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Abstract
Tumor angiogenesis is the proliferation of a network of blood
vessels that penetrates into cancerous growths, supplying
nutrients and oxygen and removing waste products. The
process of angiogenesis plays an important role in many
physiological and pathological conditions. Solid tumors
depend on angiogenesis for growth and metastasis in a
hostile environment. In the prevascular phase, the tumor is
rarely larger than 2 to 3 mm3 and may contain a million or
more cells. Up to this size, tumor cells can obtain the
necessary oxygen and nutrient supplies required for growth
and survival by simple passive diffusion. The properties of
tumors to release and induce several angiogenic and anti-
angiogenic factors which play crucial roles in regulating
endothelial cell (EC) proliferation, migration, apoptosis or
survival, cell-cell and cell-matrix adhesion through different
intracellular signaling are thought to be the essential
mechanisms during tumor-induced angiogenesis. Tumor
angiogenesis actually starts with tumor cells releasing
molecules that send signals to surrounding normal host
tissue. This signaling activates certain genes in the host
tissue that, in turn, make proteins to encourage growth of
new blood vessels. In this review, we focus the mechanisms
of tumor-induced angiogenesis, with an emphasis on the
regulatory role of several angiogenic and anti-angiogenic
agents during the angiogenic process in tumors. Advances
in understanding the mechanisms of tumor angiogenesis
have led to the development of several most effective anti-
angiogenic and anti-metastatic therapeutic agents and also
have provided several techniques for the regulation of
cancer’s angiogenic switch. The suggestion is made that
standard cytotoxic chemotherapy and angiogenesis inhibitors
used in combination may produce complementary
therapeutic benefits in the treatment of cancer.
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MECHANISM OF ANGIOGENESIS
Angiogenesis is a complex multi-step process involving
extensive interplay between cells, soluble factors, and
extracellular matrix (ECM) components. Four distinct
sequential steps in angiogenesis include: (1) degradation of
basement membrane by proteases; (2) migration of endothelial
cells (ECs) into the interstitial space and sprouting; (3) ECs

proliferation at the migrating tip; (4) lumen formation,
generation of new basement membrane with the recruitment
of pericyte, formation of anastomoses and finally blood flow[1].
The angiogenic response in the microvasculature is associated
with changes in cellular adhesive interactions between adjacent
ECs, pericytes and surrounding ECM. In the process of active
neovascularization, activated ECs reorganize their
cytoskeleton, express cell surface adhesion molecules such as
integrins and selectins, secrete proteolytic enzymes, and
remodel their adjacent ECM. These events are followed by
the formation of capillary buds. Autocrine and/or paracrine
angiogenic factors must be present to induce EC migration,
proliferation, elongation, orientation and differentiation leading
to the re-establishment of the basement membrane, lumen
formation and anastomosis with other new or pre-existing vessels,
eventually leading to the formation of intact microvessels.

CANCER’S ANGIOGENIC SWITCH
Angiogenic phenotype serves the development of malignant
tumor at multiple stages. Tumor cells may overexpress one or
more of the positive regulators of angiogenesis, may mobilize
an angiogenic protein from the ECM, may recruit host cells
such as macrophages (which produce their own angiogenic
proteins), or may engage in a combination of these processes.
Tumor angiogenesis is mediated by tumor-secreted angiogenic
growth factors that interact with their surface receptors
expressed on ECs. The most commonly found angiogenic
growth factors such as VEGF and bFGF, when encounter ECs,
they bind to the tyrosine kinase receptors on ECs membrane.
Binding leads to dimerization of the receptors and activation of
autophosphorylation of tyrosines on the receptor surface and
thereby initiates the several signaling proteins (including PI3-
kinase, Src, Grb2/m-SOS-1 (a nucleotide exchange factor for
Ras) and signal transducers and activators of transcriptions
(STATs) each of which contains src-homology-2 (SH-2)
domains[2]. Binding of the SH-2 regions of these proteins to the
phosphotyrosines on the receptor tyrosine kinases (RTKs)
activates several pathways that are crucial for triggering the cell
cycle machinery. The most well studied pathway passes through
the GTP-binding protein Ras and activates the mitogen activated
protein kinase (MAPK) cascade and subsequently transcription
factors in the nucleus[2]. Up-regulation of an angiogenic factor
is not sufficient in itself for a tumor cell to become angiogenic,
however, certain negative regulators or inhibitors of vessel
growth may need to be down-regulated[3]. If there is a
preponderance of angiogenic factors in the local milieu, the
neovasculature may persist as capillaries, or differentiate into
mature venules or arterioles. If instead, the local milieu changes
such that there is a preponderance of angiostatic factors, the
neovessels can regress. The angiostatic factors that mediate
regression can do so either by inducing apoptosis or cell cycle
arrest of ECs. Thus, the switch to the angiogenic phenotype is
regulated by a change in the local equilibrium between positive
and negative regulators of the growth of microvessels[1, 3].

FACTORS INVOLVED IN TUMOR ANGIOGENESIS
Vascular endothelial growth factor and receptors
Vascular endothelial growth factor (VEGF), also known as



vascular permeability factor (VPF), is a heparin-binding
angiogenic growth factor, and is highly expressed in various
types of tumors. It may increase ECs permeability by enhancing
the activity of vesicular-vacuolar organelles, clustered vesicles
in ECs lining small vessels that facilitate transport of metabolites
between luminal  and abluminal plasma membranes[4].
Alternatively, VEGF may enhance permeability through
mitogen-activated protein (MAP) kinase signal transduction
cascade by loosening adhering junctions between ECs in a
monolayer via rearrangement of cadherin/catenin complexes[5, 6].
In addition, recent studies have shown that VEGF enhances
ECs permeability by activating PKB/Akt, endothelial nitric-
oxide synthase (eNOS), and MAP kinase dependent pathways
using human umbilical vein endothelial cell[7] (Figure 1).
Increased vascular permeability may allow the extravasation
of plasma proteins and formation of ECM favorable to
endothelial and stromal cell migration.

Figure 1  The triggering mechanism in tumor angiogenesis:
inactivated tumor suppressor genes/activated oncogenes
versus hypoxia.

     VEGF is an EC specific mitogen. VEGF, after binding to
its high affinity receptors (Flt-1/VEGFR-1, Flk-1/KDR/
VEGFR-2), promotes the formation of the second messenger
via hydrolysis of inositol, thus induces the autophosphorylation
of the receptors in the presence of heparin-like molecules, and
open phosphatidylinositol metabolic signal transduction
pathways, activates MAP kinases in EC and thereby VEGF
exerts its mitogenic effect by promoting EC proliferation[8, 9].
     VEGF induces a balanced system of proteolysis that can
remodel ECM components necessary for angiogenesis. VEGF
stimulates EC production of urokinase-like plasminogen
activator (uPA), tissue type plasminogen activator (tPA) and
plasminogen activator inhibitor-1 (PAI-1)[10, 11], proteolytic
enzymes, tissue factors, and interstitial collagenase[12].
Plasminogen activators activate plasminogen to plasmin, which
can break down ECM components. In addition to remodeling
the basement membrane, uPA bound to uPAR also mediates
intracellular signal transduction in ECs. Tang et al. have
demonstrated that uPAR occupancy on ECs results in the
phosphorylation of focal adhesion proteins and the activation

of MAP kinase[13] through which uPA influences EC migration
and proliferation (Figure 2).
      Moreover, VEGF has been shown to exhibit its angiogenic
effect by inducing expression of the α1β1, α2β1 and αvβ3-

integrins, which promote cell migration, proliferation and
matrix reorganization (Figure 2), and α1β1, α2β1 and αvβ3

antagonists may prove effective on inhibiting VEGF-driven
angiogenesis associated with cancers and other pathologies
through apoptosis[14, 15]. VEGF, in addition to a very specific
mitogen for vascular EC, is a potent pro-survival factor for ECs
in newly formed immature vessels. Several endothelial survival
factors (VEGF, angiopoietin-1 and αvβ3) suppress p53, p21,
p16 and p27, and proapoptotic protein Bax, whereas they
variably activate the survival PI3k/Akt, p42/44 MAP kinases,
bcl-2, A1 and survivin pathways[16-20](Figure 2). It was reported
that p42/p44 MAP kinases promoted VEGF expression by
activating its transcription via recruitment of the AP-2/Sp1
(activator protein-2) complex on the proximal region (-88/-66)
of the VEGF promoter and by direct phosphorylation of hypoxia-
inducible factor 1 alpha (HIF-1 alpha)[21]. Pharmacological
inhibition of PI3K or transfection with a dominant-negative
Akt mutant abolished the antiapoptotic effect of VEGF on ECs.
In addition to the PI3K/Akt pathway, ras-dependent signaling
pathways might also play an important role at least for VEGF
signaling. Thus, H-rasV12G down-regulation leads to profound
tumor regression, which is initially characterized by massive
apoptosis of tumor- and host-derived ECs[22]. Therefore,
apoptosis induction is resistant to enforced VEGF expression,
suggesting that VEGF requires an intact Ras-dependent
signaling pathway to mediate its apoptosis inhibitory effect[22].
And also, VEGF via the KDR/Flt-1 receptor induces enhanced
expression of the serine-threonine protein kinase Akt[19], a
downstream target of PI3-kinase, which potently blocks
apoptosis by interfering with various apoptosis signaling
pathways[23, 24], promotes EC migration[25], and enhances the
expression of the hypoxia-inducible factor (HIF), which is
known to stimulate VEGF expression[26], suggesting a potent
proangiogenic effect[27, 28]. These findings have identified the
VEGFR2 and the PI3K/Akt signal transduction pathway as
crucial elements in promoting EC survival induced by VEGF.
The downstream effector pathways mediating the antiapoptotic
VEGF effect include Akt-dependent  activation of the
endothelial nitric oxide synthase (NOS)[29, 30], resulting in an
enhanced endothelial NO synthesis, which, in turn promotes
EC survival (Figure 2). Gupta et al. demonstrated that the
VEGF-induced activation of the MAPK/extracellular signal-
regulated kinase (ERK) pathway and inhibition of the stress-
activated protein kinase/c-Jun amino-terminal kinase pathway
is also implicated in the antiapoptotic effect mediated by
VEGF[31] (Figure 2). Interestingly, the activation of the PI3K/
Akt pathway mediates not only the antiapoptotic effect but
also the migratory effect of VEGF on ECs via Akt-dependent
phosphorylation and activation of eNOS[32] (Figure 2).
     The expression of VEGF mRNA is highest in hypoxic tumor
cells adjacent to necrotic areas. Hypoxia-induced transcription
of VEGF mRNA is apparently mediated, at least in part, by
the binding of hypoxia-inducible factor 1 (HIF-1) to an HIF-1
binding site located in the VEGF promoter, and by the activation
of a stress inducible PI3K/Akt pathway[26,33]. In fact, progressive
growth of tumor creates ongoing hypoxia, which up-regulates
several pro-angiogenic compounds including VEGF, bFGF, IL-
8, TNF-α, TGF-β etc. These compounds, via several mechanisms
such as increase of vessel hyperpermeability, release of plasma
proteins, induction of proteases, fibrin formation, EC
proliferation, migration etc, promote angiogenesis and
fibrinolysis resulting in continued tumor growth and
dysfunctional vasculature, which further positively feedback to
create continuing hypoxia inside tumors (Figure 1).
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Fibroblast growth factors
Fibroblast growth factors (FGFs) and their receptors are
overexpressed in various types of cancers, and are important
tumor angiogenic and ECs survival factors. Pardo et al. reported
that bFGF induced expression of the antiapoptotic proteins bcl-
XL and bcl-2 via the MEK/ERK signaling pathway[34] (Figure
2). Expression of VEGF mRNA in the tumor is increased by
bFGF overexpression, and the bFGF-induced tumor
development is significantly inhibited by treatment with KDR/
Flk-1 neutralizing monoclonal antibody (mAb), which suggests
that bFGF synergistically augments VEGF-mediated
hepatocellular carcinoma development and angiogenesis, at
least in part, by induction of VEGF through KDR/Flk-1[35]. In
addition, bFGF induces an increase of VEGF mRNA in
vascular smooth muscle cells[36] and an increase in VEGF
receptors in microvascular ECs[37]. aFGF and bFGF are
mitogenic for ECs and stimulate ECs migration as well as ECs
production of plasminogen activator (PA) and collagenase that
are capable of degrading basement membrane[38] (Figure 2).
FGFs are responsible for production of ECM and release of
matrix metalloproteinases (MMPs) for selective degradation
and organization of ECM[39] (Figure 2).

     Binding of FGFs to their high affinity receptors causes the
activation of the intrinsic tyrosine kinase and a cascade of
events, leading eventually to the induction of immediate early
gene transcription, and to cell proliferation. FGFs receptors
dimerize upon ligand binding, and transphosphorylate at
tyrosine residue. Angiogenic growth factors, like bFGF and
VEGF165, require interaction with heparin sulfate (HS) in
order to induce a proliferative signal through tyrosine kinase
receptors. Binding of bFGF to high affinity cell surface receptor
sites can be modulated by heparin-mimicking compounds (i.
e. RG-13577) that can modulate abnormal bFGF signaling by
disrupting bFGF mediated autocrine loop, compete with
heparin sulfate (HS) on binding to bFGF, bind the growth
factor, and prevent receptor binding and/or dimerization[40], and
by proteolytic enzymes (e.g. MMP-2) that cleave the ectodomain
of the receptor. These effects are associated with profound
inhibition of bFGF mediated signal transduction (tyrosine
phosphorrylation) and proliferation of vascular ECs[40].
Spontaneous migration of ECs is inhibited by neutralizing
antibodies to bFGF, suggesting an autocrine of bFGF
synthesized and released by the ECs themselves[38]. A
dominant-negative receptor, which, when co-expressed with

Figure 2 Mechanism of angiogenesis by angiogenic factors.
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FGF receptors (FGFRs), can block the activation and signal
transduction. In addition, the ligand-specific targeting of toxin
to tumor cells expressing FGFRs and the compounds that bind
and inactivate FGF ligands, can block ECs proliferation.

Angiopoietins and tie receptors
It has been proposed that angiopoietin-1 (Ang1) and angiopoietin-
2 (Ang2) are pro-angiogenic and anti-angiogenic owing to their
respective agonist and antagonist signaling action through the
Tie2 receptor[41]. Lobov et al. have demonstrated that in vivo,
in the presence of endogenous VEGF-A, Ang2 promotes a rapid
increase in capillary diameter, remodeling of the basal lamina,
proliferation and migration of ECs, and stimulates sprouting
of new blood vessels[41]. By contrast, Ang2 promotes ECs death
and vessel regression if the activity of endogenous VEGF is
inhibited[41]. It was reported that Ang1 induced phosphorylation
of Tie2 and the p85 subunit of PI 3’-kinase and increased PI
3’-kinase activity in a dose-dependent manner, suggesting that
the Tie2 receptor, PI 3’-kinase, and Akt are crucial elements
in signal transduction pathway leading to EC survival induced
by the paracrine activity of Ang1[42] (Figure 2). Alternatively,
Ang1 prevents EC apoptosis via Akt/survivin pathway by
activating a critical survival messenger, Akt, and by up-
regulating a broad spectrum apoptosis inhibitor, survivin[43, 44]

(Figure 2), but has no effect on the expression of bcl-2 and
XIAP[44]. Moreover, Ang1-induced migratory effect might be
mediated through PI 3’-kinase activity dependent tyrosine
phosphorylation of p125FAK, which plays a key role in regulating
dynamic changes in actin cytoskeleton organization during EC
migration[45]. Increased plasmin and MMP-2 secretion, and
suppressed TIMP-2 secretion by Ang1 from ECs are also
important determinants for inducing ECs sprouting[45] (Figure
2). In contrast, the PI 3’-kinase inhibitors have been found to
inhibit Ang1-stimulated tyrosine phosphorylation of p125FAK,
and secretion of MMP-2 and plasmin from ECs and migration
[45]. Ang2 blocks Ang1-mediated Tie2 autophosphorylation in
ECs and acts as  a check point on Ang1/Tie2-mediated
angiogenesis to prevent excessive branching and sprouting of
blood vessels by promoting destabilization of blood vessels.

Transforming growth factor-β
Transforming growth factor-betas (TGF-βs) are multifunctional
polypeptides that regulate cell growth and differentiation, ECM
deposition, cellular adhesion properties, angiogenesis and
immune functions. TGF-β1 acts through the TGF-β type I and
type II receptors to activate intracellular mediators, such as
Smad proteins, the p38 MAPK, and the ERK pathway[46]. TGF-
β1 mRNA levels by activin receptor-like kinase 5 (ALK5)
independent of p38 MAPK activation[46]. In contrast, TGF-β1
induction of fibronectin (FN) mRNA requires p38 MAPK
activity[46]. TGF-β1 induction of PAI-1 and TSP-1 mRNA uses
at least ALK5 and possibly the p38 MAPK pathway[46]. TGF-
β secreted by most cultured cells is in biologically inactive
form, and cannot bind TGF-β receptors; the latent TGF-β is
activated by proteases such as plasmin and cathepsin D, low
pH, chaotropic agents such as urea, and heat[47, 48]. Several
studies suggested that VEGF increases plasminogen activator
(PA) activity in vascular ECs[11] and that plasmin is able to
activate latent TGF- β1

[49, 50] which decreases Flk-1 expression
and thereby negatively regulates the VEGF/Flk-1 signal
transduction pathway in EC[51], raise the possibility that a
complex self-regulating mechanism of VEGF signal
transduction may exist during angiogenesis[50]. However,
immunohistochemical study has shown that TGF-β1 might be
associated with tumor progression by indirectly stimulating
angiogenesis through the up-regulation of VEGF expression
in gastric carcinoma[52]. In addition, TGF-β1 inhibits the

generation of the anti-angiogenic molecule angiostatin by
human pancreatic cancer cells in a time- and dose-dependent
manner, and this effect is mediated through modulation of the
plasminogen/plasmin system[53].
     TGF-β not only inhibits the activity and expression of
cyclins and CDKs but also induces the cyclin-dependent kinase
inhibitors (CDKIs) p15, p27 and p15, which bind to the cyclin/
CDKs, preventing phosphorylation of pRB and thereby arresting
most epithelial cells (including ECs) at late G1 phase[54] (Figure
2). The effects of TGF-β1

 on endothelial tube formation may
be mediated through a net antiproteolytic activity by
modulating uPA and PAI levels[55]. Ellenrieder et al. reported
that TGF-β treatment of PANC-1 and IMIM-PC1 cells resulted
in strong up-regulation of expression and activity of both matrix
metalloproteinase-2 (MMP-2) and the uPA system, and
treatment with MMP inhibitors or inhibitors of the uPA system
caused significant reduction of TGF-β-induced invasiveness
in both cell lines suggesting that TGF-β acts in an autocrine
manner to induce tumor cell invasion, which is mediated by
MMP-2 and the uPA system[56] (Figure 2). Furthermore, TGF-
β indirectly stimulates angiogenesis by the recruitment of
inflammatory mediators that secrete angiogenic factors. Thus,
TGF-β regulates vascular remodeling through its pleiotropic
effects on different cell types.

Interleukin-8 and matrix metalloproteinase-2
Up-regulation of MMP activity, favoring proteolytic degradation
of the basement membrane and ECM, has been linked to tumor
growth and metastasis, as well as tumor-associated angiogenesis.
IL-8 mRNA is up-regulated in neoplastic tissues, such as non-
small cell lung cancer[57] and that its expression correlates with
the extent of neovascularization, tumor progression and
survival. And also, MMP-2 mRNA level is increased in tumor
cells transfected with IL-8, but VEGF and bFGF mRNA levels
are unchanged[58,59] suggesting that IL-8-induced MMP-2
production is a major mechanism by which tumor cells induce
angiogenesis. IL-8 can also be up-regulated by hypoxia,
suggesting that the environment plays a major role in regulating
IL-8 expression and metastasis[58]. MMPs induce tumor
angiogenesis by degrading ECM and thereby release
angiogenic mitogens that have been shown to be stored within
the matrix. In addition, MMP-2 and MMP-3 are able to release
soluble FGF receptor 1 (FGFR1)[60] and soluble 12-kDa
immunoreactive and mitogenic heparin-binding epidermal
growth factor (HB-EGF)[61], respectively. MMP-2 has been
shown to directly modulate melanoma cell adhesion, spreading
on ECM and invasion [62], and an inhibitor of MMP-2
significantly inhibits growth and neovascularization of tumors
implanted into chick chorioallantoic membrane (CAM) by
preventing MMP-2 binding to αvβ3 and blocking cell surface
collagenolytic activity[63]. Furthermore, MMP-9, as well as
MMP-2 proteolytically cleave and activate latent TGF-β, and
promote tumor invasion and angiogenesis[64].

Oncogene and tumor suppressor genes
Oncogenes are found to be activated and tumor suppressor
genes are found to be inactivated in tumor, and hence promote
tumor growth and angiogenesis through different mechanisms
(Figure 1). It has been shown that VEGF is introduced by K-
or H-ras mutant gene, v-src and v-raf in transformed fibroblast
and ECs. Other angiogenic factors such as VEGF, TNF-α,
TGF-β have been shown to be up-regulated by mutant ras[65].
These effect may be mediated through a ras-raf-MAP kinase
signal transduction pathway (Figure 1), which results in
activation of promoter regions of genes of angiogenic growth
factors[66]. Moreover, expression of ras, either constitutive or
transient, potentiated the induction of VEGF by hypoxia[67].
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     p53 is an important suppressor gene, which inhibits the
angiogenic process by inducing thrombospondin-1, down-
regulating VEGF and NOS and, in addition, down-regulating
hypoxia-induced angiogenesis, either inducing apoptosis or
enhancing anti-angiogenic factors[68]. A transient transfection
of mutated p53 results in up-regulation of VEGF mRNA in
NIH3T3 cells[69]. In contrast, adenovirus-mediated wild-type
p53 overexpression down-regulats CD40-induced VEGF
expression and transmigration in human multiple myeloma
cells expressing mutant p53[70]. And, we have previously
demonstrated that the expression of Flt-1 receptor is
significantly correlated with p53 mutation gene, not obviously
with ras mutation gene in pancreatic carcinoma cells, which
suggest that wild type p53, after mutation, might lose the
suppressive function to the expression of Flt-1 receptor, thus
results in neovascularization of pancreatic neoplasm and
promotes the growth of tumor cells, whereas ras mutation may
take part in neovascularization through other approaches.
Recombinant wild type p53 represses bFGF mRNA translation
in rabbit reticulocyte lysate, in a dose- dependent manner via
blocking translation initiation by preventing 80S ribosome
formation on an mRNA bearing the bFGF mRNA leader
sequence[71]. Moreover, adenoviral vector-mediated wild type
p53 transduction results in tumor regression, at least in part,
via anti-angiogenesis mediated by the down-modulation of
FGF binding protein, a secreted protein required for the
activation of angiogenic factor bFGF[72]. In addition, wild type
p53 gene transfer significantly reduces cell invasiveness in
vitro via a decrease in the secreted levels of MMP-2 in mutated
p53 human melanoma cell lines[73]. Biologically, p53 acts at a
G1/S check point, postponding DNA replication after certain
cell stress, such as DNA damage[74], and also induces the
apoptotic pathway of cell death[75].

THE ANGIOGENIC INHIBITORS
Mechanism of angiogenesis inhibitors
Leading anti-angiogenic targets that have been identified
are[76, 77]: (1) inhibition of the growth factors that promote
endothelial proliferation; (2) inhibition of the proteases required
for ECs to penetrate basement membrane and form new blood
vessels; (3) disruption of specific intracellular signal
transduction pathway; (4) induction of EC apoptosis or
inhibition of EC survival; (5) inhibition of endothelial bone
marrow precursor cells; and (6) inhibition of αvβ3-integrin-
vitronect interaction that is pivotal in mediating ECs adhesion
to ECM during neovascularizatioin[77].

Inhibitors of angiogenic growth-factors and their receptors
One broad class of angiogenesis inhibitors is made up of drugs
that target growth factors such as bFGF and VEGF. The factors
tend to bind to heparin, a property that may trap them within
the ECM and may thereby govern their bioavailability. Hence,
the early generation of drugs is heparin-like (e.g. Pentosan
polysulfate), especially with regard to carrying multiple
negative charges that promote growth factor binding. However,
receptor targeting agents can impede tumor growth and
metastasis by interfering, at specific growth-factor receptors,
such as those for FGFs and VEGF, with the transduction of
angiogenic stimuli into intracellular responses. In these
pathways, the receptors are transmembrane tyrosine kinases,
in which ligand binding to an extracellular domain induces
autophosphorylation of an intracellular kinase domain. Each
kinase then functions as an activator of downstream signals.
To disrupt such a sequence, a drug may compete for receptor
binding and prevent tyrosine kinase autophosphorylation.
Inhibitors of VEGF family include: (1) anti-VEGF mAb[78]:
directly neutralizes VEGF proteins, and inhibits biological

activities of VEGF; (2) soluble VEGF receptors: specifically
bind to VEGF, indirectly block the function of VEGF with
receptors; (3) inhibitors of VEGF receptors[79]: bind to VEGF
receptors and block their functions with VEGF; (4) inhibitors
of VEGF signal transduction: interfere a series of signal
transduction pathways by blocking autophosphorylation of
VEGF receptors; (5) VEGF antisense[80]: is a specific nucleotide
sequence, which binds to VEGF mRNA and thereby interferes
VEGF mRNA translation and VEGF protein formation. A
recent study has shown that the VEGFR2 DNAzyme can
cleave its substrate efficiently in a concentration- and time-
dependent manner, inhibit the proliferation of EC with a
concomitant  reduction of VEGFR2 mRNA, and inhibit
tumor growth in vivo[81].

Endogenous angiogenesis inhibitors
More than 40 endogenous angiogenesis inhibitors have been
characterized, and they are divided into 4 major groups:
interferons (IFNs), proteolytic fragments, interleukins (ILs),
and tissue inhibitors of metalloproteinases (TIMPs)[82].
Interferons  The interferons (INF-α, -β, and -γ) are members
of a family of secreted glycoproteins, which have direct or
indirect inhibitory effect on tumor angiogenesis and growth.
IFN-α/β have been reported to down-regulate the expression
of pro-angiogenic factor MMP-9 mRNA and protein in
different cancers[83-86]. Also, IFN-α/β down-regulate IL-8
expression in bladder cancer[83-84]. Several studies demonstrated
that the administration of optimal biological dose of IFN-α/β
decreased the expression of bFGF mRNA and protein and
microvessel density in the tumors and, in addition, induced
EC apoptosis[83-85, 87]. Sasamura et al. demonstrated that IFN-γ
had mild inhibitory effects on VEGF mRNA and bFGF mRNA
expression, whereas IFN-α did not significantly decrease the
level of either VEGF mRNA or bFGF mRNA in renal cell
carcinoma[88]. However, some studies demonstrated that IFN-
α/β treatment did not cause the reduction of bFGF and VEGF
levels in serum from patients with carcinoid tumours[89] and
leukemia[86]. Thus, anti-angiogenic effect of IFNs treatment
might be mediated by the regulation of different angiogenic
factors in different tumors in dose- and time-dependent manner.
Moreover, IFN-γ is presumed to induce its anti-angiogenic
effects through the secretion of IFN-γ inducible protein 10 (IP-
10) and monokine induced by IFN-γ[90]. Finally, IFNs have
antitumor properties, which may be mediated through a direct
cytotoxic effect on tumor cells, augmentation of immunogenicity
of tumor by up-regulation of major histocompatibility (MHC)
classes I and II and tumor associated antigens, and/or activation
of macrophages, T lymphocytes and natural killer cells[89].
Interleukins  It was reported that interleukins (ILs) having a
Glu-Leu-Arg (ELR) motif at the NH2 terminus, such as IL-8,
enhance angiogenesis, and those that lack this sequence, such
as IL-4, inhibit it[91]. IL-4 inhibits in vivo neovascularization
induced by bFGF in the rat cornea and blocks the migration of
microvascular ECs toward bFGF in vitro[92]. However, it has
been shown that IL-1α, a representative cytokine of activated
macrophages, induces angiogenesis through the enhanced
expression of various angiogenic factors such as VEGF, IL-8,
and bFGF[93]. And also, IL-6 was found to counteract the
apoptotic effect mediated by wild type p53[75]. Several studies
have reported that IL-12 suppresses the expression of VEGF
mRNA[94, 95], bFGF[94] and MMP-9 mRNA[94]. Additionally, IL-
12 was found to stimulate mRNA expression of IFN-γ and its
inducible anti-angiogenic chemokine IFNγ-inducible protein
(IP-10) in ECs cultured with IL-12[95]. IL-12 significantly
promotes apoptosis and inhibits proliferation rate of human
tumors and extensive necrosis in the murine, and thereby
reducing tumor vessel density[95]. Furthermore, the in vivo
inhibition of neovascularization in IL-10-secreting tumors
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might be mediated by the ability of IL-10 to down-regulate
the synthesis of VEGF, IL-1β, TNF-α, IL-6, and MMP-9 in
tumor-associated macrophages[96]. And also, IL-10 inhibits
tumor metastasis through a natural killer (NK) cell-dependent
mechanism[96].
Tissue inhibitors of metalloproteinases  Remodeled ECM
components comprise a scaffold upon which ECs can adhere,
migrate, and form tubes, and deposition of these components
forms the basal lamina that ensheaths endothelial and mural
cells. In vitro migration of ECs through gelatin is significantly
inhibited by overexpressed TIMP-1[97]. Murphy et al. reported
that TIMP-2, but not TIMP-1, inhibited bFGF-induced EC
proliferation[98]. TIMP-2 is able to inhibit soluble FGFR1
released by MMP-2[60]. Transfection of the highly metastatic
B6F10 murine melanoma cell line with TIMP-2 cDNA showed
the reduced levels of blood vessel formation and diminished
induction of EC migration and invasion[99]. Studies have shown
that the overexpression of TIMP-3 induces the apoptotic cell
death of a number of cancer cell lines and rat vascular smooth
muscle cells through the stabilization of TNF-alpha receptors
on the cell surface, perhaps by inhibiting a receptor shedding
metalloproteinase[100, 101]. Furthermore, anti-angiogenic and
antitumor effects of TIMP-3 appear to be mediated, in part, by
decreased expression of vascular endothelial (VE)-cadherin
by ECs in the presence of TIMP-3 in an in vitro assay and in
TIMP-3-overexpressing tumors[102]. Finally, TIMP-1, TIMP-
2, TIMP-3 and TIMP-4 inhibit neovascularization by inhibiting
MMP-1, MMP-2, and MMP-9 induced breakdown of
surrounding matrix[103]. Thus, the multiple effects of TIMPs
on both endothelial and tumor cells migration render MMPs
attractive targets for tumor therapy.
Proteolytic fragments  Most of these fragments are derived
from ECM components, such as collagen or fibronectin, or
from enzymes such as plasminogen and MMP-2 that remodel
ECM. Perhaps the most characterized inhibitors in this class
are angiostatin and endostatin.
Angiostatin  The anti-angiogenic effect of angiostatin, a 38-
kDa internal fragment of plasminogen, may be mediated, at
least in part, by their ability to down-regulate VEGF expression
within the tumor[104]. Angiostatin inhibits hepatocyte growth
factor (HGF)-induced phosphorylation of c-met, Akt, and
ERK1/2, and thereby exerts its anti-angiogenic effect via
disruption of HGF/c-met signaling[105]. Intraperitoneal
administration of angiostatin potently inhibits  the
neovascularization and metastasis formation in mice observed
after a primary tumor has been removed[106]. It has been shown
that binding of angiostatin to the α/β-subunits of plasma
membrane-localized ATP synthase may suppress endothelial-
surface ATP metabolism and thereby mediates its anti-
angiogenic effects and the down-regulation of EC proliferation
and migration[107, 108] (Figure 3). Further, adenoviral mediated
angiostatin gene transfer selectively inhibits EC proliferation
and disrupts the G2/M transition induced by M-phase-
promoting factors, and that ECs show a significant mitosis arrest
that is correlated with the down-regulation of the M-phase
phosphoproteins[109]. Other studies have shown that angiostatin
treatment significantly increases the apoptosis of EC and tumor
cells, and decreases density of tumor blood vessels[109-111].
Angiostatin was found to produce a transient increase in
ceramide that correlates with actin stress fiber reorganization,
detachment and death[112] and, in addition, treatment with
angiostatin or ceramide resulted in the activation of RhoA, an
important effector of cytoskeletal structure[112] (Figure 3).
Angiostatin can selectively regulate the expression of E-selectin
and thereby inhibits the proliferation of ECs.
Endostatin  It is a 20-kDa fragment of type XVIII collagen
that has been identif ied as a  factor  produced by
hemangioendothelioma cells that inhibits ECs proliferation,

angiogenesis and tumor growth. The mechanisms by which
endostatin inhibits VEGF-induced proliferation and migration
of ECs are (Figure 3): First, endostatin blocks the VEGF-
induced tyrosine phosphorylation of KDR/Flk-1 in ECs[113].
Second, endostatin suppresses the VEGF-induced activation
of ERK, p38 MAPK, and p125FAK, which are downstream
events of the KDR/Flk-1 signaling and are involved in the
mitogenic and motogenic activities of VEGF in ECs[113]. Third,
endostatin inhibits the binding of VEGF to ECs and to its cell
surface receptor, KDR/Flk-1[113]. Finally, endostatin directly
binds to KDR/Flk-1 but not to VEGF[113]. Endostatin was found
to exhibit its anti-migratory effect by reducing VEGF-induced
phosphorylation of endothelial NOS (eNOS)[114] (Figure 3).
Rehn et al. demonstrated that soluble endostatin was capable
of binding to αv- and α5-integrins, thereby inhibiting the
integrin functions, such as EC migration[115] (Figure 3). In
addition, endostatin may exert its antiproliferative and anti-
angiogenic effects by competing with bFGF for binding to cell
surface heparan sulphate proteoglycans, which could disrupt
the mitogenic growth factor signaling[116]. Endostatin induces
a significant decrease in EC proliferation in the basal state and
after stimulation by neuropeptide Y and bombesin[117].
Endostatin potently inhibits both the extracellular activation
of proMMP-2 by inhibition of membrane-type 1 MMP (MT1-
MMP) and the catalytic activity of MMP-2 and thereby can block
the invasiveness of ECs and tumor cells[118]. The proapoptotic
activity of endostatin appears to be mediated via tyrosine kinase
signaling[119] and reduction of antiapoptotic proteins bcl-2 and
bcl-XL without affecting the level of the proapoptotic Bax
protein[120] (Figure 3). Furthermore, the Shb adaptor protein has
been suggested to be involved in the mediation of the apoptotic
signaling of endostatin[119] (Figure 3).

Somatostatin and its analogs
Somatostatin (SS) and its analogs inhibit the proliferation of
somatostatin receptors (SSTRs) positive endocrine neoplasm.
The antiproliferative action of SS is signaled via five specific
G-protein coupled receptors (SSTR1-SSTR5), which initiate
pertussis toxin sensitive-G protein dependent, and tyrosine
phosphatase mediated cell growth arrest or apoptosis according
to receptor subtypes and target cells. It has been shown that
activation of SSTR1, 2, 4, and 5 induce G1 cell cycle arrest
through the ability of SS to maintain high levels of CDKIs
p27(Kip1) and p21, and inactivate cyclin E-CDK2 complexes,
thus leading to hypophosphorylation of pRb[121, 122](Figure 3).
Moreover, somatostatin-mediated growth inhibition of normal
and cancer pancreatic acinar cells is triggered via an inhibition
of PI3-kinase signaling pathway[123]. SS may directly stimulate
tumor apoptosis via sstr3-dependent G protein signaling,
causing the induction of suppressor gene p53 and proapoptotic
protein Bax[124](Figure 3). Our recent investigation reported
that the low expression or loss of SSTR2 gene was more
negatively correlated with the over-expression of p53 and ras
mutation genes, which might take part in the angiogenesis of
pancreatic neoplasm, whereas there was no significant
relationship between SSTR2 and DPC4 (deleted in pancreatic
cancer, locus 4), which suggested that there was different
regulatory pathway in neovascularization of pancreatic
neoplasm. Albini et al. provided evidence that SS inhibits
Kaposi sarcoma associated angiogenesis by inhibiting both EC
proliferation and invasion, and also by inhibiting migration of
monocytes, which are important mediators of the angiogenic
cascade, and are able to produce survival factors that, in turn,
activate ECs[125]. In addition, SS induces a significant decrease
in basal and stimulates EC proliferation in HUVEC, and also
decreases number of capillaries[117]. CAM model study showed
that unlabeled SS analogs inhibited angiogenesis, which was
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proportional to the ability of the analogs to inhibit growth
hormone (GH) production[126].
    It is defined that SSTR subtypes are responsible for the
specific post-receptor signal transduction mechanisms involved
in octreotide’s inhibition of angiogenesis[126]. The intracellular
signal transduction mechanisms involved in this angiogenic
inhibition include the G^sub i^-binding protein, cAMP, and
calcium[127]. Further, SS and its analogs induce their biologic
effects by interacting with specific receptors that are coupled
to a variety of signal transduction pathways involving adenylate
cyclase, guanylate cyclase, ionic conductance channels,
phospholipase C-β, phospholipase A2, and tyrosine phosphatase
and protein dephosphorylation and thereby regulate cell
growth[128, 129]. The best characterized pathway involves the
inhibition of adenylate cyclase, leading to a reduction in
intracellular cAMP levels. Antiproliferative effects that are
mediated through SSTR1 and SSTR2, involve the stimulation
of tyrosin phosphatases, however SSTR5 appears to be coupled
to inositol phospholipid/calcium pathway[130]. Mentlein et al.
reported that cultivated cells from solid human gliomas of
different stages and glioma cell lines secreted variable amounts
of VEGF, which was reduced between 25 and 80 % of control
levels depending on the glioma by co-incubation with SS or

SSTR2-selective agonists (octreotide and L-054 522) in dose-
dependent manner[131]. Growth factor-induced (EGF, bFGF)
VEGF synthesis could also be suppressed to <50 % by co-
incubation with SS or SSTR2-selective agonists, which was
less pronounced in hypoxia-induced VEGF synthesis[131]. And
also, SS and octreotide diminished the proliferative activity of
cultured murine ECs HECa10 vs. controls; however, SS and
octreotide did not change the release of VEGF into supernatants
of 24-h or 72-h EC cultures[132]. A recent study has demonstrated
that SS 14 can reduce bFGF-induced corneal angiogenesis[133].
     In summary, the mechanisms of action of tumor growth
inhibition by SS and its analogs are[134]: (1) inhibition of the
secretion of hormones, such as GH, insulin and/or
gastrointestinal hormones; (2) direct or indirect (via GH)
inhibition of IGF-1 and/or other growth factors that exert a
stimulatory effect on tumor growth. On the other hand, SS
analogs can selectively stimulate the formation of IGF-binding
protein 1, and thereby interfering with IGF-1 action at the
receptor level; (3) inhibition of angiogenesis through different
mechanisms; (4) direct antimitotic effects of growth factors,
which act on tyrosine kinase receptors such as EGF and FGF,
via SSTRs on the tumor cells; (5) modulation of immunological
activity.

Figure 3 Proposed effector pathways of angiogenic inhibitors.
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Thrombospondin-1
Thrombospondin-1 (TSP-1) is a naturally occurring inhibitor
of angiogenesis that limits vessel density in normal tissues and
curtails tumor growth. TSP-1 exerts its anti-angiogenic activity
via binding to the CD36 receptor by triggering an apoptotic
signaling pathway[135]. Binding of TSP-1 to CD36 receptor leads
to the recruitment of the Src-related kinase, p59-fyn, and to
activation of p38 MAPK. The activation of the p38 MAPK
has been shown to be p59-fyn-dependent and to require a
caspase-3-like proteolytic activity[135]. Furthermore, activated p38
MAPK leads to the activation of caspase-3 and to apoptosis[135]

(Figure 3). Interestingly, the apoptotic effect of TSP-1 is
restricted to ECs activated to take part in the angiogenic process
and not in quiescent vessels[135]. TSP-1 acts through CD36 to
modulate the activity of focal adhesion kinase (FAK) and thus
inhibits EC migration and proliferation[136] (Figure 3). TSP-1
can effectively inhibit chemotaxis in vitro and neovascularization
in vivo, induced by several angiogenic stimuli. These include
protein that acts via tyrosine kinase receptors (VEGF, bFGF,
aFGF, PDGF), via G proteins (IL-8), via serine/threonine kinase
receptors (TGF-β), and also lipids (PGE-1)[137, 138].

SUMMARY AND CONCLUSION
Developmental status and evaluation of anti-angiogenic
therapy in human clinical trials
Angiogenesis is a complex process that depends on the
coordination of many different activities in several cell types.
The angiogenic response in the microvasculature is associated
with changes in cellular adhesive interactions between adjacent
ECs, pericytes, fibroblasts, and immune mediators express many
different cytokines and growth factors that react with other cells
or ECM components to affect ECs migration, proliferation, tube
formation, and vessel stabilization. As one or more of the positive
regulators of angiogenesis are up-regulated, and simultaneously,
certain negative regulators of angiogenesis are down-regulated,
tumors become angiogenic. Interestingly, different angiogenic
regulators, sometimes, function through the same mechanism
and a single angiogenic regulator, sometimes, functions through
different mechanisms. Hence, the anti-angiogenic therapy can
be realized through the regulation of ‘angiogenic switch’ by
interfering with different mechanisms.
    Anti-angiogenic agents, if administered before a tumor
develops or becomes vascular supply dependent, would
therefore theoretically act similarly to a vaccine in preventing
tumor development, not just tumor growth. However, it is
notable that anti-angiogenic therapy represents a treatment, not
a cure, for cancer. A cure for cancer can be realized only by
targeting the agents and mechanisms that cause normal cells
to become tumorigenic. The anti-angiogenic therapy of cancer,
nonetheless, represents a highly  effective strategy for
destroying tumors because fundamental requirement of tumor
growth is dependent on a blood supply. Unlike standard
chemotherapy that targets tumor cells and other proliferating
cells, angiogenesis inhibitors target dividing ECs that have been
recruited into the tumor bed. For example, certain tubulin-
binding agents such as combretastin A-4, exhibit a selective
toxicity for proliferating ECs in vitro and causing a vascular
collapse in tumor models in vivo via apoptosis and the
subsequent death of much larger numbers of tumor cells[139].
Thus, specific anti-angiogenic therapy has little or no toxicities
such as gastrointestinal symptoms and myelosuppression that
are characteristic of standard chemotherapeutic regimens, does
not require that the therapeutic agent enter any tumor cells nor
cross the blood brain barrier, controls tumor  growth
independently of growth fraction or tumor cell heterogeneity
or even tumor cell type, and does not induce acquired drug
resistance [140]. Further, since normal vasculature in the adult is

quiescent, the appropriate use of selective angiogenic inhibitors
may be expected to confer a degree of specificity that is not
obtainable with the nonspecific modalities of chemotherapy
and radiation therapy and to allow for relatively nontoxic, long-
term treatment of tumors.
     Because anti-angiogenic agents are expected to be cytostatic
rather than cytotoxic, they may be particularly effective in
combination with cytotoxic agents, even used in advanced
cases of pancreatic, colon, and hormone-refractory prostate
cancer, thereby targeting not only DNA synthesis and cell
division but also the biologic behavior of tumor cells. The
following guidelines are suggested to improve the therapeutic
efficacy of endogenous angiogenesis inhibitors in clinical trials:
(1) after surgery or radiotherapy to prevent recurrence of distant
metastases; (2) combinatorial therapies, for example, in
combination with conventional chemotherapy, radiotherapy
and vaccine therapy or immunotherapy, and also, in combination
with several angiogenesis inhibitors rather than a single
inhibitor; (3) targeting therapy. Angiogenesis inhibitors may
be specifically targeted to the disease locus at high
concentrations rather than be widely distributed in the entire
body; (4) gene therapy, several advantages including prolonged
therapy, low doses of DNA molecules, and less frequent
injections may be achieved by anti-angiogenic gene therapy
with endogenous angiogenesis inhibitors; (5) more potent
angiogenesis inhibitors should be discovered; (6) prolonged
half-lives. Slow-release of angiogenesis inhibitors in the body
reaches a steady-state level in the circulation.
    Remarkably diverse groups of anti-angiogenic drugs are
currently undergoing evaluation in phase I, II or III clinical
trials. However, there are still some difficulties associated with
the clinical evaluation of these drugs efficacy. In the
experimental animal model, tumors can be removed and
examined for therapeutic efficacy such as changes in the extent
of vascularization, vascular structure, EC viability or apoptosis,
as well as for markers of angiogenic activity, e.g. VEGF
expression. But in the clinical situation, taking serial biopsies
of metastatic tumors may not be a particularly practical or
desirable approach. For this, reliable surrogate markers of tumor
angiogenesis in serum or urine, and non-invasive strategy may
be necessary. Several studies have successfully used various
non-invasive medical imaging strategies (e.g. MRI, Doppler
ultrasound) to monitor changes in tumor blood flow, vascular
structure and permeability[141-143]. Indeed, there are considerable
research efforts underway in this field. In addition, there are
obvious concerns about delayed toxicity associated with long-
term anti-angiogenic therapy, and physiological angiogenesis
affected by anti-angiogenic drugs such as wound healing in a
cancer patient, reproductive angiogenesis (e.g. corpus luteum
development in adult females, development of the vasculature
in developing embryos), in neonates and children. In this
concern, a potentially significant development in the near future
could be the use of genomics based technologies to uncover a
large number of highly (or even totally) specific molecular
markers for the activated ECs of newly formed blood vessels.
    In the near future, the outcome of ongoing clinical trials
will give us more insights into the potential of anti-angiogenic
approaches to treat cancer.
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