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Abstract
AIM: To determine the regulatory effects of recombinant
human growth hormone (rhGH) on dipeptide transport
(PepT1) in normal and severe scald rats.

METHODS: Male Sprague-Dawley rats with 30 % total
body surface area (TBSA)IIIdegree scald were employed
as the model. In this study rhGH was used at the dose of
2 IU.kg-1d-1. An everted sleeve of intestine 4 cm long obtained
from mid-jejunum was securely incubated in Kreb’s solution
with radioactive dipeptide (3H-glycylsarcosine, 3H-Gly-Sar,
10 µCi/ml) at 37  for 15 min to measure the effects of
uptake and transport of PepT1 of small intestinal epithelial
cells in normal and severe scald rats.

RESULTS: Abundant blood supply to intestine and mesentery
was observed in normal and scald rats administered rhGH,
while less supply of blood to intestine and mesentery was
observed in rats without rhGH. Compared with controls, the
transport of dipeptide in normal rats with injection of rhGH
was not significantly increased (P=0.1926), while the uptake
was significantly increased (P=0.0253). The effects of
transport and uptake of PepT1 in scald rats with injection of
rhGH were significantly increased (P=0.0082, 0.0391).

CONCLUSION: Blood supply to intestine and mesentery of
rats was increased following injection of rhGH. The effects
of uptake and transport of dipeptide transporters in small
intestinal epithelial cells of rats with severe scald were
markedly up-regulated by rhGH.
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INTRODUCTION
Small intestine is the major site of dietary protein absorption,

the main route of absorption protein is transport of protein in
the form of small peptides (di/tripeptide) across the small
intestinal wall. H+-coupled dipeptide transporter, PepT 1, is
known to be located in the intestine and kidney, and plays an
important role in the absorption of di/tripeptide. In addition, it
mediates the intestinal absorption of β-lactam antibiotics,
angiotension–converting enzyme inhibitors, and other peptide–
like drugs[1].
      Knowledge about the regulation of PepT 1 activity is limited.
A number of studies have shown that dietary protein load causes
an increase in di/tripeptide transport in small intestine of rats
and mice[2,3]. Recent studies have shown that PepT1 in rat
intestine is upregulated after a short period of fast via an
increase in gene expression[4-6]. Another interesting regulation
of PepT 1 expression is that PepT1 in rat’s small intestine is
resistant to tissue damage induced by 5-flourouracil, whereas
other markers such as sucrase activity, D-glucose uptake are
significantly decreased[7]. This suggests that expression of
PepT 1 is robust towards cellular damage.
      Studies showed that some hormones metabolically regulated
the expression of intestinal dipeptide transporter[8,9]. For
example, insulin could increase the membrane population of
PepT 1 by increasing its translocation from a preformed
cytoplasmic pool[9]. Our previous study[10] showed that rhGH
markedly stimulated the uptake and transport of cephalexin
in Caco-2 cells with normal or anoxia/reoxygenation
management. These results indicate that rhGH greatly
upregulates the physiological functions of dipeptide
transporters (PepT1) of human cell line. Although rhGH has
been shown to be a major regulator of peptide transport
activity[10], little is known about rhGH in regulation of peptide
absorption in vivo, especially in rats with severe scald.
      In this study, we determined whether rhGH could stimulate
uptake and transport of small intestinal epithelial cells in
normal or severe scald rats. We also investigated the in vivo
application of 3H-glycylsarcosine (3H-Gly-Sar) as an ideal
substrate for PepT1.

MATERIALS AND METHODS
Materials
[3H]-glycysarcosine (special activity of 1Ci (37GBq)/mmol,
radiochemical purity >=97 %, work concentration in this study:
10 µCi/ml) was purchased from Moravek Biochemicals,USA.
Recombinant human growth hormone (rhGH, 2 IU.kg-1d-1) was
from Serono, Switzerland, Temperature-controlled surge
culture device from Taicang Medical Instrument Co. Ltd,
China. All other reagents were of analytical grade at least.

Animals
Adult male Sprague–Dawley (SD) rats (weighing 200±20 g)
were housed in individual stainless steel cages in an air–
conditioned room at 23±2  with a 12: 12-h light schedule
and were fed normally. The weight of rats was measured daily
during an experiment. The animals were treated in accordance
with European Community Standards concerning the care
and use of laboratory animals (INSERM and Ministere de
1’Agriculture et de la Foret, Paris, France).



Experimental groups
Rats were randomly divided into groups A, B, C and D. Group
A(control group): normal feed rats, Group B: normal feed +
injection of rhGH (2 IU.kg-1d-1) rats, Group C: scald rats and
Group D: scald + injection of rhGH (2 IU.kg-1 d-1) rats. The
indices were observed on postburn days (PBDs) 0, 1, 3, 5 and
7 (n=4), respectively. Rats were killed by decapitation at every
time point.

Scald injury models
Rats were anaesthetized with 2 % pentoburbite (30 mg.kg-1

body weight) and scald on the back to 30 % total body surface
area (TBSA) III degree, and 30 min later, they were resuscitated
with Ringer’s solution (2 ml.kg-1 per 1 % body surface area).

Preparation of everted sleeve of rat small intestine
The rats were fasted overnight and water was available ad
libitum throughout the study. The rat was killed by
decapitation, a laparotomy was performed. We defined the
region approximately 6 cm below the ligament of Treitz, then
a 4-cm long segment of small intestine (mid-jejunum) was
removed, ringed immediately with Kreb’s buffer. One end
of the intestinal fragment was ligated, an everted process was
securely made by small tweezers, then an intact everted sleeve
was formed after another terminal ligation. Each sleeve was
weighed.

Uptake and transport measurement
We measured 3H-Gly-Sar taken up into intestinal epithelial
cells of the everted sleeve across the brush–border membrane.
The everted sleeve was rinsed with Kreb’s buffer, 0.2 ml Kreb’s
buffer was injected slowly into the lumen of the everted
intestinal sleeve. The whole segment was then immersed into
a 50 ml flask containing dipeptide (3H-Gly-Sar) solution
(10 µCi) while 5 % CO2 and 95 % O2 were filled into the
flask. The uptake and transport experiments were performed
when the device was surged continually with a frequency of
100 r/min at 37  for 15 min, then the everted sleeve was
rinsed immediately with cold (4 ) Kreb’s buffer to stop
subsequent transport and uptake of PepT1 in epithelial cells.
The transport sample was harvested from the lumen of the
sleeve, a 0.5 cm×0.5 cm segment was removed from the middle
of the sleeve, weighed and digested with HCl4 to obtain the
uptake sample. All samples were mixed with 10 ml of
scintillation cocktail and the radioactivity was determined by
liquid scintillation counter.

Statistical analysis
Data were expressed as mean ±SD. Differences between groups
were assessed by analysis of variance. Values less than 0.05
were considered statistically significant.

RESULTS
Blood Supply in bowel of rats
After killed by decapitation, a laparotomy was performed
immediately at the different time point (0, 1, 3, 5 and 7 days)
in rats (normal or scald) with or without injection of rhGH.
Direct appearance of blood supply was observed in mesentery
and the wall of intestine of rats. Abundant blood supply was
shown in rats after injection of rhGH, while less blood supply
was observed in rats without injection of rhGH (Figure 1, 2).

Uptake and transport in everted sleeve of normal rats after
injection of rhGh
In comparison with the control, the transport of dipeptide (3H-
Gly-Sar) in normal rats after injection of rhGH was not

significantly increased (P=0.1923) while the uptake were
markedly increased (P=0.0253) (Figure 3, 4).

Figure 1  Blood supply to intestine and mesentery of rats 7
days after injection of rhGH was significantly abundant com-
pared with controls. (A: rhGH group, B: control).

Figure 2  Blood supply to intestine and mesentery of rats
with severe scald 7 days after injection of rhGH was signifi-
cantly abundant compared with controls. (A: rhGH group,
B: control).

Uptake and transport in everted sleeve of severe scald rats
after injection of rhGH
The effects of transport and uptake of PepT1 in everted sleeve
of severe scald rats after injection of rhGH were greatly increased
compared with controls (P=0.0082, 0.0391) (Figure 5, 6).
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Figure 3  Transport of PepT1 in normal rats administered rhGH.
Each point represents mean ±s, n=4, aP>0.05 vs control.

Figure 4  Uptake of PepT1 in normal rats administered rhGH.
Each point represents mean ±s, n=4, aP<0.05, bP<0.01 vs control.

Figure 5  Transport of PepT1 in scald rats administered rhGH.
Each point represents mean ±s, n=4, aP<0.05 vs control.

Figure 6  Uptake of PepT1 in scald rats administered rhGH.
Each point represents mean ±s, n=4, aP<0.05 vs control.

DISCUSSION
We found in this study that rhGH could significantly increase
the transport and uptake of peptides across intestinal epithelial

barrier via proton–dependent transporter PepT1, suggesting
that rhGH might be an important parameter in hormonal
regulation of this transporter. It is well known that dietary
proteins are absorbed as di – and tripeptides rather than free
amino acids[11-14]. This absorption process is carried out by
intestinal brush board transporter PepT1, which transfers
peptides from a region with low dipeptidase activity (intestinal
lumen) to a region with high dipeptidase activity (enterocyte
cytoplasm)[15]. As a member of a family of transport proteins,
PepT1 is located at the brush-border membranes of absorptive
epithelial cells along the small intestine but absent in crypt
and goblet cells[16,17]. PepT1 allows the use of small peptides
as a source of nitrogen for enteral feeding and the route for
delivery of peptidomimetic drugs such as β-lactam antibiotics.
Therefore, PepT1 appears to be essential for the efficient
absorption of dietary proteins[18]. Most studies on PepT1 have
focused on its fundamental kinetic properties and its functional
and structural characterization[19-21].
      Previous studies have shown that the functions of intestine
(including PepT1) were changed under the influence of many
factors[22,23]. However, few reports have dealt with the hormonal
regulation of PepT1. Insulin could stimulate dipeptide transport
by increasing membrane insertion of PepT1 from a preformed
cytoplasmic pool[9], and choleratoxin could decrease dipeptide
transport by inhibiting the activity of PepT1 through an increase
in intracellular concentration of adenosine 3’, 5’-cyclic
monophosphate[24]. Strong evidences have demonstrated that
growth hormone (GH) was an important growth factor for
intestine[25]. Complete GH depletion due to hypophysectomy
could cause pronounced hypoplasia of small intestinal
mucosa with decreased villus height and reduced crypt cell
proliferation[26]. Simple replacement of GH could restore
mucosal proliferative activity[27], rhGH could promote normal
growth and development in the body by changing chemical
activity in cells. It activates protein production in muscle cells
and release of energy from fats. rhGH could significantly
improve anabolism in parenteral feeding[28]. It has been
typically used to stimulate growth of children with hormone
deficiency, or to treat people with severe illness, burns or sepsis
where destruction of human tissues and muscle occurs[29-31]. It
remains unclear, however, whether the key hormone, human
growth hormone (hGH) also shows some significant
importance in transport and uptake of PepT1. To examine the
functional changes of PepT1, everted sleeves of small
intestine were used as in vivo intestinal model, and severe
scald (30 % TBSA III degree) rats with or without injection
of rhGH were employed as animal model. The results in this
study indicated that the blood supply in mesentery and the
wall of rat’s intestine (normal or severe scald) with injection
of rhGH was abundant compared with the controls. It was
suggested that rhGH could increase blood supply of animal
bowel, therefore, upregulate directly the physiological
functions of PepT1 of small intestine.
     The data in this study confirmed that both transport and
uptake of PepT1 in everted sleeves of severe scald rats
administered rhGH were significantly increased compared with
controls. It indicated that rhGH upregulated the biological
functions of PepT1. This result was in accordance with our
previous research[10]. In our study, however, the transport of
dipeptide in normal rats treated with rhGH was not markedly
increased, while the uptake was greatly increased compared
with controls. It might be due to the cytoplasmic level of
dipeptidases, or a short period of experiment.
      In conjunction with previous results[10], the present study
further testified the enhancement effect of peptide transport
by rhGH. The biological mechanism might involve increased
translocation of the cytoplasmic pool of PepT1 to the apical
membrance, or increased level of PepT1 mRNA. Clearly,
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further study on physiology and biology of PepT1 is required
to clarify the mechanism of rhGH in upregulating the functions
of PepT1.
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