
Likewise, humans with genetic defects in STAT-1, which 
is involved in the signaling cascade of  the IFN system, die 
of  viral disease at an early age[3]. 
 

INTERFERON INDUCTION 
All nucleated cells of  the mammalian body are able 
to synthesize and secrete type I IFNs in response to 
virus infection. Secreted IFNs are then recognized by 
neighboring cells and cause them to express potent 
antiviral proteins[4,5]. As a result, virus multiplication is 
slowed down or even stopped, and the organism buys time 
for the establishment of  an adaptive immune response.  

Type I IFNs are classified according to their amino 
acid sequence and comprise a large number (at least 13) 
of  IFN-α subtypes and a single IFN-β[6], as well as some 
additional family members[7,8]. Expression patterns, i.e. 
which IFNs will be synthesized at which time point, mostly 
depend on the particular cell type. 

Fibroblasts secrete mainly IFN-β as an init ia l 
response to infection but switch to IFN-α during the 
subsequent amplification phase of  the IFN response[9]. By 
contrast, dendritic cells, which play an important role in 
immunosurveillance, directly secrete high levels of  IFN-α 
subtypes[10,11].  

Induction of  IFN-β gene expression in fibroblasts 
occurs by the intracellular, so-called “classic pathway” 
(Figure 1). In infected cells, a signaling chain is activated by 
viral RNA molecules which are generated during genome 
transcription and replication[12]. Two intracellular RNA 
helicases, RIG-I[13] and MDA5[14], act as sentinels for viral 
RNA[15-17]. Then, a recently discovered adaptor protein 
binds to RIG-I and MDA5 and mediates the signal to 
downstream factors. It is called either Cardif  for “CARD 
adaptor inducing IFN-β”[18], IPS-1 for “interferon-β-
promoter stimulator 1”[19], MAVS for “mitochondrial 
antiviral signaling” molecule[20], or VISA for “virus-
induced signaling adaptor”[21]. Cardif/IPS-1/MAVS/VISA 
activates two IκB kinase (IKK)-related kinases, IKKε and 
TANK-binding kinase-1 (TBK-1), which phosphorylate 
the transcription factor IRF-3[22,23]. IRF-3 is a member 
of  the IFN regulatory factor (IRF) family and plays a 
central role in the activation of  the IFN-β promoter[24]. 
Phosphorylated IRF-3 homo-dimerizes and moves 
into the nucleus where it recruits the transcriptional 
coactivators p300 and CREB-binding protein (CBP) to 
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Abstract
Hepatitis C virus (HCV) needs to tightly manipulate 
host defences in order to establish infection. The innate 
immune response slows down viral replication by 
activating cytokines such as the type I interferons (IFN-α/
β), which trigger the synthesis of antiviral proteins 
and modulate the adaptive immune system. HCV has 
therefore developed a number of countermeasures to 
stay ahead of the IFN system. Here, I will attempt to 
summarize the current state of research regarding IFN 
responses against HCV and the viral escape strategies. 
Particular emphasis will be put on the newly discovered 
mechanisms HCV employs to avoid the induction of IFN 
in infected cells�.
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INTRODUCTION
The type I interferon system which mainly involves 
IFN-α and -β is a powerful and universal intracellular 
defence system against viruses. Knockout mice which are 
unresponsive to IFN-α/β due to targeted deletions in the 
type I IFN receptor quickly succumb to viral infections 
although they have a regular adaptive immune system[1,2]. 
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initiate IFN-β mRNA synthesis[24,25]. This first-wave IFN 
triggers expression of  a related factor, IRF-7, which in 
fibroblasts is only present in low amounts[26]. IRF-7 can be 
activated the same way as IRF-3[27-29], leading to a positive-
feedback loop that initiates the synthesis of  several IFN-α 
subtypes as the second-wave IFNs[9,30]. In addition, NF-κB 
and AP-1 are recruited in a dsRNA-dependent way[31,32]. 
Together these transcription factors strongly upregulate 
IFN-β gene expression. 

Until very recently, it was assumed that the main trigger 
of  intracellular cytokine induction by all viruses is double-
stranded RNA (dsRNA) which supposedly forms as a by-
product of  genome replication. However, we have recently 
found that some viruses do not produce substantial 
amounts of  dsRNA[33]. Instead, ssRNA containing a 5’ 
triphosphate group is much more potent than dsRNA in 
activating RIG-I-dependent IFN induction[34-36]. 

Among the cells of  the lymphatic system, myeloid 
dendrit ic cel ls (mDCs) [11] and, most prominently, 
plasmacytoid dendritic cells (pDCs)[10] are the main 
IFN producers. In addition to the classical, intracellular 
pathway of  IFN induction described above, pDCs sense 
the presence of  viruses by the extracytoplasmic toll-
like receptors (TLRs)[37-39]. It is thought that TLRs serve 
as sensors for viral infection of  phagocytosed cells[40]. 
Human pDCs mostly express TLR7 and TLR9 which 
recognize viral single-stranded(ss) RNA and dsDNA, 
respectively[41], whereas mDCs express TLR3 which 
responds to dsRNA[42]. Upon activation, TLRs signal 
through different intracellular adaptor molecules such as 
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MyD88 (TLR7 and 9) or TRIF (TLR3) to induce IFN 
transcription[41]. Interestingly, DCs already contain high 
levels of  IRF-7[43,44], thus explaining their ability to rapidly 
produce high amounts of  alpha-IFNs. Furthermore, TLR7 
and TLR9 are retained in the endosomes of  pDCs to allow 
prolonged IFN induction signaling[45]. 
 
INTERFERON SIGNALING 
IFN-α/β subtypes all bind to and activate a common type 
I IFN receptor. It consists of  two subunits (IFNAR-1 
and IFNAR-2) and is present on virtually all host cells[5,6]. 
Binding of  IFN-α/β leads to heterodimerization of  the 
IFNAR subunits and to conformational changes in the 
intracellular parts of  the receptor which activate the so-
called JAK-STAT signaling pathway (Figure 2). The signal 
transducer and activator of  transcription (STAT) proteins 
are latent cytoplasmic transcription factors which become 
phosphorylated by the Janus kinase (JAK) family members 
JAK-1 and TYK-2[46]. Phosphorylated STAT-1 and STAT-2 
recruit a third factor, IRF-9 (also called p48), to form a 
complex known as IFN stimulated gene factor 3 (ISGF-3). 
The ISGF-3 heterotrimer translocates to the nucleus and 
binds to IFN-stimulated response elements (ISRE) in the 
promoter regions of  IFN-stimulated genes (ISGs), thereby 
inducing their transcription.  

Severa l specia l ized proteins ser ve as negat ive 
regulators and inhibitors of  the JAK-STAT pathway. For 
example, the suppressor of  cytokine signaling (SOCS) 
proteins specifically prevent STAT activation by binding 
to activated cytokine receptors, inhibiting the activity 
of  JAKs, and targeting bound signaling proteins for 
proteasomal degradation[47]. Also, the protein inhibitor of  
activated STAT (PIAS) family members function as small 
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Figure 1  Type I IFN gene expression. Detection of viral ssRNA and dsRNA leads 
to transactivation of IFN-α and IFN-β promotors by IRF-7 and IRF-3. IRF-3 is 
phosphorylated by the kinases IKKε and TBK-1 which in turn are activated by the 
intracellular RNA-sensor proteins RIG-I and MDA5. RIG-I preferentially senses 
5’triphosphorylated ssRNAs (pppRNA) whereas MDA-5 recognizes dsRNA. 
Cardif (also termed IPS-1/MAVS/VISA) serves as an adaptor protein connecting 
RNA sensing and IRF-3 phosphorylation. A second dsRNA signaling pathway 
involves endosomal TLR-3 and the adaptor protein TRIF which also activates IKKε 
and TBK-1. The endosomal ssRNA receptor TLR7 utilizes the adaptor protein 
MyD88 to stimulate IFN-α synthesis via the kinases IRAK4 and IRAK1 and the 
transcription factor IRF-7. 

Figure 2  Cellular response to IFNs. Newly synthesized IFN-α/β binds to its 
cognate receptor (IFNAR) and activates the expression of numerous IFN-
stimulated genes (ISGs) via the JAK/STAT pathway. ADAR, P56, OAS and PKR 
are IFN-stimulated gene products with antiviral properties against HCV. The SOCS 
and PIAS proteins negatively regulate the IFN-induced signaling pathway at 
different stages. 
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ubiquitin-like modifier (SUMO) E3 ligases and inhibit the 
transcriptional activity of  STATs[48]. 
 
INTERFERON EFFECTOR PROTEINS WITH 
ANTIVIRAL ACTIVITY AGAINST HCV 
IFN-α combined with ribavirin is the standard treatment 
for HCV infection, and its effect can be potentiated 
by co-adminitration of  IFN-γ[49,50]. IFN-α/β activates 
the expression of  more than 300 IFN-stimulated 
genes (ISGs) which have antiviral, antiproliferative, and 
immunomodulatory functions[51,52]. IFN-induced proteins 
include enzymes, transcription factors, cell surface 
glycoproteins, cytokines, chemokines and a large number 
of  factors that need to be further characterized. Up to now, 
only a few antiviral proteins have been characterized in 
detail. Type I IFNs are known to be effective against HCV 
replicon systems[53,54], and several IFN-induced proteins 
have documented anti-HCV activity, namely protein 
kinase R (PKR)[55], the RNA-specific adenosine deaminase 
1 (ADAR 1)[56], the 2’-5’ oligoadenylate synthetases (2-5 
OAS) / RNaseL system[57], and P56[58]. 

PKR, ADAR1, and 2-5 OAS are consti tut ively 
expressed in normal cells in a latent, inactive form. Basal 
mRNA levels are upregulated by IFN-α/β and these 
enzymes need to be activated by viral dsRNA. PKR is 
a serine-threonine kinase that phosphorylates the alpha 
subunit of  the eukaryotic translation initiation factor 
eIF2[59]. As a consequence, translation of  cellular and viral 
mRNAs is blocked. ADAR 1 catalyzes the deamination 
of  adenosine on target dsRNAs to yield inosine. As a 
result the secondary structure is destabilized due to a 
change from an AU base pair to the less stable IU base 
pair and mutations accumulate within the viral genome[5]. 
The 2-5 OAS catalyzes the synthesis of  short 2’-5’ 
oligoadenylates that activate the latent endoribonuclease 
RNaseL[60]. RNaseL, in turn, then degrades both viral and 
cellular RNAs, leading to viral inhibition[61]. P56 binds 
the eukaryotic initiation factor 3e (eIF3e) subunit of  the 
eukaryotic translation initiation factor eIF3. It functions 
as an inhibitor of  translation initiation at the level of  eIF3 
ternary complex formation and is likely to suppress viral 
RNA translation[62,63].  
 
INTERACTION WITH INNATE IMMUNE 
RESPONSES 
Several recent studies have clarified that the RNA of  
HCV is a potent trigger of  IFN induction, leading to the 
establishment of  an antiviral state. Therefore, in order 
to establish infection and to persist in the human host, 
HCV has been forced to evolve efficient counterstrategies. 
Intracellular IFN induction by HCV appears to be mostly 
mediated by RIG-I binding to viral RNA[64]. Extracellularly, 
no specific TLR has been identified yet, but by deduction 
from data on related flaviviruses, TLR3 and TLR7 would 
be the most obvious candidates. The dsRNA-binding 
TLR3 was shown to be activated by West Nile virus[65], and 
the ssRNA-binding TLR7 is activated by Dengue virus[66]. 
Moreover, TLR7 can elicit HCV immunity, and a synthetic 

TLR7 agonist reduced HCV mRNA and protein levels in 
HuH-7 hepatocytes[67]. It is important to note that TRL7 
is expressed in hepatocytes of  normal as well as HCV-
infected people[67]. Thus, TRL7 may indeed play a role 
during natural infection. 

On the other hand, HCV is capable of  disturbing the 
IFN response at multiple levels[68,69]. With respect to IFN 
induction, it was recently discovered that the NS3/4A 
protease specifically cleaves Cardif[18] as well as TRIF[70,71]. 
Since both these adaptor proteins are important for IFN 
induction via the classical intracellular pathway (Cardif) 
and the TLR3-driven endosomal pathway (TRIF), NS3/4A 
is the key factor of  HCV to disturb IRF-3 activation[72] 
which would otherwise result in IFN gene transcription. 
In addition, NS3 directly interacts with TBK1 to inhibit its 
association with IRF-3 and its activation[73]. 

With respect to the IFN response, it was shown 
that expression of  the full-length virus genome or the 
core protein suppresses IFN signal transduction[74,75]. 
Most likely, this is due to an up-regulation of  protein 
phosphatase 2A by ER stress[76], resulting in association of  
STAT1 with its inhibitor PIAS1[77]. Moreover, for the core 
protein it was shown that it interferes with the JAK/STAT 
pathway[78] and is able to activate the JAK-STAT signaling 
inhibitor SOCS-3[79], further contributing to the HCV-
induced block of  IFN signaling. 

HCV also directly counteracts the antiviral IFN 
response. The NS5A protein, which confers a multitude 
of  functions in virus replication[80], also plays a key role 
in escape from the antiviral action of  IFN. A stretch of  
40 amino acids on NS5A, termed the IFN sensitivity 
region (ISDR), was correlated with responsiveness to IFN 
therapy[81-83]. Moreover, NS5A was shown to directly bind 
to and repress PKR, and this interaction involved the 
ISDR[84]. However, other groups did not find a connection 
between viral IFN susceptibility and a particular ISDR 
sequence[85-87], and PKR activity was not affected by 
expression of  the HCV genome[88] or NS5A[89], although 
NS5A clearly reduced the antiviral effects of  IFN[89]. 
A possible solution for this discrepancy could be that 
ISDR sequence variations affect the efficiency of  HCV 
replication[90,91]. Thus, the correlation between particular 
ISDR sequences and IFN sensitivity could be caused by 
differences in HCV replication strength. In addition, NS5A 
induces IL-8 (also termed CXCL-8), a chemokine which 
inhibits the antiviral actions of  IFN[92]. Elevated IL-8 levels 
were indeed detected in the sera of  IFN non-responders[93]. 
Moreover, in cell culture CXCL-8 protein levels are 
positively associated with chronic HCV replication and 
CXCL-8 removal inhibits HCV replication[94]. Interestingly, 
CXCL-8 cannot only be induced by NS5A, but also by the 
HCV RNA-sensitive RIG-I pathway[95]. 

NS5A also interferes with the 2-5 OAS/RNaseL 
pathway by binding to 2-5 OAS[96]. Furthermore, the 
HCV genome sequences of  IFN-resistant strains have 
fewer RNase L recognition sites than those of  more IFN-
sensitive ones[97], thus allowing escape from nucleolytic 
cleavage[97]. PKR activity is also modified by the internal 
r ibosome entry site (IRES) of  HCV[98] and the E2 
protein[99]. 

The multiple countermeasures of  HCV to avoid a 
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fully-fledged IFN response appear to be quite efficient, 
since 85% of  the HCV-infected patients develop a chronic 
infection, and up to 60% of  those patients do not respond 
to IFN therapy or experience a relapse when therapy 
is stopped[100]. Our rapidly increasing knowledge about 
HCV immune escape will certainly lead to a significant 
improvement in both prevention and therapy for  
hepatitis C. 
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