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Abstract

Motivated by differential co-expression analysis in genomics, we consider in this paper estimation 

and testing of high-dimensional differential correlation matrices. An adaptive thresholding 

procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is 

established and the proposed estimator is shown to be adaptively rate-optimal over collections of 

paired correlation matrices with approximately sparse differences. Simulation results show that the 

procedure significantly outperforms two other natural methods that are based on separate 

estimation of the individual correlation matrices. The procedure is also illustrated through an 

analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that 

several genes, of which a subset has been previously verified, are associated with the breast 

cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which 

is particularly well suited for testing against sparse alternatives, is introduced. In addition, other 

related problems, including estimation of a single sparse correlation matrix, estimation of the 

differential covariance matrices, and estimation of the differential cross-correlation matrices, are 

also discussed.
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1 Introduction

Statistical inference on the correlation structure has a wide array of applications, ranging 

from gene co-expression network analysis (Carter et al., 2004; Lee et al., 2004; Zhang et al., 

2008; Dubois et al., 2010; Fuller et al., 2007) to brain intelligence analysis (Shaw et al., 

2006). For example, understanding the correlations between the genes is critical for the 

construction of the gene co-expression network. See Kostka and Spang (2004), Lai et al. 

(2004), and Fuller et al. (2007). Driven by these and other applications in genomics, signal 

processing, empirical finance, and many other fields, making sound inference on the high-

dimensional correlation structure is becoming a crucial problem.

*The research was supported in part by NSF Grant DMS-1208982 and NIH Grant R01 CA127334.
†Corresponding author: anrzhang@wharton.upenn.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
J Multivar Anal. Author manuscript; available in PMC 2017 January 01.

Published in final edited form as:
J Multivar Anal. 2016 January 1; 143: 107–126. doi:10.1016/j.jmva.2015.08.019.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition to the correlation structure of a single population, the difference between the 

correlation matrices of two populations is of significant interest. Differential gene 

expression analysis is widely used in genomics to identify disease-associated genes for 

complex diseases. Conventional methods mainly focus on the comparisons of the mean 

expression levels between the disease and control groups. In some cases, clinical disease 

characteristics such as survival or tumor stage do not have significant associations with gene 

expression, but there may be significant effects on gene co-expression related to the clinical 

outcome (Shedden and Taylor (2005); Hudson et al. (2009); Bandyopadhyay et al. (2010)). 

Recent studies have shown that changes in the correlation networks from different stages of 

disease or from case and control groups are also of importance in identifying dysfunctional 

gene expressions in disease. See, for example, de la Fuente (2010). This differential co-

expression network analysis has become an important complement to the original 

differential expression analysis as differential correlations among the genes may reflect the 

rewiring of genetic networks between two different conditions (See Shedden and Taylor 

(2005); Bandyopadhyay et al. (2010); de la Fuente (2010); Ideker and Krogan (2012); 

Fukushima (2013)).

Motivated by these applications, we consider in this paper optimal estimation of the 

differential correlation matrix. Specifically, suppose we observe two independent sets of p-

dimensional i.i.d. random samples  with mean μt, covariance matrix 

Σt, and correlation matrix Rt, where t = 1 and 2. The goal is to estimate the differential 

correlation matrix D = R1 − R2. A particular focus of the paper is on estimating an 

approximately sparse differential correlation matrix in the high dimensional setting where 

the dimension is much larger than the sample sizes, i.e., p ≫ max(n1, n2). The estimation 

accuracy is evaluated under both the spectral norm loss and the Frobenius norm loss.

A naive approach to estimating the differential correlation matrix D = R1 − R2 is to first 

estimate the covariance matrices Σ1 and Σ2 separately and then normalize to obtain 

estimators R̂
1 and R̂

2 of the individual correlation matrices R1 and R2, and finally take the 

difference D̂ = R̂
1 − R̂

2 as the estimator of the differential correlation matrix D. A simple 

estimate of a correlation matrix is the sample correlation matrix. However, in the high-

dimensional setting, the sample correlation matrix is a poor estimate. Significant advances 

have been made in the last few years on optimal estimation of a high-dimensional 

covariance matrix. Regularization methods such as banding, tapering, and thresholding have 

been proposed. In particular, Cai et al. (2010) established the optimal rate of convergence 

and Cai and Yuan (2012) developed an adaptive estimator of bandable covariance matrices. 

For sparse covariance matrices where each row and each column has relatively few nonzero 

entries, Bickel and Levina (2008) introduced a thresholding estimator and obtained rates of 

convergence; Cai and Liu (2011) proposed an adaptive thresholding procedure and Cai and 

Zhou (2012) established the minimax rates of convergence for estimating sparse covariance 

matrices.

Structural assumptions on the individual correlation matrices R1 and R2 are crucial for the 

good performance of the difference estimator. These assumptions, however, may not hold in 

practice. For example, gene transcriptional networks often contain the so-called hub nodes 
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where the corresponding gene expressions are correlated with many other gene expressions. 

See, for example, (Barabási and Oltvai, 2004; Barabási et al., 2011). In such settings, some 

of the rows and columns of R1 and R2 have many nonzero entries which mean that R1 and 

R2 are not sparse. In genomic applications, the correlation matrices are rarely bandable as 

the genes are not ordered in any particular way.

In this paper, we propose a direct estimation method for the differential correlation matrix D 
= R1 − R2 without first estimating R1 and R2 individually. This direct estimation method 

assumes that D is approximately sparse, but otherwise does not impose any structural 

assumptions on the individual correlation matrices R1 and R2. An adaptive thresholding 

procedure is introduced and analyzed. The estimator can still perform well even when the 

individual correlation matrices cannot be estimated consistently. For example, direct 

estimation can recover the differential correlation network accurately even in the presence of 

hub nodes in R1 and R2 as long as the differential correlation network is approximately 

sparse. The key is that sparsity is assumed for D and not for R1 or R2.

Theoretical performance guarantees are provided for direct estimator of the differential 

correlation matrix. Minimax rates of convergence are established for the collections of 

paired correlation matrices with approximately sparse differences. The proposed estimator is 

shown to be adaptively rate-optimal. In comparison to adaptive estimation of a single sparse 

covariance matrix considered in Cai and Liu (2011), both the procedure and the technical 

analysis of our method are different and more involved. Technically speaking, correlation 

matrix estimators are harder to analyze than those of covariance matrices and the two-

sample setting in our problem further increases the difficulty.

Numerical performance of the proposed estimator is investigated through simulations. The 

results indicate significant advantage of estimating the differential correlation matrix 

directly. The estimator outperforms two other natural alternatives that are based on separate 

estimation of R1 and R2. To further illustrate the merit of the method, we apply the 

procedure to the analysis of a breast cancer dataset from the study by van de Vijver et al. 

(2002) and investigate the differential co-expressions among genes in different tumor stages 

of breast cancer. The adaptive thresholding procedure is applied to analyze the difference in 

the correlation alternation in different grades of tumor. The study provides evidence at the 

gene co-expression level that several genes, of which a subset has been previously verified, 

are associated with the breast cancer.

In addition to optimal estimation of the differential correlation matrix, we also consider 

hypothesis testing of the differential correlation matrices, H0 : R1−R2 = 0 versus H1 : R1−R2 

≠ 0. We propose a test which is particularly well suited for testing again sparse alternatives. 

The same ideas and techniques can also be used to treat other related problems. We also 

consider estimation of a single sparse correlation matrix from one random sample, 

estimation of the differential covariance matrices as well as estimation of the differential 

cross-correlation matrices.

The rest of the paper is organized as follows. Section 2 presents in detail the adaptive 

thresholding procedure for estimating the differential correlation matrix. The theoretical 
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properties of the proposed estimator are analyzed in Section 3. In Section 4, simulation 

studies are carried out to investigate the numerical performance of the thresholding 

estimator and Section 5 illustrates the procedure through an analysis of a breast cancer 

dataset. Hypothesis testing on the differential correlation matrices is discussed in Section 

6.1, and other related problems are considered in the rest of Section 6. All the proofs are 

given in the Appendix.

2 Estimation of Differential Correlation Matrix

We consider in this section estimation of the differential correlation matrix and introduce a 

data-driven adaptive thresholding estimator. The theoretical and numerical properties of the 

estimator are investigated in Sections 3 and 4 respectively.

Let  be a p-variate random vector with mean μt, covariance matrix 

Σt = (σijt)1≤i,j≤p, and correlation matrix Rt = (rijt)1≤i,j≤p, for t = 1 and 2. Suppose we observe 

two i.i.d. random samples, { } from X(1) and { } from X(2), and 

the two samples are independent. The goal is to estimate the differential correlation matrix D 
= R1 − R2 under the assumption that D is approximately sparse.

Given the two random samples, the sample covariance matrices and sample correlation 

matrices are defined as, for t = 1 and 2,

(1)

(2)

where  and diag(Σ̂
t) is the diagonal matrix with the same diagonal as Σ̂

t. 

We propose a thresholding estimator of the differential correlation matrix D by individually 

thresholding the entries of the difference of the two sample correlation matrices R̂
1 − R̂

2 

with the threshold adaptive to the noise level of each entry. A key to the construction of the 

procedure is the estimation of the noise levels of the individual entries of R̂1 − R̂
2, as these 

entries are random variables themselves.

We first provide some intuition before formally introducing the estimate of the noise levels 

of the individual entries of R̂
1 − R̂

2. Note that  and 

. Define

(3)

Then one can intuitively write
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(4)

where zijt is approximately normal with mean 0 and variance 1. Hence, θijt/nt measures the 

uncertainty of the sample covariance σ̂
ijt. Based on the first order Taylor expansion of the 3-

variate function  for x ∈ ℝ, and y, z > 0,

(5)

the entries r̂ijt of the sample correlation matrix R̂
t = (r̂ijt) can be approximated by

(6)

where we denote

It then follows from (6) that

(7)

where the random variables zij1 and zij2 are approximately normal with mean 0 and variance 

1, but not necessarily independent for 1 ≤ i, j ≤ p.

Equation (7) suggests that estimation of rij1 − rij2 is similar to the sparse covariance matrix 

estimation considered in Cai and Liu (2011), where it is proposed to adaptively threshold 

entries according to their individual noise levels. However, the setting here is more 

complicated as r̂ij1 − r̂ij2 is not an unbiased estimate of rij1 − rij2 and the noise levels are 

harder to estimate. These make the technical analysis more involved. The noise levels are 

unknown here but can be estimated based on the observed data. Specifically, we estimate θijt 

and ξijt by the following data-driven quantities,

(8)
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(9)

We are now ready to introduce the adaptive thresholding estimator of R1 − R2 using data-

driven threshold levels. Let sλ(z) be a thresholding function satisfying the following 

conditions:

(C1) |sλ(z)| ≤ c|y| for all z, y satisfying |z − y| ≤ λ for some c > 0;

(C2) sλ(z) = 0 for |z| ≤ λ;

(C3) |sλ(z) − z| ≤ λ, for all z ∈ ℝ.

Note that the commonly used soft thresholding function sλ(z) = sgn(z)(z−λ)+ and the 

adaptive lasso rule sλ = z(1 − |λ/z|η)+ with η ≥ 1 satisfy these three conditions. See Rothman 

et al. (2009) and Cai and Liu (2011). Although the hard thresholding function sλ(z) = z · 

1{|z|≥λ} does not satisfy Condition (C1), the technical arguments given in this paper still 

work with very minor changes.

We propose to estimate the sparse differential correlation matrix D by the entrywise 

thresholding estimator  defined as

where sλ(z) is a thresholding function satisfying (C1)–(C3) and the threshold level λij is 

given by λij = λij1 + λij2 with

(10)

Here ξ̂
ijt are given by (9) and the thresholding constant τ can be chosen empirically through 

cross-validation. See Section 4.1 for more discussions on the empirical choice of τ.

3 Theoretical Properties

We now analyze the theoretical properties of the data-driven thresholding estimator D̂* 

proposed in the last section. We will establish the minimax rate of convergence for 

estimating the differential correlation matrix D over certain classes of paired correlation 

matrices (R1, R2) with approximately sparse difference D = R1 − R2 under the spectral 

norm loss. The results show that D̂* is rate-optimal under mild conditions.

3.1 Rate Optimality of the Thresholding Estimator

We consider the following class of paired correlation matrices in ℝp×p with approximately 

sparse difference
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(11)

for some 0 ≤ q < 1. Here R1, R2 ⪰ 0 and diag(R1) = diag(R2) = 1 mean that R1 and R2 are 

symmetric, semi-positive definite, and with all diagonal entries 1. For (R1, R2) ∈ (s0(p)), 

their difference R1 − R2 is approximately sparse in the sense that each row vector of R1 − 

R2 lies in the ℓq ball with radius s0(p) and 0 ≤ q < 1. When q = 0, this constraint becomes the 

commonly used exact sparsity condition.

Let

We assume that for each i, Yi is sub-Gaussian distributed, i.e. there exist constants K, η > 0 

such that for all 1 ≤ i ≤ p and t = 1, 2,

(12)

In addition, we assume for some constant ν0 > 0

(13)

The following theorem provides an upper bound for the risk of the thresholding estimator D̂* 

under the spectral norm loss.

Theorem 3.1 (Upper bound)—Suppose log p = o(min(n1, n2)1/3) and (12) and (13) hold. 

Suppose the thresholding function sλ(z) satisfy Conditions (C1)–(C3). Then the thresholding 

estimator D̂* defined in (2) and (10) with τ > 4 satisfies

(14)

(15)

(16)

for some constant C > 0 that does not depend on n1, n2 or p.
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Remark 3.1—Condition (13) holds naturally when X(t) are jointly Gaussian. To see this 

point, we suppose ρijt is the correlation between  and . Then one can write 

, where , W are independently standard Gaussian. It is easy to 

calculate that , which implies (13) holds for ν0 = 1. Condition 

(13) is used in Lemma 6.1 to show that θîjt is a good estimate of θijt and |σîjt − σijt| can be 

controlled by C(θ̂ijt log p/nt)1/2 with high probability.

Theorem 3.1 gives the rate of convergence for the thresholding estimator D̂*. The following 

result provides the lower bound for the minimax risk of estimating the differential 

correlation matrix D = R1 − R2 with (R1, R2) ∈ (s0(p)).

Theorem 3.2 (Lower Bound)—Suppose log p = o(min(n1, n2)) and s0(p) ≤ M min(n1, 

n2)(1−q)/2 × (log p)−(3−q)/2 for some constant M > 0. Then minimax risk for estimating D = R1 

− R2 satisfies

(17)

(18)

(19)

for some constant c > 0.

Theorems 3.1 and 3.2 together yield the minimax rate of convergence

for estimating D = R1 − R2 with (R1, R2) ∈ (s0(p)) under the spectral norm loss, and show 

that the thresholding estimator D̂* defined in (2) and (10) is adaptively rate-optimal.

Remark 3.2—The technical analysis here for the different of two correlation matrices is 

more complicated in comparison to the problem of estimating a sparse covariance matrix 

considered in Cai and Liu (2011). It can be seen in (7), i.e. the “signal + noise” expression of 

r̂ij1 − r̂ij2, the difference of the sample correlation matrices has six “noise terms”. It is 

necessary to deal with all these six terms in the theoretical analysis of Theorem 3.1.
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4 Numerical Studies

We investigate in this section the numerical performance of the adaptive thresholding 

estimator of the differential correlation matrix through simulations. The method is applied to 

the analysis of a breast cancer dataset in the next section.

In the previous sections, we proposed the entrywise thresholding method for estimating R1 − 

R2 and then studied the theoretical properties of D̂* with a fixed τ > 4. However, the 

theoretical choice of τ may not be optimal in finite sample performance, as we can see in the 

following example. Let R1 and R2 be 200 × 200-dimensional matrices such that R1,ij = 

(−1)|i−j|×max(1−|i−j|/10, 0)×(1{i=j}+fifj1{i≠j}) and R2,ij = max(1−|i−j|/10, 0)×

(1{i=j}+fifj1{i≠j}). Here 1{·} is the indicator function, f1, ···, f200 are i.i.d. random variables 

that are uniformly distributed on [0, 1]. In this setting, both R1 and R2 are sparse, but their 

difference is even more sparse. We set Σt = Rt and generate 200 independent samples from 

X(1) ~ N(0, Σ1) and 200 independent samples from X(2) ~ N(0, Σ2). For various values of τ 

∈ [0, 5], we implement the proposed method with hard thresholding and repeat the 

experiments for 100 times. The average loss in spectral, ℓ1 and Frobenious norms are shown 

in Figure 1. Obviously in this example, τ > 4 is not the best choice.

Empirically, we find that the numerical performance of the estimator can often be improved 

by using a data-driven choice of τ based on cross-validation. We thus begin by introducing 

the following K-fold cross-validation method for the empirical selection of τ.

4.1 Empirical Choice of τ

For an integer K ≥ 2, we first divide both samples  and 

 randomly into two groups for H times as  and 

. Here h = 1, …, H represents the h-th division. For t = 1 and 2, the size of the first 

group  is approximately (K − 1)/K · nt and the size of the second group  is 

approximately nt/K. We then calculate the corresponding sample correlation matrices as 

 and  for all four sub-samples. Partition the interval [0, 5] into an equi-

spaced grid {0, }. For each value of τ ∈ {0, }, we obtain the thresholding 

estimator  defined in (2) and (10) with the thresholding constant τ based on the 

subsamples  and . Denote the average loss for each τ for the second sub-samples 

 and  as

We select
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as our empirical choice of the thresholding constant τ, and calculate the final estimator D̂*(τ̂) 

with the thresholding constant τ̂ based on the whole samples X(1) and X(2).

4.2 Estimation of Differential Correlation Matrix

The adaptive thresholding estimator is easy to implement. We consider the following two 

models under which the differential correlation matrix is sparse.

1. Model 1 (Random Sparse Difference) R1 and R2 are p-dimensional symmetric 

positive definite matrices such that  is a fixed matrix, where 

 with B1,ij = 1 if i = j and B1,ij = 0·2 if i ≠ j,  is the  identity 

matrix, and R2 is randomly generated as , where 

 with

and λ is a constant that ensures the positive definiteness of R2.

2. Model 2 (Banded Difference) In this setting, p-dimensional matrices R1 and R2 

satisfy R1,ij =0·2×1{i=j}+0·8×(−1)|i−j| × max(1 − |i − j|/10, 0) and R2,ij = 

R1,ij+0·2×1{i≠j} × max(1 − |i − j|/3, 0). Here 1{·} is the indicator function.

In each of the two settings, we set Σt = diag(|ωt|1/2)Rtdiag(|ωt|1/2) for both t = 1, 2, where ω1, 

ω2 ∈ ℝp are two i.i.d. samples from N(0, Ip). These operations make the covariance matrices 

Σ1 and Σ2 have different values along the diagonals.

We generate i.i.d. samples from X(1) ~ N(0, Σ1) and X(2) ~ N(0, Σ2) for various values of p, 

n1, and n2 and then apply the proposed algorithm with 5-fold cross-validation for the 

selection of the thresholding constant τ. For each setting, both the hard thresholding and 

adaptive-Lasso thresholding (Rothman et al. (2009)),

(20)

are used. For comparison, we also implement three natural estimators of D.

1. The covariance matrices Σ1 and Σ2 are estimated individually by the adaptive 

thresholding method proposed in Cai and Liu (2011) with 5-fold cross-validation 

and then  and  are normalized to yield estimators of R1 and R2,
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and finally D = R1 − R2 is estimated by the difference .

2. The correlation matrices  and  are estimated separately using the method 

proposed in Section 6.2 and then take the difference.

3. D is estimated directly the difference of the sample correlation matrices R̂
1 − R̂

2.

The numerical results are summarized in Tables 1 and 4.2 for the two models respectively. 

In each case, we compare the performance of the three estimators D*,  and R̂
1 − R̂

2 

under the spectral norm, matrix ℓ1 norm, and Frobenius norm losses. For both models, it is 

easy to see that the direct thresholding estimator D* significantly outperforms  and 

R̂
1 − R̂

2. Under Model 1, the individual correlation matrices R1 and R2 are “dense” in the 

sense that half of the rows and columns contain many non zeros entries, but their difference 

D is sparse. In this case, R1 and R2 cannot be estimated consistently and the two difference 

estimators  and R̂
1 − R̂

2 based on the individual estimators of R1 and R2 perform 

very poorly, while the direct estimator D* performs very well. Moreover, the numerical 

performance of the thresholding estimators does not depend on the specific thresholding 

rules in a significant way. Different thresholding rules including hard thresholding and 

adaptive Lasso behave similarly.

5 Analysis of A Breast Cancer Dataset

Identifying gene expression networks can be helpful for conducting more effective treatment 

based to the condition of patients. de la Fuente (2010) demonstrated that the gene expression 

networks can vary in different disease states and the differential correlations in gene 

expression (i.e. co-expression) are useful in disease studies.

In this section, we consider the dataset “70pathwaygenes-by-grade” from the study by van 

de Vijver et al. (2002) and investigate the differential co-expressions among genes in 

different tumor stages of breast cancer. In this dataset, there are 295 records of patients with 

1624 gene expressions, which are categorized into three groups based on the histological 

grades of tumor (“Good”, “Intermediate” and “Poor”) with 74, 101 and 119 records, 

respectively. We denote these three groups of samples as X(1), X(2) and X(3). In order to 

analyze the difference in the correlation alternation in different grades of tumor, we apply 

our adaptive thresholding method with cross-validation to estimate the differential 

correlation matrices among those gene expressions from different stages.

The number of gene pairs with significant difference in correlation are listed in Table 3. The 

results show that the correlation structures between the “Good” and “Intermediate” groups 

are similar and there is some significant changes between the “Good” and “Poor” group.

More interestingly, by combining the “Good” and “Intermediate” sub-samples and 

comparing with the “Poor” group, we find significant differences between their correlation 
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structure. There are 4526 pairs of genes that have significantly different correlations 

between the “Good + Intermediate” and “Poor” groups. For each given gene, we count the 

number of the genes whose correlation with this gene is significantly different between these 

two groups, and rank all the genes by the counts. That is, we rank the genes by the size of 

the support of D̂* in each row. The top ten genes are listed in Table 4.

Among these ten genes, six of them, GDF5, TCF7L1, PAPSS1, SFRP1, GABRP, TGFB1, 

have been previously studied and verified in the literature that are associated with the breast 

cancer (See Margheri et al. (2012), Shy et al. (2013), Xu et al. (2012), Klopocki et al. 

(2004), Zafrakas et al. (2006), and Ghellal et al. (2000), respectively). Take for example 

GDF5 and TCF7L1, the overproduction of Transforming growth factor beta-1 (TGFβ), a 

multifunctional cytokine, is an important characteristic of late tumor progression. Based on 

the study by Margheri et al. (2012), TGFβ produced by breast cancer cells brings about in 

endothelial cells expression of GDF5. The findings in (Shy et al. (2013)) suggested the 

important role played by TCF7L1 in breast cancer. Although these biological studies mainly 

focus on the the behavior of the single gene expression, our study provides evidence in the 

gene co-expression level that these gene expressions are related with the breast cancer.

We should point out that the two well-known genes related to the breast cancer, BRCA1 and 

BRCA2, were not detected by our method. This is mainly due to the fact that our method 

focus on the differential gene co-expressions, not the changes in the gene expression levels.

6 Other Related Problems

We have so far focused on optimal estimation of the differential correlation matrix. In 

addition to optimal estimation, hypothesis testing of the differential correlation matrix is also 

an important problem. In this section we consider testing the hypotheses H0 : R1 − R2 = 0 

versus H1 : R1 − R2 ≠ 0 and propose a test which is particularly well suited for testing again 

sparse alternatives.

Similar ideas and techniques can also be used to treat several other related problems, 

including estimation of a single sparse correlation matrix from one random sample, 

estimation of the differential covariance matrices, and estimation of the differential cross-

correlation matrices. We also briefly discuss these problems in this section.

6.1 Testing Differential Correlation Matrices

Suppose we are given two sets of independent and identical distributed samples 

 with the mean μt, covariance matrix Σt and correlation matrix Rt, 

where t = 1 and 2, and wish to test the hypotheses

(21)

This testing problem is similar to, but also different from, testing the equality of two high-

dimensional covariance matrices, which has been considered in several recent papers. See, 

for example, Schott (2007), Srivastava and Yanagihara (2010), Li et al. (2012), and Cai et al. 
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(2013). Here we are particularly interested in testing against sparse alternatives and follow 

similar ideas as those in Cai et al. (2013).

To construct the test statistic, we need more precise understanding of the sample correlation 

coefficients r̂ijt. It follows from (5) that

Since , we introduce

Then asymptotically as n, p → ∞,

The true value of ηijt is unknown but can be estimated by

We define the test statistic by

where
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Under regularity conditions (similar to (C1)–(C3) in Cai et al. (2013)), the asymptotic 

distribution of Tn can be shown to be the type I extreme value distribution. More precisely,

(22)

for any given t ∈ ℝ.

The asymptotic null distribution (22) can then be used to construct a test for testing the 

hypothesis H0 : R1 − R2 = 0. For a given significance level 0 < α < 1, define the test Ψα by

(23)

where τα = −log(8π) − 2 log log(1 − α)−1 is the 1 − α quantile of the type I extreme value 

distribution with the cumulative distribution function exp(−(8π)−1/2 exp(−x/2)). The 

hypothesis H0 : R1 − R2 = 0 is rejected whenever Ψα = 1. As the test proposed in Cai et al. 

(2013) for testing the equality of two covariance matrices, the test Ψα defined in (23) can 

also be shown to be particularly well suited for testing H0 : R1 − R2 = 0 against sparse 

alternatives.

6.2 Optimal Estimation of a Sparse Correlation Matrix

The ideas and technical tools can also be used for estimation of a single correlation matrix 

from one random sample, which is a simpler problem. Suppose we observe an independent 

and identical distributed sample X = (X1, …, Xn) from a p-dimensional distribution with 

mean μ ∈ ℝp, covariance matrix Σ, and correlation matrix R ∈ ℝp×p. When R is 

approximately sparse, it can be naturally estimated by a thresholding estimator R̂ as follows. 

Let . Define the sample covariance matrix Σ̂ = (σ̂
ij)1≤i,j≤p and the sample 

correlation matrix R̂ = (r̂ij)1≤i,j≤p respectively by

Same as in (8) and (9), we define

(24)

(25)

Cai and Zhang Page 14

J Multivar Anal. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(26)

where τ is the thresholding constant that can be chosen empirically through cross-validation. 

The correlation matrix R is then estimated by  with

We consider the following class of approximately sparse correlation matrices

The following theoretical results for R̂* can be established using a similar analysis.

Proposition 6.1—Suppose log p = o(n1/3) and X satisfies (12), (13). For τ > 6, there 

exists some constant C does not depend on n or p such that

(27)

(28)

(29)

Moreover, when log p = o(n), s0(p) ≤ Mn(1−q)/2(log p)−(3−q)/2 for some constant M > 0, the 

rate in (27) is optimal as we also have the lower bound

(30)

(31)
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(32)

Remark 6.1—Cai and Liu (2011) proposed an adaptive thresholding estimator Σ̂* of a 

sparse covariance matrix Σ. This estimator leads naturally to an estimator R̃ = (r̃ij) of a 

sparse correlation matrix R by normalizing  via . The 

correlation matrix estimator R̃ has similar properties as the estimator introduced above. For 

example, R̃ and R̂* achieve the same rate of convergence.

6.3 Optimal Estimation of Sparse Differential Covariance Matrices

Our analysis can also be used for estimation of sparse differential covariance matrices, Δ = 

Σ1 − Σ2. Define θijt as in (3) and its estimate θîjt as in (8). Similar to the estimation of the 

differential correlation matrix D = R1 − R2, we estimate Δ = Σ1 − Σ2 by adaptive entrywise 

thresholding. Specifically, we define the thresholding estimator  by

(33)

where γij is the thresholding level given by

(34)

Same as in the last section, here sλ(z) belongs to the class of thresholding functions 

satisfying Conditions (C1)–(C3) and the thresholding constant τ can be taken chosen 

empirically by cross-validation.

We consider the following class of paired covariance matrices with approximately sparse 

differences, for 0 ≤ q < 1,

(35)

Under the same conditions as those in Theorems 3.1 and 3.2, a similar analysis can be used 

to derive the minimax upper and lower bounds. It can be shown that the estimator Δ̂* given 

in (33) with τ > 4 satisfies

(36)

for some constant C > 0. Furthermore, the following minimax lower bound holds,
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(37)

for some constant c > 0. Equations (36) and (37) together show that the thresholding 

estimator Δ̂* defined in (33) and (34) is rate-optimal.

6.4 Estimate Differential Cross-Correlation Matrices

In many applications such as phenome-wide association studies (PheWAS) which aims to 

study the relationship between a set of genomic markers X and a range of phenotypes Y, the 

main focus is on the cross-correlations between the components of X and those of Y. That 

is, the object of interest is a submatrix of the correlation matrix of the random vector . 

More specifically, let X = (X1, …, Xp1)′ be a p1-dimensional random vector and Y = (Y1, …, 

Yp2)′ be a p2-dimensional random vector. In the PheWAS setting, X may be all phenotypic 

disease conditions of interest and Y is a vector of genomic markers.

Suppose we have two independent and identical distributed samples of the (X, Y) pairs, one 

for the case group and one for the control group,

Here for , k = 1, …, n1 are independent and identical distributed 

samples generated from some distribution with mean μt, covariance matrix Σt and 

correlation matrix Rt given by

In applications such as PheWAS, it is of special interest to estimate the differential cross-

correlation matrix of X and Y, i.e. DXY = RXY1 − RXY2 ∈ ℝp1×p2. Again, we introduce the 

following set of paired correlation matrices with sparse cross-correlations,
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The thresholding procedure proposed in Section 2 can be applied to estimate DXY,

(38)

where R̂
XY is sample cross-correlation matrix of X and Y; λij is given by (10). Similar to 

Theorem 3.1, the following theoretical results hold for the estimator .

Proposition 6.2—Suppose p = p1 + p2, log(p) = o(min(n1, n2)1/3) and (12) and (13) hold. 

Suppose the thresholding function sλ(z) satisfies Conditions (C1)–(C3). Then D̂* defined in 

(38) with the thresholding constant τ > 4 satisfies

(39)

(40)

(41)

for some constant C > 0 that does not depend on n1, n2 or p.

The proof of Proposition 6.2 is similar to that of Theorem 3.1 by analyzing the block D̂XY − 

(RXY1 − RXY2) instead of the whole matrix D* − (R1 − R2). We omit the detailed proof here.
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Appendix: Proofs

We prove the main theorems in the Appendix. Throughout the Appendix, we denote by C a 

constant which does not depend on p, n1 and n2, and may vary from place to place.

Proof of Theorem 3.1

To prove this theorem, we consider the following three events separately,

(42)

(43)

(44)

Here ε is the fixed constant which satisfies 0 < ε < ν0/2 where ν0 is introduce in (13); C1 

and C3 are constants which do not depends on p, n1, n2 and shall be specified later in 

Lemma 6.1.

1. First we would like to show that under the event A1,
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(45)

(46)

(47)

In fact,

for all 1 ≤ i ≤ p, so

(48)

So by the definition of A1, we have

(49)

(50)

Hence,

(51)

(52)

Suppose x = σiit/σîit, y = σjjt/σ̂
jjt. By (51) and , we have 

 when nt is large enough. Thus for large nt, we obtain
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(53)

It then follows from the assumption  that for large nt,

(54)

and

We shall note the difference between  and  above. Next, we rearrange the inequality 

above and write it into an inequality for |r̂ijt − rijt|,

(55)

(55) implies

(56)

Next, by (56) and (C1) and (C3) of sλ(z),

(57)
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(58)

which implies

(59)

(60)

where 0 ≤ q < 1. Hence,

which yields to (46). (45) also holds due to the fact that ||A||2 ≤ ||A||L1 for any symmetric 

matrix A. Similarly,

which implies (47).

2. For A2, we wish to prove,

(61)
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(62)

(63)

In order to prove these probability bounds, we introduce the following lemma, which 

revealed the relationship between θîjt, θijt and σîjt, σijt.

Lemma 6.1

For any τ > 0,

(64)

There exist constants C1, C2, C3 which do not depend on p, n1, n2 such that

(65)

For any ε > 0 and M > 0,

(66)

The proof of Lemma 6.1 is given later. Note that (64) immediately leads to

(67)

By the definition of A2 (43), we still have (49). Besides, by the definition of A2, 

, which leads to σ̂
iit ≥ 0.5σiit. Thus,

(68)

For convenience, we denote the random variable

(69)

Under A2, we have T ≤ 0.5. Then for all 1 ≤ i, j ≤ p, t = 1, 2,
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Similarly calculation also leads to r̂ijt − rijt ≥ −4T. Then, by (C3) of sλij (z),

(70)

In addition, due to ||·||ℓ1 ≥ ||·||, we also have . 

Similarly,

(71)

Therefore,

(72)

Similarly, we have
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which finishes the proof of (61), (62) and (63) when we choose M > τ /4 − 1.

3. For A3, (66) and log p = o(n1/3) leads to

(73)

Besides, since rijt, r̂ijt are the population and sample correlations, |rijt| ≤ 1, |r̂ijt| ≤ 1. By (C1) 

of thresholding sλ(z), we have |sλ(x) − x| ≤ c|x| for all x ∈ ℝ. Thus,

which yields

(74)

Similarly, ||D̂* − (R1 − R2)||2 ≤ (2 + 2c)2p2, . Therefore,

(75)

(76)

(77)

Finally, we combine the situations of A1, A2 and A3. When τ > 4 and M > 2, we have
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(78)

which has proved (14). (15) and (16) can be proved similarly by (46), (62), (76) and (47), 

(63), (77).

Proof of Lemma 6.1

(64) is directly from (25) in Cai and Liu (2011). For (66), the proof is essentially the same as 

the proof of (26) in Cai and Liu (2011) as long as we use x = ((M + 2) log p + log n)1/2 in 

stead of x = ((M + 2) log p)1/2 in their proof. Now we mainly focus on the proof of (65). 

Without loss of generality, we can translate X and assume that μ1 = μ2 = 0. Note that we 

have the following formulation,

(79)

Since

where C4 is a constant which does not depend on n1, n2, p. Thus, we set ; based on 

lemma 1 in Cai and Liu (2011), we have

(80)

for all , where Cη/2 = η/2 + 2/η. Next for , we similarly apply Lemma 1 in 

Cai and Liu (2011) and get

(81)

for all . Combining (80) and (81),

(82)
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for all . Finally, (79) and (82) yield (65).

Proof of Theorem 3.2

Without loss of generality, we assume n1 ≤ n2. For (R1, R2) ∈ (s0(p)), set Σ2 = R2 = Ip×p 

and we have already known this information. The estimation of sparse difference 

immediately becomes the estimation of the sparse correlation matrix R1. Then the lower 

bound result for estimating single sparse covariance matrix can be used to prove this 

theorem.

We follow the idea of Cai and Zhou (2012) and define the set of diagonal-1 covariance 

matrices as

We have {(R1, I) : R1 ∈ (s0(p))} ⊆ (s0(p)). Besides, the proof of Theorem 2 in Cai and 

Zhou (2012) shows that

(83)

Since the correlation matrix equals to covariance matrix (i.e. R = Σ) when diag(Σ) = 1, then

(84)

which implies (17). By ||·||ℓ1 ≥ ||·|| for symmetric matrices, (18) also follow immediately.

Similarly, (19) follows from Theorem 4 of Cai and Zhou (2012).

Proof of Proposition 6.1

The proof of Proposition 6.1 is similar to Theorem 3.1. For the upper bound, again, we split 

the whole events into three,
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(85)

(86)

(87)

Here ε is the fixed constant which satisfies 0 < ε < ν0/2 where ν0 was introduced in (13); 

C1, C3 are constants specified in Lemma 6.1. Similarly to the proof of Theorem 3.1, we can 

prove the following statements.

1. Under A1,

2. For A2,

3. For A3,

The rest of proof, including the lower bound results, are omitted here as they are essentially 

the same as Theorem 3.1.
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Figure 1. 
Average (Spectral, ℓ1, Frobenious) norm losses for τ ∈ [0, 5]. p = 100, n1 = n2 = 50.
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Table 3

The number of gene pairs that have significant differential correlation betweens two groups of different tumor 

grades

Good v.s. Intermediate Intermediate v.s. Poor Good v.s. Poor

# of selected pairs 0 2 152
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Table 4

The top ten genes that appear for most times in the selected pairs in “Good + Intermediate” v.s. “Poor”

Gene number of pairs

growth differentiation factor 5 (GDF5) 67

transcription factor 7-like 1 (TCF7L1) 64

3′-phosphoadenosine 5′-phosphosulfate synthase 1 (PAPSS1) 51

secreted frizzled-related protein 1(SFRP1) 43

gamma-aminobutyric acid A receptor, pi (GABRP) 41

mannosidase, alpha, class 2B, member 2 (MAN2B2) 37

desmocollin 2 (DSC2) 36

transforming growth factor, beta 3 (TGFB3) 35

CRADD 35

ELOVL fatty acid elongase 5(ELOVL5) 32
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