluate ourmethod against the original FingerIDmethod (18), CFM-ID (10),
MAGMa (16), MIDAS (15), and MetFrag (14). FingerID was retrained on the
combined training data, to enable a sensible evaluation against its successor
presented here. CFM-ID also uses machine learning techniques but was not
retrained on the new dataset due to computational limitations, resulting in an
overlap (972 structures) between training and evaluation set. Identification rates
reported here are slightly better than to those reported in ref. 10 using cross-
validation. Average running times per query range from 2 s (FingerID) to more
than 1 d (MIDAS) (Table S2). To avoid proliferating running times, MIDAS was
stopped after 24 h of computation (more than 10 times the estimated average
running time of any other program) for any instance. If the output of a tool did
not contain the correct candidate, then all candidates not in the output were
added to the end of the output list with identical, minimal score. Similarly, if a tool
was unable to process an instance, then all candidates received identical score.

Lists are sorted with respect to scores provided by each tool. Ties in the score of a
method are broken randomly, comparable to adding weak random noise to the
scores.Agivenquery instance is correctly identified if thecorrect structure is at the top
position of the output list; it is in the top k if its rank in the output list is at most k.

See SI Materials and Methods for details.
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A B
Fig. 5. Effects of training dataset size and of re-
ducing the available molecular properties. (A) Aver-
age accuracy (green) and F1 score (blue) when
training predictors on 20–90% of the combined
training dataset (6,258 compounds), where 90% cor-
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