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Abstract
AIM: Irritable bowel syndrome (IBS) is characterized by
abdominal pain and changes in stool habits. Visceral
hypersensitivity is a key factor in the pathophysiology of
IBS. The aim of this study was to examine the effect of
rectal balloon-distention stimulus by blood oxygenation level-
dependent functional magnetic resonance imaging (BOLD-
fMRI) in visceral pain center and to compare the distribution,
extent, and intensity of activated areas between IBS patients
and normal controls.

METHODS: Twenty-six patients with IBS and eleven normal
controls were tested for rectal sensation, and the subjective
pain intensity at 90 ml and 120 ml rectal balloon-distention
was reported by using Visual Analogue Scale. Then, BOLD-
fMRI was performed at 30 ml, 60 ml, 90 ml, and 120 ml
rectal balloon-distention in all subjects.

RESULTS: Rectal distention stimulation increased the activity
of anterior cingulate cortex (35/37), insular cortex (37/37),
prefrontal cortex (37/37), and thalamus (35/37) in most cases.
At 120 ml of rectal balloon-distention, the activation area and
percentage change in MR signal intensity of the regions of
interest (ROI) at IC, PFC, and THAL were significantly greater
in patients with IBS than that in controls. Score of pain
sensation at 90 ml and 120 ml rectal balloon-distention was
significantly higher in patients with IBS than that in controls.

CONCLUSION: Using fMRI, some patients with IBS can be
detected having visceral hypersensitivity in response to painful
rectal balloon-distention. fMRI is an objective brain imaging
technique to measure the change in regional cerebral activation
more precisely. In this study, IC and PFC of the IBS patients
were the major loci of the CNS processing of  visceral perception.
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INTRODUCTION
Irritable bowel syndrome (IBS) is the most common disorder

seen in gastroenterological practice[1,2]. The disorder affects
approximately 15 % to 20 % of the world’s population and is
predominately found in women[2]. It comprises a group of
functional bowel disorders in which abdominal discomfort or
pain is associated with defecation or a change in bowel habit,
and with features of disordered defecation [3,4].  The
pathophysiology of the symptom remains unclear, and visceral
hypersensitivity or decreased pain thresholds to distension of
the gut is considered to be a biologic marker for IBS and is
present in most patients with this gastrointestinal disorder[5].
Possibly, there are dysfunctions in the processing of sensory
stimuli in the “brain-gut” axis that may cause visceral
hypersensitivity and secondary motility changes[6]. The central
nervous system is believed to play a strong modulatory or
etiological role in the pathophysiology of the disease[7].
     In animals, the perception of somatovisceral pain is derived
from the expression of the immediate early gene c-fos[8-11].
Numerous positron emission tomography (PET)[12-15] or
functional magnetic resonance imaging (fMRI)[16-18] studies
have dealt with the central processing of somatic pain in
humans. In contrast, the neural networks involved in the
perception of visceral pain in humans, especially rectal pain,
have been the subjects of a limited number of functional brain
imaging studies[19-23].
    Previous studies of somatic pain using PET scanning to
measure the regional cerebral blood flow have suggested that
the anterior cingulate cortex (ACC), prefrontal cortex (PFC),
insular cortex (IC), and thalamus (THAL) are important loci
in pain perception[12,24]. Studies of visceral pain have generally
suggested that these brain centers are important in sensation.
fMRI is an alternative technique to measure changes in regional
cerebral activity during stimulation. Using fMRI, the cerebral
loci activated by rectal distention were also characterized in
healthy volunteers[22].
    In this study, we examined the effect of rectal balloon-
distention stimulus by blood oxygenation level-dependent
functional magnetic resonance imaging (BOLD-fMRI) in the
visceral pain center and to compare the distribution, extent,
and intensity of activated areas between irritable bowel
Syndrome (IBS) patients and normal controls.

MATERIALS AND METHODS
Subjects
Eleven normal right-handed control subjects (6 men and 5
women; age, 24-49 years; average age, 39 years) and twenty-
six right-handed patients with IBS (12 men and 14 women; age,
18-61 years; average age, 47 years) participated in the study.
All volunteers were free of any gastrointestinal complaint. The
IBS patients were all diagnosed in Ruijin Hospital, and met the
Rome II criteria for IBS[4], which include at least 12 weeks, not
necessarily to be consecutive in the preceding 12 months of
abdominal discomfort or pain that has two of the following three
features: (1) Relieved with defecation; (2) Onset associated with
a change in frequency of stool; (3) Onset associated with a
change in form (appearance) of stool. Each patient underwent
a basic evaluation to exclude organic disease including a
history, physical examination, and colonoscopy.
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Distention protocol
Subjects reclined on the magnetic resonance imaging (MRI)
table with head resting on a beanbag saddle that reduced head
motion. A plastic balloon (Medtronic Synectics, USA) was
placed in rectum at 10-15 cm from the anal margin. First, the
subjects were tested for the rectal sensation, including the
thresholds for sensation of gas, defecation and pain. Second,
subjects reported the subjective pain intensity at 90 ml and 120
ml rectal balloon-distention by using visual analogue scale (0=no
pain, 10=unbearable pain). Then, fMRI scanning was begun.
Subjects were instructed to expect 4 series of rectal stimuli. Each
set of distention included 3 stimuli of the same volume lasting
30 seconds each, with a 30-second rest period in between. The
balloon inflation and deflation for each stimulus required an
average of 6 seconds. The baseline volume during the rest periods
was 0 ml. The first series of stimulus volume was 30 ml, the
second 60 ml, the third 90 ml, and the last 120 ml.

MRI scanning
BOLD imaging was performed on a 1.5-T GE Signa MRI
system. Each scanning consisted of a T1-weighted (the
parameters included TR/TE=400 ms/14 ms, matrix=256×256,
NEX=1). Next, four 10-mm-thickslices aligned at an
approximately 20o angle above the anterior commissure-
posterior commissure line to include the ACC, IC, PFC, and
THAL. A functional scan was performed using echo planar
imaging, and a matrix of 64×64, NEX=1. The pulse sequence
parameters included a 90o flip-angle with a TR (image repetition
rate)/TE (effective echo time) of 3 000 ms/60 ms. Each run
consisted of 3 repetitions of 30 seconds of rest, followed by 30
seconds of stimulus. In each 30-second period, 10 parameters
were collected, 60 data during each series.

Data processing and analysis
Data analysis was performed using correlation-coefficient tool
in Functional software (AW3.2, SUN workstation). The
confidence level was 0.05. Brain areas thought to mediate
painful sensation included the ACC, the IC, the PFC, and
THAL. These regions of interest (ROI) were identified and
circled on the high-resolution anatomic images by a radiologist,
who was blind to the identity of the patient and to the active
pixels. The regional cerebral activation was evaluated by the
percentage area of ROI and the percentage change in MR signal
intensity of ROI. The percentage area of ROI was calculated
by the formula: the percentage area of ROI = the pixels of
ROI/the total pixels of selected pain center ×100 %. The
percentage change in MR signal intensity of ROI = (the MR
signal intensity during stimulation - the Mean baseline signal)/
the mean baseline signal ×100 %. The average percentage
change in MR signal intensity was calculated for each subject
at each stimulus volume in each ROI. To exclude the influence
of balloon inflation and deflation, the first and the tenth MR
signal intensity of the rest and stimulus phase were eliminated.

Statistical analysis
The data were expressed as means ±SEM. For comparison of
means, an unpaired Student’s t test was used. The primary
comparisons were the thresholds for sensation and VAS score
between IBS patients and controls. Secondary analysis included
the percentage of ROI and the average percentage change in
MR signal intensity of ROI comparing IBS patients with
controls. Statistically significant differences by 2-tailed t tests
were defined by P<0.05.

RESULTS
Rectal sensation test
In the control group, the average thresholds for sensation of

gas, defecation and pain were 28 ml, 127 ml, and 208 ml. They
were 24 ml, 90 ml, and 150 ml respectively in IBS group. The
thresholds for sensation of defecation and pain were significantly
lower in IBS group than in control group (P<0.05, Figure 1).

Figure 1  Rectal sensation test (the thresholds for sensation).

VAS score
At 30 ml rectal distention, subjects generally sensed a very-
low-intensity stimulation, using the terms “gas”, “mildly felt”.
At 60 ml rectal distention, some IBS patients expressed
sensation of defecation. At 90 ml rectal distention, a large
number of IBS patients and some normal controls expressed
sensation of stool, associated with mild-moderate pain, and
VAS score was 4.42±2.00 vs 2.71±1.78. At 120 ml rectal
distention, most IBS patients reported moderate-severe painful
sensation, and VAS score was 5.90±1.84 vs 3.95±2.04. In this
study, three IBS patients could not tolerate 120 ml rectal
distention. The VAS score of 90 ml and 120 ml rectal distention
(painful rectal distention) was significantly higher in IBS
patients than in control (P<0.05, Figure 2).

Figure 2  Subjective pain intensity.

Figure 3  The percentage change in MR signal intensity time
course of PFC in response to 3 rectal distentions at 90 ml.

Functional brain imaging
The time course of rectal stimulation sensation center response
indicated immediate increase and rapid decline in BOLD signal
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in parallel with the mechanical distending stimulus (Figure 3).
For both IBS patients and control subjects, rectal distention
stimulation increased the activity of anterior cingulate cortex
(35/37), insular cortex (37/37), prefrontal cortex (37/37), and
thalamus (35/37) in most cases.
    In patients with IBS, the average percentage area of ROI
increased in parallel with rectal distention volumes in the IC,
PFC, and THAL, only that in PFC had statistical significance
(P<0.05). In controls, this increasing tendency only occurred
in the ACC (Figure 4). At 120 ml rectal distention, the average
percentage area of ROI and the average percentage change in
MR signal intensity of ROI in the IC, PFC, and THAL were
significantly greater in patients with IBS than in control subjects
(P<0.05, Figure 5 and 6).

Figure 5  The average area of ROI at 120ml rectal distention.

Figure 6  The percentage change in MR signal intensity of ROI
at 120 ml rectal distention.

DISCUSSION
FMRI is a useful technology to measure changes in regional
CNS blood oxygenation, which is in parallel with regional
metabolic activity[25-27]. The BOLD technology detects changes
in the ratio of deoxyhemoglobin to oxyhemoglobin. When
brain-center neurons are metabolically active, there is an
increase in local blood flow and a relative increase in the
amount of oxyhemoglobin, and an increase in magnetic
resonance signal[25-29]. Accordingly, the magnetic resonance
signal in a given pixel will increase above baseline if the region
is activated in response to stimulation. FMRI offers advantages
over PET such as direct anatomic correlation, avoidance of
radioisotopes, and acceptable signal-to-noise ratio that do not
require large numbers of stimuli. fMRI images give similar
results as PET[30,31].
    It showed that fMRI has adequate sensitivity to measure
regional cerebral blood flow changes in response to visceral - in
this case rectal - stimulation. Activity in the 4 selected CNS
pain centers, ACC, IC, PFC, and THAL, promptly increase with
rectal distention stimulation. The 4 selected pain centers are
components of the brain’s pain-processing system[12,24,32,33].
Current studies pointed to the THAL as a relay center, connecting
afferent signals from the spinothalamic tract and spinoreticular
tracts to higher centers such as the cingulate, prefrontal, and
insular cortices[34,35]. The IC is believed to mediate primarily
visceral sensations (taste, smell, gastric, colonic, and other visceral
inputs) including rectal stimuli, whereas the ACC is thought to
mediate the affective or “emotional” content of sensory
information. The insular cortex neurons distributed between the
taste area and the visceral area receive convergent inputs from
baroreceptor, chemoreceptor, gustatory and nociceptive organs
and may have roles in taste aversion or in regulation of visceral
responses[36]. Using positron emission tomography (PET),
Craig’s[37] group found contralateral activity correlated with graded
cooling stimuli only in the dorsal margin of the middle/posterior
insula in humans. Furthermore, Krushel[38] referred to the region
of convergence in the agranular insular cortex as the visceral
cortex, and suggested its involvement in the efficient integration
of specific visceral sensory stimuli with correlated limbic or
motivational consequences. The visceral cortex may help
regulate the organism’s visceral response to stress.
     The PFC is thought to exert higher executive functions in
pain perception[39]. There are several different functional

Figure 4  Functional brain map. The red area is the ROI.

30 ml                                  60 ml                                  90 ml                                  120 ml

Controls

IBS

Th
e 

pe
rc

en
ta

ge
ar

ea
 o

f 
R
O

I 
(%

)

25

20

15

10

5

0
ACC             IC             PFC           THAL

Controls

IBS

aP<0.05

a
a a

Th
e 

pe
rc

en
ta

ge
 c

ha
ng

e 
in

M
R
 s

ig
na

l i
nt

en
si

ty
 (

%
)

7

6

5

4

3

2

1

0
ACC              IC             PFC             THAL

Controls

IBS

aP<0.05
a

a

a

Yuan YZ et al. Functional brain imaging in irritable bowel syndrome          1358



divisions of the PFC, including the dorsolateral, ventromedial,
and orbital sectors. Each of these regions plays some role in
affective processing that shares the feature of representing
affect in the absence of immediate rewards and punishments
as well as in different aspects of emotional regulation[40].
     In this study, the thresholds for sensation of defecation
and pain were significantly lower in IBS group than in control
group, and VAS score was significantly higher in IBS patients
than in controls. The results were similar to the previous
studies[41]. Normal volunteers and IBS patients had significant
cerebral activation in the 4 selected brain centers (ACC, IC,
PFC, and THAL) during distention stimulation at 30 ml, 60
ml, 90 ml, and 120 ml. Significant differences in cerebral
activation (both the percentage area and the percentage change
in MR signal intensity of ROI) were found between IBS patients
and controls. In IBS patients, there was significantly greater
area of ROI of the PFC with 120 ml distention than with other
volume distention. Conversely, in control subjects there was
no significant increase in activation of these areas with 120 ml
distention compared with others. Furthermore, at 120 ml rectal
distention, there was significantly greater activation of the IC,
PFC, and THAL in patients with IBS than in control subjects.
In summary, by a variety of measures, it is possible that IC
and PFC responses to visceral pain in IBS are greater than that
in controls.
    There were several studies about the CNS activity in
response to visceral stimulation by using PET and fMRI, but
the results differed. Silverman[20] found a lack of activation within
the ACC or PFC with nonpainful stimuli, and reported activation
of PFC in response to rectal pain only in IBS and the ACC only
in normal subjects. In contrast, more recently Mertz[23], using
fMRI, observed that pain led to a greater activation of the ACC
than nonpainful stimuli. In Bernstein’s[42] study, they also found
that normal controls and subjects with IBD and IBS shared
similar loci of activations to visceral sensations of stool and pain.
A significantly higher percentage of pixels activated in the
anterior cingulate gyrus over both pain and stool conditions for
the control group than for the IBS group and for the IBS group
than for the IBD group (P<0.035). In another study, Bonaz et al
revealed significant deactivations within the right insula, the right
amygdala, and the right striatum[7]. There were gender differences
in cortical representation of rectal distension in healthy humans.
Male subjects showed localized clusters of fMRI activity
primarily in the sensory and parietooccipital regions, whereas
female subjects also showed activity in the anterior cingulate
and insular regions[43]. Thus, somatic and visceral sensation
including pain perception can be studied noninvasively in
humans with functional brain imaging techniques. Positron
emission tomography and functional magnetic resonance
imaging have identified a series of cerebral regions involved
in the processing of somatic pain, including the anterior
cingulate, insular, prefrontal, inferior parietal, primary and
secondary somatosensory, and primary motor and premotor
cortices, the thalamus, hypothalamus, brain stem, and
cerebellum[44]. Experimental evidence supports possible
specific roles for individual structures in processing the various
dimensions of pain[44].
      In conclusion, our data conform that fMRI is an objective
brain imaging technique to measure the change in regional
cerebral activation exactly. Using fMRI, some patients with
IBS could be detected having visceral hypersensitivity in
response to painful rectal balloon-distention. In this study, IC
and PFC of IBS patients are the major loci in CNS processing
of  visceral perception.
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