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Currently accepted input parameter limitations in entropy-based, non-linear signal processing methods, for example, sample entropy
(SampEn), may limit the information gathered from tested biological signals. The ability of quadratic sample entropy (QSE) to identify
changes in electroencephalogram (EEG) signals of 11 patients with a diagnosis of Alzheimer’s disease (AD) and 11 age-matched, healthy
controls is investigated. QSE measures signal regularity, where reduced QSE values indicate greater regularity. The presented method
allows a greater range of QSE input parameters to produce reliable results than SampEn. QSE was lower in AD patients compared with
controls with significant differences (p < 0.01) for different parameter combinations at electrodes P3, P4, O1 and O2. Subject- and epoch-
based classifications were tested with leave-one-out linear discriminant analysis. The maximum diagnostic accuracy and area under the
receiver operating characteristic curve were 77.27 and more than 80%, respectively, at many parameter and electrode combinations.
Furthermore, QSE results across all r values were consistent, suggesting QSE is robust for a wider range of input parameters than
SampEn. The best results were obtained with input parameters outside the acceptable range for SampEn, and can identify EEG changes
between AD patients and controls. However, caution should be applied because of the small sample size.
1. Introduction: Alzheimer’s disease (AD) is the most prevalent
form of dementia [1], resulting in progressive memory loss and
subsequently, death [2]. The only current accurate method of
diagnosis is necropsy [1]. The gradual decline may mean the
patient is undiagnosed as suffering from AD until the late stages
of the disease. The increasing prevalence of AD and expected
future pharmaceuticals means it is important to diagnose AD as
early as possible. Recently, clinical guidelines recognise this
preclinical phase, but AD diagnosis still relies on cognitive
testing and the elimination of any other causes [2].

Electroencephalogram (EEG) recordings show that the power
spectrum of brain signals of AD patients shifts to lower frequencies
and that there is reduced coherence in cortical areas [3] although
these changes in the EEG are not always identifiable in the early
stages of the disease [4]. However, current guidelines do not iden-
tify the possible usefulness of EEGs to detect changes caused by
AD. Changes because of AD have also been identified with other
brain signal recording techniques, but many of these are prohibitive
for wide-scale use because of issues with cost and invasiveness.

The complexity of an EEG signal arises from the non-linear inter-
actions between the electric fields created by the neurons in the
brain [5]. The EEG is a complex and aperiodic time series reflecting
the cortical brain activity and therefore non-linear techniques are
appropriate and may allow for increased insights into the mechan-
isms in the brain [6]. Non-linear analysis has been used to
analyse changes in the EEGs of AD patients, showing increased re-
gularity and decreased complexity in comparison to controls (see
[7] for a review). However, many of the techniques applied to
EEGs are inappropriate because of their unsuitability for short,
noisy and non-stationary time series [8].

‘Entropy’ measures the degree of disorder in a system. When
applied to signals it describes their level of repeatability and predict-
ability [9]. Reduced entropy indicates greater regularity.
Kolmogorov–Sinai (KS) entropy was found to be unsuitable for
biomedical signals [10], so approximate entropy (ApEn) was
created to allow for the calculation of KS entropy in biological
signals [11]. However, the entropy level described by ApEn for a
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signal is not independent of the combinations of its input para-
meters. Sample entropy (SampEn) was introduced to overcome
this issue [12]. This calculates the negative natural logarithm that
a small sequence of data from the signal, which subsequently
appears in it, will still do so if the size of such sequence increases
by one sample. However, this is still adversely influenced by
SampEn input parameters. One method developed to overcome
the limitations of SampEn is quadratic sample entropy (QSE) [13].

This pilot study extends the usefulness of QSE in analysing the
EEG signals of AD patients by extending the previously tested
QSE input parameter combinations presented in [14], QSE values
of the EEG background activity in AD patients and control subjects
were compared. It is hypothesised that the patients’ EEGs will show
an increased regularity. We further hypothesise that QSE will
provide more robust estimations of the entropy than SampEn.

2. Subject database: The group contained 22 subjects. AD patients
[5 men, 6 women, 72.5 ± 8.3 years and mean ± standard deviation
(SD)] were recruited from the Alzheimer’s Patients’ Relatives
Association of Valladolid, Spain. A mini-mental state
examination (MMSE) [15] was used to assess cognitive function,
with the AD patients scoring 13.1 ± 5.9 (mean ± SD). The
age-matched control group (7 men, 4 women, 72.8 ± 6.1 years
and mean ± SD) were without past or present neurological
disorders. The MMSE score was 30 ± 0 (mean ± SD) for all
controls. Informed consent was obtained for all subjects and the
local ethics committee approved the study. Further details can be
found in [16].

The EEG was recorded with the international 10–20 system
(electrodes F3, F4, F7, F8, Fp1, Fp2, T3, T4, T5, T6, C3, C4,
P3, P4, O1 and O2) in an eyes closed, resting state with a sampling
frequency of 256 Hz and 12-bit A-to-D precision using a Profile
Study Room 2.3.411 EEG equipment (Oxford Instruments) with
a low-pass hardware filter of 100 Hz. A specialist clinician selected
a number of 5 s epochs (1280 points) with a minimal artefact con-
tamination to be used offline for analysis. This epoch length is a
compromise between the signal being long enough for reliable
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signal analysis and significantly limiting the effect of artefacts. A
total of 30 ± 12.4 (mean ± SD) epochs from each electrode per
subject were collected. These were then further filtered with a
Hamming band-pass filter between 0.5 and 40 Hz to remove the
DC component and residual high frequency noise. Further details
can be found in [17].
Figure 1 QSE values for two signals from electrode O1 showing stabilisa-
tion of the entropy for the signal for m = 1 with N > 150
3. Methods: QSE measures the regularity of a signal [18],
overcoming the influence of input parameters m and r on the
outcome of SampEn by normalising the regularity, calculated by
SampEn, to the size of the matching region m [19]. Lower QSE
indicates more regularity. SampEn identifies regularity based on the
probability that a sample of length m from a signal that matches a
subsequent part of that signal from which sample m is taken, within
a tolerance r, will also match if the sample is m + 1 long [12]; thus
parameter m defines the size of the patterns that can be compared
and r acts as a filter, with any noise greater than r not affecting the
result [10]. QSE gives a density statistic rather than the SampEn
probability statistic. The reduction of the effects of parameters m
and r allows for the possible use of a greater range of these
parameters than that which is currently accepted with ApEn and
SampEn [11, 12] to produce an accurate and reliable measure of
entropy [19]. QSE produces finite results with stochastic, noisy
deterministic and composite processes and is suitable for use with
short, noisy data recordings [13]. It has previously been applied to
R-R heart rate intervals [13, 18] where it was able to distinguish
between normal heart rhythms and atrial fibrillation but, to the best
of our knowledge, ours is the first thorough study of EEG in AD
detailing extended input parameters with QSE.
Given a series of N points {x(n)} = x(1), x(2), …, x(N), SampEn,

the method that is fully explained in [12] but reproduced here for
completeness, must first be calculated. A sequence of embedding
vectors Xm(i) to Xm(N–m+ 1) is formed from the signal samples,
where

Xm(i) = {x(i), x(i+ 1), . . . , x(i+ m− 1)},

i = 1, . . . , N − m+ 1
(1)

The distance between any two vectors, Xm(i) and Xm( j), is defined
as the maximum of the absolute distance between the scalar compo-
nents of each vector:

d Xm(i), Xm(j)
[ ] = max

k=0,...,m−1
(|x(i+ k)− x(j + k)|) (2)

The number of j for which the distance between Xm(i) and Xm( j) is
less than r, Bi is defined as the number of j values where 1≤ j≤
N–m and j≠ i for any given Xm(i), with j being the number of
matches for which the distance between Xm(i) and Xm( j) is less
than or equal to r. Self-matches are not included, which ensures
that all matches are true pattern repeats. This can then be used to
define Bm

i (r) and Bm(r), respectively:

Bm
i (r) =

1

N − m− 1
Bi (3)

Bm(r) = 1

N − m

∑N−m

i=1

Bm
i (r) (4)

The methodology is then repeated, increasing m to m + 1, finding
the number of vector matches, Ai, and defining Am

i (r) and
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Am(r), respectively

Am
i (r) =

1

N − m− 1
Ai (5)

Am(r) = 1

N − m

∑N−m

i=1

Am
i (r) (6)

This gives us two probabilities that can then be used to calculate
SampEn as follows

SampEn(m, r) = lim
N�1 − ln

Am(r)

Bm(r)

[ ]{ }
(7)

Biomedical signals are of finite length. Equation (7) can therefore
be estimated by

SampEn(m, r, N ) = − ln
Am(r)

Bm(r)

[ ]
(8)

QSE is then calculated by adding the natural logarithm of 2r,
removing the influence of the size of N through normalisation [19]:

QSE(m, r, N ) = SampEn(m, r, N )+ ln (2r) (9)

Data was initially normalised to retain the distribution with mean =
0 and SD = 1 and while ensuring r remained the same proportion for
all calculations.

QSE was computed in Matlab® with m = 1 and 2, within ranges
accepted for SampEn [12]. However, r = 0.05–1.0 with intervals of
0.05 were tested for tolerance [19]. This is wider than the range of
test parameters given for the application with SampEn of m = 1 or 2
and r = 0.1, 0.15, 0.2 or 0.25, where large r produce unspecific
results with results tending to 0 for all cases and small r values
produce adverse regularity estimates [11]. The nature of the QSE
calculation only allows results to be truly comparable with results
calculated with the same parameters [19].

To review the stability of QSE for an EEG epoch of 1280 data
points, research on the effect of the length on QSE was undertaken.
The QSE of a control and AD signal of 150–2560 data points was
calculated with m = 1 and 2 for r = 0.35 and 0.55. A representative
of the results found is shown in Figs. 1 and 2. This study showed
that a data length of 1280 samples – the length of the EEG
epochs considered in this study – was sufficient to correctly charac-
terise the QSE with the result being stable for N≥ 1000.

Student’s t-test (p < 0.01) was used to evaluate differences
between the two groups. Normality was analysed with Lilliefors
test (α = 0.01) and variance with Levene’s test (α = 0.01).

Linear discriminant analysis (LDA) was selected to measure the
ability of QSE to identify the two groups. LDA separates two or
more classes based on Gaussian and homoscedastic variables.
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Figure 2 QSE values for two signals from electrode O1 showing stabilisa-
tion of the entropy for the signal for m = 2 with N > 150

Figure 4 Accuracy results from ROC calculations for varying r from stat-
istically significant electrodes for SB and EB classifications
Accuracy was evaluated by the total number of subjects’ correctly
classified (ROC) curve [20]. ROC curves produce a graph of all
possible sensitivity/specificity pairs by analysing all decision
thresholds given a classifier and hypothesis. Sensitivity is the frac-
tion of AD patients correctly identified (true positive) and specifi-
city is the ratio of controls correctly identified (true negative).
The area under the ROC curve (AUC) was also computed. AUC
can be interpreted as the probability that the classifier will rank
one randomly chosen subject higher than another.

To avoid any overfitting, classification was estimated with a
leave-one-subject-out cross-validation: the classifier was trained
using data from all subjects but one, and then was tested on the
left-out subject, providing unbiased estimations of the classifica-
tion for small datasets. We implemented this into two schemes.
The first one was subject-based (SB), where the instances are the
average QSE value of all signals with the same input parameters
from each electrode and each subject, producing 22 tests of 21
classifiers, whose results are then averaged. In the epoch-based
(EB) scheme, each QSE value resulting from a single EEG
epoch is used as an instance in its own right. This takes into
account the variability among different epochs from the same elec-
trode and subject.

4. Results: The entropy was found to be greater in control subjects
than in AD patients except for two instances (F3 when m = 1 and r
= 0.25 and T3 when m = 2 and r = 0.05) and electrode T4 in almost
all cases except for r = 0.05 when m = 1 and between r = 0.3 and 0.8
when m = 2. All p values are detailed in Fig. 3. This suggests that
AD patients’ EEGs are more regular than those of age-matched
controls.

Classification results focused on statistically significant electro-
des. Fig. 4 shows the accuracy for SB and EB results obtained at
those four electrodes.

With m = 1 with SB, the maximum accuracy was 77.27% in P3,
O1 and O2, while the maximum accuracy at P4 was 68.18%. With
Figure 3 All p values for all parameter combinations at all electrodes
shown with logarithmic grey scale with statistically significant differences
(p < 0.01) in black
a m = 1
b m = 2
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EB, the highest accuracy was 75.75% at O2 (r = 0.55 to r = 0.65).
With m = 2 and SB, the maximum accuracy was 77.27% in P3,
O1 and O2, while maximum accuracy at P4 was 72.73%. With
EB, the highest accuracy was seen with O2 of 75.75%. With SB,
the accuracy of results generally increased as r increased.
However, the accuracy remains more consistent for all values of r
with EB. The lowest sensitivities and specificities for statistically
significant comparisons were always greater than 50%.
5. Discussion: The small range of input parameters to produce
reliable representation of KS entropy in ApEn and SampEn [11,
12] may arbitrarily limit our understanding of signals under
analysis. In this pilot study, QSE analysed the resting EEGs of 11
control and 11 age-matched AD patients to measure the signal
regularity, showing an increased regularity in patients. Results
show measuring QSE with r > 0.25 with m = 1 or 2 leads to more
accurate results than the suggested ApEn and SampEn ranges.
That QSE allows the use of a wider range of combinations with r
being particularly advantageous given that the most accurate
results are to be found outside this limited range. This greater
range is possible because of the increased reliability with QSE.

A regularity increase of a similar magnitude was found in the
EEG of AD patients for all parameter combinations tested, further
supporting the reliability of the increased parameter range sug-
gested for QSE possible by creating an entropy measure independ-
ent of r [18]. This increase of regularity mirrors most other studies
using both EEG and magnetoencephalogram (MEG) recordings
(see [3, 21] for reviews) including all studies investigating this
EEG database with non-linear methods [17, 22]. It has also been
shown that, with EEG signals, the number of data points needed
to reliably calculate QSE must be significantly greater than the
number suggested as required for atrial fibrillation detection [19].

With QSE, significant differences between the two groups were
found at the same electrodes as with ApEn (P3, O1 and O2 with
77.27% accuracy and P4 with 72.73% accuracy with m = 1 and
r = 0.25) [22] and SampEn (P3, P4, O1 and O2 with 77.27% accur-
acy with m = 1 and r = 0.25) [16], although these results are not
calculated with leave-one-out cross-validation.

Multivariate multiscale permutation entropy has been applied
successfully in a small pilot study [three healthy controls, three
ADs, three mild cognitive impairments (MCI)], finding reduced
complexity in AD and MCI patients in comparison to controls.
However, scales greater than four were not investigated [23].
Multiscale SampEn has identified reduced complexity due to AD
when investigating the SampEn gradient for scales 6–12 [24].
Statistically significant differences were found at F3, F7, Fp1,
Fp2, T5, T6, P3, P4, O1 and O2. However, results using these
methods are significantly more complex to interpret than those
obtained with QSE, because of the graphical nature of the result.
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Other non-entropy methods have also found comparable results.
Synchrony has been found to be able to distinguish AD patients
from controls with an accuracy of 83% but this was obtained by
combining results from a number of synchrony methods [25].
Reduced complexity in AD patients has also been found with cor-
relation dimension and the largest Lyapunov exponent [3].
However, these methods need very long datasets for reliable, accur-
ate computation and so results must be viewed with caution.
Classification results suggest that intra-subject variability is low

enough that a relatively simple classifier, such as LDA is able to
provide similar performance in both cases. With this database,
LDA was applied to detrended fluctuation analysis where the great-
est accuracies were found at T6: 72.73% with SB and 71.07% with
EB [26]. Thus, this suggests that QSE might lead to more reliable
detections of AD patients using EEGs than other methods.
The small sample size of the test group leads this to be a pilot

study: further research must include greater number of patients
and ranges of pathologies, including further research into QSE
input parameter m. It may also be that similar changes to those
seen could occur because of other types of dementia or other dis-
eases, such as Parkinson’s disease, depression or schizophrenia [8].

6. Conclusion: In conclusion, QSE has been shown to highlight an
increase of regularity in AD patients’ EEG signals across a greater
range of input parameters than those suggested for use with ApEn
and SampEn, with statistically significant differences between AD
patients and controls at electrodes P3, P4, O1 and O2. The QSE
method is more robust than SampEn, from which it is based, as it
is able to highlight differences in AD patients and controls for a
range of input parameters beyond what is currently accepted with
SampEn or ApEn. Furthermore, this pilot study has shown that it
is possible to obtain stable QSE values for relatively short EEG
signals of 1000 data points or longer.
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