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Computational phylogenetics is in the process of revolutionizing
historical linguistics. Recent applications have shed new light
on controversial issues, such as the location and time depth of
language families and the dynamics of their spread. So far, these
approaches have been limited to single-language families because
they rely on a large body of expert cognacy judgments or grammat-
ical classifications, which is currently unavailable for most language
families. The present study pursues a different approach. Starting
from raw phonetic transcription of core vocabulary items from very
diverse languages, it applies weighted string alignment to track both
phonetic and lexical change. Applied to a collection of ∼1,000 Eur-
asian languages and dialects, this method, combined with phyloge-
netic inference, leads to a classification in excellent agreement with
established findings of historical linguistics. Furthermore, it provides
strong statistical support for several putativemacrofamilies contested
in current historical linguistics. In particular, there is a solid signal for
the Nostratic/Eurasiatic macrofamily.

linguistic macrofamilies | phylogenetic methods | historical linguistics |
cultural evolution | mass lexical comparison

The established comparative method of historical linguistics has
been immensely successful in reconstructing the history of human

languages, far beyond the limits of written records. It established over
200 families [according to Glottolog’s classification scheme (1)],
mostly having an estimated time depth of several millennia.
The scope of this method, according to a near-consensus in the

field, is intrinsically limited to a time depth of ∼10,000 y, however.
Over the past century, there have been an abundance of proposals
for macrofamilies going back further in time. Few of these proposals
are currently backed up by evidence as strong as is required by the
professional standards of historical comparative linguistic research.
These professional standards demand reconstruction of a sub-
stantial portion of the protolanguage’s vocabulary and grammar
plus the historic processes leading to its attested descendants, which
are vetted and approved by the scholarly community via peer re-
view. So far, Afro-Asiatic is arguably the only macrofamily coming
close to meeting these criteria; all other proposals along those lines
are currently hypotheses at best, with varying degree of empirical
justification. Perhaps the most intensely discussed such proposal
concerns the Eurasiatic macrofamily (2, 3), comprising a large
portion of uncontroversial families from Eurasia. A recent statistical
study by Pagel et al. (4) estimated its time depth at 14,450 y.
The study by Pagel et al. (4), as well as other recent applica-

tions of phylogenetic methods to historical linguistics (5–7) (for
critical assessments see refs. 8 and 9), bases its inference on expert
cognacy judgments. These judgments are largely consensual within
accepted language families but necessarily controversial beyond
that limit. Therefore, the findings of Pagel et al. (4) have sparked
a fair amount of critical discussion among historical linguists (e.g.,
10). Grammatical classifications (11, 12) are an alternative to
cognacy data; they are also available only on a relatively small
sample of languages in sufficient detail at this time.
To sidestep this issue, the present investigation pursues a purely

data-oriented approach not reliant on expert judgments. It is
based on data from the Automated Similarity Judgment Program
(ASJP; data are available online at asjp.clld.org/static/listss16.zip)
(13). This database comprises translations of 40 basic concepts for

more than 6,000 languages and dialects, covering more than
two-thirds of the world’s living languages. Each entry is given in
a uniform phonetic transcription.
In this study, I zoomed in on the 1,161 doculects (languages and

dialects) from the Eurasian continent (including neighboring is-
lands but excluding the predominantly African Afro-Asiatic family
and the predominantly American Eskimo-Aleut family, as well as
the non-Asian parts of Austronesian) contained in the ASJP da-
tabase. In a first step, pairwise similarities between individual
words (i.e., phonetic strings) were computed using sequence
alignment. In a second step, these string alignments were used to
determine pairwise dissimilarities between doculects. Briefly put,
the dissimilarity between two word lists is a direct measure of how
likely it is that the degrees of similarity between the elements of
the two lists could have arisen by chance alone [details on this
method of distance calculation are provided in my previous work
(14) and are discussed in Materials and Methods]. These dissim-
ilarities served as input for distance-based phylogenetic inferences
[using the greedy minimum evolution algorithm, combined with
balanced nearest-neighbor interchange postprocessing (cf. 15)].
The resulting phylogenetic tree is in excellent agreement with

the expert classification from Glottolog (1) [as supplied by the
ASJP database; generalized quartet distance (16) is 0.005.] To
assess the reliability of this tree, the degree of statistical support
was determined for each clade. These confidence values were es-
timated using a Bayesian version of the bootstrap interior branch
test (17) (Materials and Methods; the tree annotated with confi-
dence values is supplied in Dataset S1).
Generally, the Glottolog classification is strongly supported by

this method. Only three Glottolog families have a confidence
value <  100%: Dravidian (0.998), Indo-European (0.860), and
Sino-Tibetan (0.995).

Significance

This article reports findings regarding the automatic classification
of Eurasian languages using techniques from computational bi-
ology (such as sequence alignment, phylogenetic inference, and
bootstrapping). Main results are that there is solid support for the
hypothetical linguistic macrofamilies Eurasiatic and Austro-Tai.
Unlike comparable previous work, these findings do not depend
on manual assessments of etymological facts. This study contrib-
utes to ongoing efforts to push the limits of linguistic re-
construction further back in time, and thus to open a window into
the pre-Neolithic human past. The methodological approach pur-
sued here can be seen as a statistically informed and automatized
version of Joseph Greenberg’s mass lexical comparison, which
yielded intriguing results regarding deep genetic relations be-
tween languages but has remained controversial among experts.
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The relatively low support seen for Indo-European is due to
a number of rogue taxa (i.e., doculects whose base vocabulary
word lists contain conflicting information). An example of data
containing conflicting information is provided by the English
word list. It contains the entry maunt3n “mountain,” which is
similar to its counterpart in the Romance languages, but not in
the other Germanic languages, whereas most other entries for
English are more similar to their Germanic counterparts than to
their Romance counterparts.
To detect those inconsistencies in word lists, Cronbach’s alpha,

a measure of consistency between different variables, was com-
puted for each word list. [Cronbach’s alpha has been suggested as
a way to validate word-based methods for comparing dialects (18),
and the argument carries over to cross-linguistic data. It ranges
from 0 to 1, where 0 means “totally inconsistent” and 1 means
“fully consistent.”] Most values are fairly high (mean of 0.82 and
median of 0.84), indicating that despite the rather small number
of only 40 items per word list, the similarity values for these 40
items provide a detectable signal. For 58 word lists (i.e., 5% of all
data), Cronbach’s alpha is < 0.6. These word lists include the
language isolates Basque, Burushaski, Korean, Kusunda, Nahali,
and Shom Peng, as well as all Kartvelian and Abkhaz-Adyghe
doculects. Among the Indo-European doculects, Gheg Alba-
nian, Greek, Manx, and Scottish Gaelic fall within this group. The
full list of excluded doculects is provided in SI Rogue Taxa.
The same analysis as detailed above was carried out using the

1,103 doculects with an alpha value ≥ 0.6. The resulting phylo-
genetic tree (Dataset S2) is again in excellent agreement with the
Glottolog expert classification (generalized quartet distance = 0.005,
all mismatches occur within language families). The confidence
values for the Glottolog families is invariably high [Indo-European,
0.967; Sino-Tibetan, 0.983; Uralic, 0.985; and all other families,
1.000]. The phylogenetic tree above the level of families is depicted
in Fig. 1. All nodes with support below 0.95 are collapsed (the full
tree is supplied in Dataset S3.).

Discussion
The tree contains seven taxa above the family level. Before
discussing them in detail, let me add some general considerations
on the interpretation of the automatically generated phylogeny.
Generally, a lower than average distance between two word

lists may be due to three factors: (i) common descent, (ii) lan-
guage contact, or (iii) chance similarities (which may or may not
be due to universal tendencies in sound and meaning association,
such as onomatopoeia or nursery forms).
The fact that the automatically generated tree is in such good

agreement with the Glottolog classification demonstrates that
this method is sensitive to common descent. The interesting
question is to what degree it is also sensitive to language contact
and chance similarities.
To start with the latter, the data contain at least one group of

cases where chance similarities affect phylogenetic inference and
confidence values. There is a surprisingly high number of re-
semblances between Celtic and Chukotko-Kamchatkan words; they
are listed in Table 1. These similarities are not shared by other Indo-
European languages, so they cannot be explained as deep cognacy.
Likewise, there is no plausible scenario explaining these similarities
as loans.
Excluding these word pairs from the analysis has a substantial

impact on the analysis. In particular, the confidence value for
Indo-European rises from 0.860 to 0.957.
However, 11 of the 15 chance resemblances listed in Table 1

involve the rogue taxa Manx or Scottish Gaelic (alpha values are
0.57 and 0.55, respectively). In the reduced dataset, the remaining
four pairs have only a minor impact; excluding them does not
change the topology of the tree and only mildly affects confidence
values. The confidence value rises from 0.967 to 0.981 for Indo-
European, and it falls from 0.969 to 0.964 for the Indo-European/
Chukotko-Kamchatkan clade.
Two points are noteworthy here: (i) The mentioned chance

similarities led to a massive reduction in confidence for a genetically

valid clade, Indo-European, but did not lead to the formation
of any high-confidence invalid clades (e.g., Celtic + Chukotko-
Kamchatkan), and (ii) low values for Cronbach’s alpha are a good
indicator for such chance similarities, as restricting the analysis to
doculects with high alpha values reduces the impact of chance.
Similar observations can be made with regard to clear cases of

language contact. Even though borrowing of core vocabulary is
less common than in other strata of the lexicon, it does occur
quite frequently (19). If an ASJP list contains several loans from
distantly related or unrelated languages, this configuration will
lead to a low alpha value. An example might be the Sino-Tibetan
language Northern Tujia. Its word list displays several high similar-
ities to corresponding entries from non–Sino-Tibetan languages
(e.g., Northern Tujia luka vs. Mangshi Tai/Tai-Kadai luk “bone,”
Northern Tujia Sipuli vs. Santali/Austroasiatic ipil “star,”
Northern Tujia aN vs. Eastern Katu/Austroasiatic 5aN “we”) that
are possibly loans. The alpha value for Northern Tujia is as low as
0.34; therefore, this language is excluded from the analysis.
We observe a different effect if borrowing occurs between

closely related languages. The Scandinavian influence on English
(reflected in loans; e.g., “skin,” “to die”) obscures its West Germanic
affiliation, although its alpha value remains high at 0.86. As a result,
English (alongside with Scots) appears as a sister clade of North
Germanic in the phylogenetic tree, but this connection has a low
confidence of 74.2% (Fig. 2), whereas both West Germanic and
North Germanic proper have 100% confidence values. Therefore,
English would be considered as unaffiliated within the Germanic
subfamily. Here, the effect of language contact blurs the phyloge-
netic signal for the borrowing language, whereas the position of its
genetic relatives and the borrowing source are not affected.
Contact can have a more severe impact on the phylogenetic

signal if (i) a large portion of a genetic unit is affected and (ii)
the effect of contact is not in conflict with the signal resulting
from inherited words. The relation between the Hmong-Mien
and Sino-Tibetan language families might be a case in point.
The word lists for Hmong-Mien doculects contain a substantial

number of likely Sino-Tibetan loans. Of the 1,018 word entries for
extant Hmong-Mien languages contained in the database for
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Fig. 1. Phylogenetic tree above the level of Glottolog language families.
Numbers at nodes are confidence values. Colors indicate top-level taxa.
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which the database also provides translations into Proto-Sino-
Tibetan and Proto-Hmong-Mien, only 71 have an uncalibrated
string similarity >  0 to their Proto-Hmong-Mien counterpart. A
nonnegative similarity score indicates that the similarity is higher
than chance (compare Materials and Methods for details on the
string similarity measure), whereas 182 entries have a similarity
score >  0 to their Proto-Sino-Tibetan counterpart. This pattern
suggests that a considerable portion of the extant Hmong-Mien
vocabulary is ultimately of Sino-Tibetan origin and was borrowed
into (perhaps earlier stages of) Hmong-Mien. In fact, Southeast
Asia is known to be a linguistic area with a long history of ex-
tensive language contact (20).
The Sino-Tibetan influence affects the entire Hmong-Mien

family. Also, Hmong-Mien is not part of another language family, so
language contact does not lead to inconsistent patterns here; the
mean alpha value for the 34 Hmong-Mien doculects is 0.73, and
only three of them have an alpha value <  0.6. Consequently, phy-
logenetic inference combines Sino-Tibetan and Hmong-Mien to one
taxon with a confidence value of 100%.
This discussion suggests three things: Chance similarities have

little impact on the shape of the phylogenetic tree (i) because
most instances either lead to a drop of the alpha value for at least
one of the affected doculects below the threshold of 0.6 or (ii)
because they induce reduced confidence scores without actually
affecting the topology of the phylogenetic tree, and (iii) the same
holds for unsystematic borrowings that only affect individual
languages if the borrowing language is part of a larger genetic
unit. Systematic and sustained language contact affecting an entire
genetic unit without strong outside genetic ties does affect phylo-
genetic inference; it may lead to high-confidence clades not cor-
responding to a common ancestor.
As a disclaimer, it should be stressed that these considerations

are based on plausibility arguments and anecdotal evidence at
this point. A systematic quantitative investigation would require
gold-standard data annotated for cognacy vs. borrowing vs.
chance resemblance. Unfortunately, such data are currently un-
available at the required scale.
With these considerations taken into account, let us return to

the seven suprafamily clades in Fig. 1:

i) Japonic + Ainu + Austroasiatic: Some scholars (21, 22)
argue that Ainu is connected to Austroasiatic at a deep
level, possibly as part of an even larger Austric macrofamily
(additionally including Austronesian and Tai-Kadai). If
true, this fact would account for a clade comprising Ainu
and Austroasiatic; the association with Japanese is arguably
due to its contact with Ainu.

ii) Hmong-Mien + Sino-Tibetan: As discussed above.
iii) Austronesian + Tai-Kadai: A macrofamily comprising these

two languages has been argued for repeatedly in the litera-
ture (23, 24).

iv) Chukotko-Kamchatkan + Indo-European + Mongolic +
Nivkh + Tungusic + Turkic + Yukaghir + Uralic: Except
for the exclusion of Ainu and Japonic, this clade is coexten-
sive with Greenberg’s (2, 3) Eurasiatic proposal (to the de-
gree that it overlaps with the languages considered here).
This proposal for a linguistic macrofamily, as well as the
closely related Nostratic hypothesis (25), is highly contro-
versial among experts (as discussed, inter alia, in the contri-
butions in Salmons and Joseph’s collected volume, ref. 26).

v) Mongolic + Tungusic: These two families are frequently
considered part of the macrofamily (core-) Altaic along with
Turkic. The Altaic proposal is controversial as well; Georg
et al. (27), e.g., defend this hypothesis whereas Janhunen (28)
assesses most evidence marshalled to its support as invalid.
Remarkably, Mongolic, Tungusic, and Turkic do form a clade
in the full tree, but its confidence value is only 0.908, as
opposed to 1.000 for Mongolic + Tungusic. According to
Janhunen (28), the case for Mongolic and Tungusic forming
a genetic unit is stronger than for Altaic as a whole.

vi) Chukotko-Kamchatkan + Indo-European + Nivkh + Yuka-
ghir +Uralic: The idea of such a core-Eurasiatic unit has been
argued for by Kortlandt (29). [Kortlandt also includes Eskimo-
Aleut into this group (29), which is not considered here.]

vii) Chukotko-Kamchatkan + Indo-European: Even proponents
of Eurasiatic do not consider Chukotko-Kamchatkan as
Indo-European’s closest relative. So, from the point of view
of Eurasiatic/Nostraticist scholarship, the status of this clade
is doubtful. It may be a remnant of a more inclusive clade
that has been diluted by language contact and the decay of
inherited vocabulary (akin to the West-Germanic clade in
Fig. 2, which incorrectly excludes English) or may reflect
language contact.

To conclude, most high-confidence deep clades in the auto-
matically generated tree correspond to proposals for deep genetic

West-Germanic

English

North-Germanic

100%
74.2%

100%100%

Fig. 2. Germanic subfamily.

Table 1. Chance resemblances: Celtic and Chukotko-
Kamchatkan (CK) words

Meaning Celtic language CK language Celtic word CK word

Skin Breton Koryak korxEn x3lx3n

Skin Breton Alutor kroxEn x3lx3n

Stone Irish Gaelic Northern Itelmen klox kox

Stone Welsh Northern Itelmen karEg kox

Path Manx Chukchi red ret

Skin Manx Alutor krax3n x3lx3n

Skin Manx Chukchi krax3n x3Lx3n

Skin Manx Koryak krax3n x3lx3n

Stone Manx Northern Itelmen klax kox

Stone Scottish Gaelic Northern Itelmen klax kox

Louse Scottish Gaelic Alutor mi3l m3m3ll3

Louse Scottish Gaelic Chukchi mi3l m3m3l

Louse Scottish Gaelic Koryak mi3l m3m3l

Louse Scottish Gaelic Northern Itelmen mi3l m3lm3l

Louse Scottish Gaelic Southern Itelmen mi3l m3lm3l

Rows below the line involve rogue taxa.
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relationships in the literature. The results presented here provide
further evidence for proposals such as Austro-Tai, Mongolic +
Tungusic, and Euroasiatic.
Let me summarize. Phylogenetic inference based on string

comparison of short word lists very reliably identifies mono-
phyletic linguistic units up to the level of language families [even
though the prospects of such an endeavor have been assessed
skeptically in the literature (cf. 30)]. All Glottolog families are
correctly identified with a confidence at or close to 100%. Fur-
thermore, the method identified several suprafamily clades that
partially correspond to proposals for deep genetic units that have
been arrived at by different means. These findings provide ad-
ditional evidence for deep historical relations between the lan-
guage families in question.
However, there is no principled way to factor common in-

heritance from diffusion with this method. To tackle such
questions, a computational and statistical approach requires
more linguistically informed stochastic models that explicitly
address such issues as cognate recognition, identification of
regular sound laws, protoform reconstruction, and competing
processes of inheritance and diffusion. Efforts to this effect are
already under way [i.e., for automatic cognate recognition and
multiple word alignment (31, 32), for automatic protoform re-
construction and identification of sound laws (33, 34), and for an
explicit model of lexical borrowing (35)]. The present work is
designed to contribute to expanding this agenda beyond the level
of individual language families.

Materials and Methods
Data. The ASJP database (13) is a collection of basic vocabulary lists for 6,895
doculects (i.e., languages and dialects). Each list contains translations of 40
core concepts, such as “I,” “one,” “two,” “person,” “eye,” “nose,” “star,”
and “name,” for example. These items were selected (36) as the 40 most
stable items from the 100-item Swadesh list (37). All translations are given in
a uniform phonetic transcription, using 41 different phonetic symbols (plus
diacritics, which were ignored in the present work; the ASJP transcription
conventions are given in Table S1).

From these data, all doculects were used that (i) are or were spoken in
Eurasia or neighboring islands, excluding Eskimo-Aleut and Afro-Asiatic
languages; (ii) contain not more than 12 missing entries in their ASJP word
list; (iii) did not become extinct before the year 1700; and (iv) are neither
pidgins nor creoles. The geographic distribution of these 1,161 doculects is
shown in Fig. 3, together with its classification according to Fig. 1. The 58
doculects excluded in the second analysis are shown in gray. [The lists of
doculects used can be seen in Dataset S1 (full list of doculects) and Dataset S2/
Dataset S3 (reduced list of doculects)].

Rogue Taxa. For each doculect L1, a data matrix was set up with the doculects
≠L1 as rows and ASJP concepts as columns. The entry for doculect L2/concept
c is the calibrated string similarity between L1’s and L2’s entry for c. Cronbach’s
alpha was computed column-wise for this matrix. All doculects with alpha
values <  0.6 were discarded. The same procedure was repeated with the
reduced set of doculects until all alpha values remained ≥0.6 relative to the
reduced set of doculects. In total, 58 doculects were excluded this way
(the list is provided in SI Rogue Taxa).

Phylogenetic Techniques. Phylogenetic inference proceeded in four steps. First,
the similarity between individual word forms was determined via weighted
sequence alignment. Second, the word similarities between all translation
pairs from two word lists were aggregated to a dissimilarity measure between
these word lists. Third, a phylogenetic tree was estimated from these pairwise
dissimilarities. Finally, confidence values for the branches of that tree were
estimated. [The first two steps are described in detail by Jäger (14).]

String similarity via weighted sequence alignment. Drawing on much prior work
in computational linguistics, such as work by Kondrak (38) [an overview over
different approaches is provided by Kessler (39)], string similarities are de-
termined via sequence alignment, using differential weights for different
symbol pairings. Unlike most previous work in this area, these weights are
determined in a data-oriented way via unsupervised learning from the
ASJP data.

The basis of this technique is the notion of point-wise mutual information
(PMI) (40) [also known as log-odds scores in bioinformatics (cf. 41)] between
individual segments. The PMI score of two sound classes a, b is defined as

PMIða,bÞ¼: log likelihood  that  a  and  b  participate  in  a  sound  correspondence
likelihood  of  a× likelihood  of  b

.

Sound pairs with a positive PMI score provide evidence for relatedness, and
vice versa.

To estimate the likelihood of sound correspondences, a corpus of probable
cognate pairs was compiled from the ASJP data using two heuristics. First,
a crude similarity measure between word lists was defined and the 1% of all
ASJP doculect pairs with highest similarity was kept as probably related. (This
notion is rather strict; English, for instance, turns out to be “probably related”
to all and only the other Germanic doculects. In total, 99.9% of all doculect
pairs defined that way belong to the same language family.) Second, the
normalized Levenshtein distance (i.e., a somewhat crude distance measure
between phonetic strings only counting matches and mismatches) was
computed for all translation pairs from probably related doculects. Trans-
lation pairs with a distance below a certain threshold were considered as
probably cognate. (The technical term “cognate” is not entirely appropriate
here because the method also captures word pairs related via borrowing;
“etymologically related” might be a more appropriate, if cumbersome, term.)
These probable cognate pairs were used to estimate PMI scores. Subsequently,

Fig. 3. Geographic distribution of the doculects used. Colors refer to the top-level taxa in Fig. 1, and doculects omitted from analysis are shown in light gray.
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all translation pairs were aligned via the Needleman–Wunsch algorithm (42)
using the PMI scores from the previous step as weights. This alignment resulted
in a measure of string similarity, and all pairs above a certain similarity
threshold were treated as probable cognates in the next step. This procedure
was repeated 10 times. In the last step, ∼1.3 million probable cognate pairs
were used to estimate the final PMI scores.

Again, the similarity threshold used is rather strict. To illustrate, the only
probable cognate pairs between English and German that were kept during the
last iteration are fiS/fiS “fish,” laus/laus “louse,” bl3d/blut “blood,”
horn/horn “horn,” brest/brust “breast,” liv3r/leb3r “liver,” star/
StErn “star,” wat3r/vas3r “water,” and ful/fol “full.”

The PMI scores thus obtained are visualized in Fig. 4 (numerical values are
given in Dataset S4). It is easy to discern that matches between identical
sounds always result in a positive score, but there are differences. An
identity match between two vowels, for instance, carries less weight than
a self-match for a rare consonant class, such as dental fricatives (8 in the
ASJP transcription).

Mismatches between different sound classes mostly result in negative
values, but there is considerable differentiation. Mismatches between a
vowel and a consonant generally have very negative scores, except for the
pairings u/w and i/y (which both involve semivowels). The score for match-
ing two different vowels or two different consonants with an identical place
of articulation has a score close to 0. Some such pairings even have positive
scores (e.g., o/u, d/8), indicating that such a pairing constitutes positive ev-
idence for etymological relatedness. In a small number of cases, pairings
with a different place of articulation have a positive score (e.g., h paired
with other fricatives, such as f, s, or x).

These PMI scores arguably capture linguistic intuitions about how in-
formative possible sound correspondences are for establishing etymological

relations. They do not capture regular sound correspondences between
specific languages, however. Although it is ultimately desirable to in-
corporate those sound correspondences into a quantitative model of string
similarity [recent approaches using much richer data over smaller collections
of languages are discussed elsewhere (33, 34)], the amount of data available
at the scale considered here does not afford reliable model fitting for such
complex models.

The aggregate PMI score of a pair of aligned strings (where gaps may be
inserted at any position) is defined as the sum of the PMI scores of the aligned
symbol pairs. Matching a symbol with a gap incurs a penalty, with different
penalties for initial and noninitial positions in a sequence of consecutive gaps
(so-called “affine gap penalties”). The values of the gap penalties were
obtained via an optimization technique (cf. 14). The similarity sðw1,w2Þ
between two strings w1,w2 is then defined as the minimal aggregate PMI
score for all possible alignments. It can be computed efficiently with the
Needleman–Wunsch algorithm.

To illustrate this notion, consider the word pairs hant/hEnt (German and
English for “hand”) vs. hant/mano (German and Spanish for “hand”). In both
cases, we find two matches and two mismatches in the optimal alignment.
However, the mismatches in the first pair (a/E, t/d) carry little weight,
resulting in an overall highly positive score of 4.80. In the second pair, the
mismatches (h/m, t/o) carry large weight; the overall PMI score is −11.28.

It depends on the pair of languages being compared as to how informative
a certain word similarity level is as a predictor for cognacy. For instance, the
Polish word list contains seven sound classes not occurring in the English word
list, whereas the Dutch word list only contains three such sound classes.
Consequently, the probability of chance matches is higher when comparing
English with Dutch as opposed to the English/Polish comparison. The average
similarity between nonsynonymous word pairs (i.e., likely noncognates) for
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Fig. 4. PMI between ASJP sound classes.
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English/Dutch is −6.54, whereas this value is −8.53 for English/Polish. Hence,
the bar for establishing cognacy between English and Dutch is higher than
for English/Polish.

The calibrated similarity scðw1,w2jL1, L2Þ between two synonymous words
w1,w2 from two languages L1, L2 is derived from the probability that the
degree of similarity between w1 and w2 could be due to chance, given L1 and
L2. Formally, it is defined as

scðw1,w2jL1, L2Þ
= −log 1+number  of  non− synonymous  pairs  ðw ∈ L1 ,w′∈ L2Þ with  sðw,w′Þ> sðw1 ,w2Þ

1+number  of  non− synonymous  pairs  ðw ∈ L1,w′∈ L2Þ .

It measures the similarity between w1 and w2 relative to the general
distribution of string similarities between words from L1 and L2.

Dissimilarities between word lists. The dissimilarity or distance between the two-
word list L1, L2 is inversely related to the mean calibrated similarity ŝcðL1, L2Þ:

dðL1, L2Þ¼: log smax
c − logŝcðL1, L2Þ,

where smax
c is the maximal value a calibrated string similarity can assume; for

word lists of length n, this value is logð1+nðn− 1ÞÞ. The matrix of pairwise
dissimilarities for all ASJP doculects can be inspected online at www.
evolaemp.uni-tuebingen.de/details.html.

Phylogeny induction. Note that the approach pursued here does not involve
binary decisions in favor or against cognacy of a word pair. Rather, calibrated
similarity captures the degree of likelihood that a pair is cognate. Therefore, the
character-basedmodels of phylogenetic inference that have become standard in
phylogenetic linguistics (6, 7) are not applicable. Also, character-based inference
over 1,000 taxa would touch the limits of currently available computing power.
Distance-based phylogenetic inference offers a viable alternative.

Using themethoddescribed above, a dissimilaritymatrix between all word lists
under investigation is computed. This matrix is used as input for phylogenetic

inference utilizing the greedy minimum evolution algorithm, followed by
optimization utilizing generalized nearest neighbor interchange (15). The loca-
tion of the root of the tree was determined using the method from Steel and
McKenzie (43), utilizing a maximum-likelihood estimation under the
assumption that the tree topology is generated by a Yule process.

The phylogenetic trees for the full and reduced datasets (annotated with
confidence values), plus the tree where all branches with confidence <  0.95
are collapsed, are given in Datasets S1–S3.

Bayesian bootstrap confidence values. Branch confidence values were deter-
mined using a Bayesian version of the bootstrap interior branch test (17).

Using a variant of Bayesian bootstrap (44), 1,000 probability vectors over
the similarity matrices for the 40 ASJP concepts were sampled according to
a Dirichlet distribution with all parameters =  2. (This choice corresponds to
a posterior distribution upon observing each concept once, based on a uni-
form prior.) For each bootstrap probability vector~p, a distance matrix d over
doculects was computed according to the formula

di,j = log smax
c − logÆ~p,~scði, jÞæ,

where~scði, jÞ is the vector of calibrated string similarities between doculects
Li and Lj.

In the next step, the optimal branch lengths, minimizing the mean squared
error, of the tree topology T defined abovewas computed for each bootstrapped
distance matrix d. The confidence value for an interior branch b was defined as
the proportion of bootstrap samples for which b’s optimal length is >  0.
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