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We  validate  a Psychophysiological  model  (PsPM)  to infer  anticipatory  sympathetic  arousal  from  changes  in  skin  conductance.
We  optimise  the inversion  of  this  PsPM  in  terms  of  a  constrained  non-linear  dynamic  causal  model.
This  method  allows  a quantification  of fear  memory  in  humans.
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a  b  s  t  r  a  c  t

Anticipatory  sympathetic  arousal  is  often  inferred  from  skin  conductance  responses  (SCR)  and  used  to
quantify  fear  learning.  We  have  previously  provided  a model-based  approach  for  this  inference,  based
on  a quantitative  Psychophysiological  Model  (PsPM)  formulated  in  non-linear  dynamic  equations.  Here
we seek  to optimise  the  inversion  of  this  PsPM.  Using  two  independent  fear  conditioning  datasets,  we
benchmark  predictive  validity  as the sensitivity  to  separate  the  likely  presence  or  absence  of  the uncon-
ditioned  stimulus.  Predictive  validity  is optimised  across  both  datasets  by  (a)  using  a  canonical  form
of  the  SCR  shape  (b) filtering  the  signal  with  a  bi-directional  band-pass  filter  with  cut off  frequencies
0.0159  and  5  Hz,  (c)  simultaneously  inverting  two trials  (d) explicitly  modelling  skin conductance  level
odel inversion
ear conditioning

changes  between  trials (e)  the  choice  of  the  inversion  algorithm  (f)  z-scoring  estimates  of  anticipatory
sympathetic  arousal  from  each  participant  across  trials.  The  original  model-based  method  has  higher
predictive  validity  than conventional  peak-scoring  or  an alternative  model-based  method  (Ledalab),  and
benefits  from  constraining  the  model,  optimised  data  preconditioning,  and  post-processing  of  ensuing
parameters.

© 2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
. Introduction

Central states of sympathetic arousal (SA) are often inferred
rom skin conductance responses (SCR), for example to quantify
ssociative learning in the context of fear conditioning (Morris
nd Dolan, 2004; Delgado et al., 2006; Boucsein, 2012). This infer-
nce relies on assumptions of how SA and SCR relate to each
ther. Psychophysiological Models (PsPM) explicitly describe how
udomotor nerve activity generates observable SCR (a peripheral
odel), and constrain at what points in time sudomotor nerve
ctivity can be generated by experimentally induced SA (a neu-
al model) (Bach and Friston, 2013). The combined forward model
A SCR can be turned backwards, to arrive at the relation SA

∗ Corresponding author. Tel.: +41 44 384 2456.
E-mail address: matthias.staib@bli.uzh.ch (M.  Staib).

ttp://dx.doi.org/10.1016/j.jneumeth.2015.08.009
165-0270/© 2015 The Authors. Published by Elsevier B.V. This is an open access article u
(http://creativecommons.org/licenses/by/4.0/).

SCR. In statistics, this process is often termed “model inversion”,
and it provides probabilistic estimates of the most likely SA, given
SCR. Model-based estimates of SA are more sensitive than estimates
from conventional analysis techniques such as SCR peak scoring, as
we have shown in previous theoretical (Bach and Friston, 2013) and
empirical work (Bach et al., 2009, 2010a, 2011a; Bach, 2014). They
are also more sensitive than model-based methods relying only on
a peripheral model, without a constraining neural model (Benedek
and Kaernbach, 2010; Bach, 2014).

Models for evoked SCR, generated by short experimental events
with a known latency, have been developed, refined, and evaluated,
in the framework of General Linear Convolution Modelling (GLM)
(Bach et al., 2009, 2010b, 2013; Bach, 2014). Yet, one of the most

common applications of SA/SCR is to quantify associative learning
in fear conditioning. When a conditioned stimulus (CS+) is pre-
sented, sympathetic arousal occurs in preparation for the upcoming
unconditioned stimulus (US) (Balleine and Killcross, 2006). Because

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he CS usually extends over time, the onset of preparatory SA is
ot known and may  vary from trial to trial which precludes using

inear inversion methods such as GLM. We  have previously devel-
ped a model-based approach for estimating amplitude, onset, and
uration of anticipatory SA (Bach et al., 2010a). This model is for-
ulated in terms of non-linear dynamic equations, and inverted by

 variational Bayes algorithm (VBA) developed in the framework of
CM (Daunizeau et al., 2009). Estimates from this method can bet-

er distinguish CS+ from CS− trials, compared to a GLM approach
hat assumes constant latency, and also compared to standard peak
coring.

As with any method, this approach involves certain techni-
al choices that are beyond the known biophysical properties of
he studied system. Here, we revisit some of these customisable
ettings with the aim of optimising the method. We  compare (a)
esponse functions for the peripheral model, (b) filter parameters
pplied to raw SCR data, (c) number of simultaneously inverted tri-
ls (d) inclusion of SCL, (e) inversion algorithms and (f) removing
etween subject variance from SA estimates.

We benchmark the sensitivity of our method by its ability to cor-
ectly infer known states of arousal in humans during fear learning.
ecause SA cannot be observed directly, we rely on the assumption
hat presentations of CS+ categorically elicit stronger SA than CS−,
n a fear learning paradigm with many trials and CS that are easy
o learn. We  term the ability to differentiate neural states from
S+ and CS− predictive validity. For each set of SA estimates, we
ompute the negative log likelihood that SA estimates for CS− and
S+ trials are drawn from two different distributions rather than
he same distribution, analogous to a paired t-test. We  can then
alculate the log Bayes factor as difference between negative log
ikelihood of the evaluated model against a reference model. In this
ontext, lower log Bays factor implies higher predictive validity for
he evaluated model. As reference model we used inversion with
he current default settings. The algorithm evaluated here is avail-
ble as part of the Matlab suite PsPM (incorporating SCRalyze) at
ttp://pspm.sourceforge.net.

. Material and methods

.1. Design and data

.1.1. General settings
We  analysed data recorded from two independent experiments

sing a discriminant delay fear conditioning paradigm. Data from
xperiment (1) [HRA] are published (Bach et al., 2010a); data
rom experiment (2) [SCBD/SC1F] are yet unpublished. Trial order
as pseudo-randomised. CSs were presented for 4 s, and a rein-

orced CS+ co-terminated with the US. Both experiments were
rogrammed in Cogent 2000 (Version 1.25; www.vislab.ucl.ac.uk/
ogent) and run on Matlab 6.5 and 8.1, respectively.

In both experiments, 50% of the CS+ were reinforced with a
rain of electric square pulses (Experiment 1: 500 Hz, Experiment
: 50 Hz) with individual square pulse width of 0.5 ms,  deliv-
red via a constant-current stimulator (Digitimer DS7A, Digitimer,
elwyn Garden City, UK) through a pin-cathode/ring-anode con-

guration at the dominant forearm. Before the experiment, shock
ntensity was set to a clearly uncomfortable level. First, electric
urrent was increased from an undetectable intensity until the par-
icipant reported that stimulation was above the pain threshold.
hen, shocks with a randomly set intensity below the maximum
ntensity were applied while the participant rated discomfort on a
 (no shock detected) to 100 (painful) scale. Finally, the stimulation
as set just below the pain threshold. This resulted in a current of

.90 ± 0.63 mA  (mean ± SD) for experiment 1 and 6.31 ± 8.20 mA
or experiment 2. Skin conductance was recorded as described
e Methods 255 (2015) 131–138

previously (Bach et al., 2009, 2010a) on thenar/hypothenar of the
non-dominant hand using 8 mm Ag/AgCl cup electrodes (EL258,
Biopac Systems Inc., Goleta, CA, USA) and 0.5%-NaCl electrode
paste (GEL101; Biopac) (Hygge and Hugdahl, 1985). We recruited
healthy unmedicated participants from the general population who
received monetary compensation for their participation. All par-
ticipants gave written informed consent, and the study protocols,
including the form of consent, were approved by the competent
research ethics committees.

2.1.2. Experiment 1
20 individuals between 18 and 30 years (10 female, mean

age ± standard deviation: 22.2 ± 4.0 years) took part in experiment
1. CSs were a blue and an orange filled circle on a black background
that were presented on each trial on the left or on the right of the
screen centre. Participants were tasked to indicate the colour with
the cursor up/cursor down key. Colour-key and colour-CS associ-
ations were balanced across participants. Inter-trial interval (ITI)
was randomly drawn in each trial from 7, 8, 9, 10, or 11 s. At
the end of 20 randomly selected trials (10 CS−,  5 CS+ with US, 5
CS+ without US), participants were asked to rate “’How likely did
you think you would get a shock?” using a horizontal visual ana-
logue scale (VAS) from 0% to 100%. There were 90 trials for each
CS type in 4 blocks. The whole experiment lasted about 45 min.
For SCR recordings, constant voltage (2.5 V) was provided by a
custom-build coupler, whose output was  converted to an optical
pulse with a minimum frequency of 100 Hz to avoid aliasing, dig-
itally converted (Micro1401, CED, Cambridge, UK), and recorded
(Spike2, CED).

2.1.3. Experiment 2
30 individuals between 18 and 35 years (15 female, mean

age ± standard deviation: 25.3 ± 4.1 years) participated in exper-
iment 2. 20 data sets were recorded during a functional magnetic
resonance imaging (fMRI) experiment, and 10 data sets were
recorded outside the MRI  environment. In both data sets, partic-
ipants underwent fear learning with the same stimuli. CSs were
computer generated sine sounds of either single frequency (type 1:
CS1+, CS1−) or triads of three different frequencies with a minor
and major mode (type 2: CS2+, CS2−). For type 1 sounds, partici-
pants were asked to indicate the pitch (high, low) in each trial and
for type 2 sounds to choose the correct mode (minor, major) with
the left/right keys using the dominant hand. For half of the par-
ticipants, sounds from both types were in a low frequency range
(110 to 218 Hz) and for the other participants sounds were in a
high frequency range (245 to 494 Hz). In the fMRI data set there
were 96 trials in 4 blocks, and in the remaining data sets 128 tri-
als in 2 blocks, with the same number of single sine and triad
sounds. Within each block, 50% of trials were CS+ and 50% CS−.
Inter-trial interval (ITI) was randomly drawn in each trial from 7,
9, or 11 s. The experiment outside the fMRI scanner lasted about
35 min  while the fMRI experiment included 4 additional control
blocks with novel unreinforced sounds, summing up to 45 min.
These control trials are not included in the present analysis. For
SCR acquisition in the fMRI scanner, we recorded data at 1000 Hz
sampling frequency with a Biopac MP150 data acquisition sys-
tem coupled to a GSR-100 C signal amplifier (BIOPAC Systems, Inc.
Camino Goleta, CA). Outside the scanner, data were recorded at
200 Hz sampling rate with an integrated SCR coupler/amplifier
(LabLinc V71-23, Coulbourn) and AD converter (DI-149/Windaq,
Dataq). Differences between the two  experimental environments

were tested in a two-way ANOVA of CS (CS+, CS−)  and environ-
ment, indicating no interaction, F(1,56) = 0.82, p > 0.05. Thus, for all
subsequent analyses, data from both environments were pooled.
Temperature and relative humidity of the experimental chamber

http://pspm.sourceforge.net/
http://pspm.sourceforge.net/
http://pspm.sourceforge.net/
http://pspm.sourceforge.net/
http://www.vislab.ucl.ac.uk/Cogent
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Fig. 1. Illustration of the generative PsPM. Presentation of a CS+ or CS− elicits unobservable anticipatory sympathetic arousal (bottom panel) causing sudomotor nerve bursts
(middle panel) with variable onset (dashed arrows), amplitude (vertical arrows) and duration (horizontal solid arrows). Presentation of an aversive stimulation causes a
response at US onset with a fixed duration but variable amplitude (vertical arrows). Additionally, unspecific spontaneous fluctuations occur during the inter-trial interval
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we sought to evaluate the effect of including SCL changes in the
ith  variable onset and amplitude. Activity of sudomotor nerves is then transform
odel.

as between 19–23 ◦C and 36–51% while the temperature in the
RI  scanner was kept at 22 ◦C by air conditioning.

.2. SCR analysis

.2.1. Definition of the forward model
For each participant’s data set, a forward model was  specified

o include, for each trial: (1) an anticipatory SA within a 3.5 s time
indow between CS onset and potential US occurrence. For this SA,

mplitude, onset and duration were estimated. (2) An evoked SA,
.5 s after CS onset, at the time point of a potential US for which the
esponse was estimated. Note that the model is not informed about
he CS condition or whether a US was presented or not (Fig. 1).

.2.2. Data pre-processing and model inversion
Skin conductance data obtained during fMRI acquisition con-

ained specific gradient artefacts in form of 2 ms  spikes that were
emoved by a median filter where each data point was replaced by
he median from its 10 neighbouring data points (i.e. 10 ms  of data
cquisition at 1000 Hz sampling rate). All data sets were low pass
ltered with a first order butterworth filter and cut off frequency of

 Hz, and down sampled to 10 Hz sampling rate. High-pass filter-
ng varied, see step (b). For each SCR data set, the minimum value

as subtracted and the data divided by its standard deviation to
educe inter-individual difference related to peripheral factors of
o interest (see Bach et al., 2009).

.2.2.1. Comparison of response functions. PsPM offers two methods
o define a skin conductance response function for the periph-
ral model: a canonical response function (cRF), pre-defined based
n a large data set is the current default (Bach et al., 2010b).
lternatively, an individual RF (iRF) can be estimated from the
xperimental data of each participant (Bach et al., 2010a). This iRF
s derived from the first principal component of the signal in a time
indow following the last evoked response in all trials until the
ext trial starts. The iRF is then approximated with a third-order
rdinary differential equation. This approach is only useful if a peak
an be identified in the first principal component. For 3 participants
 observable SCR. The algorithm estimates SA amplitudes by inverting the forward

in experiment 1, no peak could be identified for some of the filter
settings, and we used the cRF in these cases.

2.2.2.2. High pass filter. To reduce unspecific noise and slow drift
components which are difficult to model, skin conductance signal is
filtered in many analysis approaches (Boucsein, 2012). We  sought
to empirically determine filter direction and high-pass filter cut off
frequencies that maximise predictive validity of SA estimates. We
investigated cut off frequencies for the high-pass filter that were
demonstrated in (Bach et al., 2013) to result in highest predic-
tive validity for a GLM approach to analyse skin conductance data,
i.e. 0.035, 0.05 and 0.06 Hz. Additionally we  included the current
default filter frequency of 0.0159 Hz and two frequencies of 0.005
and 0.01 Hz to explore ranges below previously reported optimal
settings. High-pass filtering can potentially alter SCR peaks in time.
To reduce this effect, filtering is performed twice in the current
implementation of the method: first forward, and then backward
(bi-directional filtering). We  contrasted this with uni-directional
filtering where the filter is applied twice in forward direction. As
default filter setting, a bi-directional filter with a cut off frequency of
0.0159 Hz was  used as recommended previously (Bach et al., 2010a;
Boucsein, 2012).

2.2.2.3. Number of trials estimated at the same time. Because of
computational limitations, the DCM is inverted in a trial-by-trial
wise approach. Here, we  modified the number of successive trials
(termed “trial depth”) for which the DCM is inverted simulta-
neously. DCM estimation for all RF and filter settings was performed
for trial depths of 2 (default implementation) and 3.

2.2.2.4. SCL input. Skin conductance level (SCL) is subject to slow
drifts e.g. due to changes in tonic arousal and to drifts in the mea-
surement system which were not fully eliminated by filtering. Here,
model which is the current default. To this end, we  additionally
inverted models in which SCL changes were not explicitly included.
In this case, SCL is computed for the first trial and assumed constant
for the course of the remaining data.
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.2.2.5. Inversion algorithm. We  compared a variational Bayes algo-
ithm (VBA) (http://mbb-team.github.io/VBA-toolbox/) as imple-
ented in SCRalyze 2.1.8 against a similar inversion algorithm

mplemented in the software SPM 8b (www.fil.ion.ucl.ac.uk/spm)
Friston et al., 2003). Model inversion was performed using default
lter settings for pre-processing and the cRF for each dataset. To
enchmark the SPM inversion, we used dataset 1 only. Performing
odel inversion with SPM precluded estimation of SCL changes

ue to limitations of the algorithm. To guarantee a fair compari-
on between SPM and VBA, we therefore compared SPM inversion
esults with VBA results obtained by model inversion without esti-
ation of SCL changes.

.2.2.6. Post-processing of SA estimates. Following a recent report
hat z-normalisation of trial-by-trial SA estimates can improve pre-
ictive validity (Bach, 2014), we reduced between-subject variance
f response estimates. For each participant, we subtracted the mean
A estimate across all trials, and divided by the standard deviation
f the participant’s SA.

.2.3. Alternative measures
To benchmark the non-linear model under evaluation, we com-

ared SA estimates with alternative SA indices, using a model based
pproach that relies on a peripheral model only, and conventional
eak-scoring analysis.

.2.3.1. Ledalab. We  estimated SA using “continuous decom-
osition analysis” (CDA) (Benedek and Kaernbach, 2010) as

mplemented in the toolbox Ledalab (www.ledalab.de). Responses
ased on the evoked markers were calculated by using the largest
aseline corrected deflection in conductance between 1 and 4.5 s
fter CS onset (i.e. until 1 s after US onset), with a minimum
esponse of 0.01 �S. This time window was chosen such that poten-
ial US responses or US omission responses are not included in this
indow. Ledalab computes the summed SCR-amplitudes of signif-

cant SCRs within the response window, termed ‘AmpSum’, and
he average phasic drivers that result from deconvolving the SCR
ime series are estimated (termed ‘SCR’). We  report both measures
ithout correction for multiple comparisons. To match the time
indow with peak scoring (see below), we repeated the analysis
efining a post CS window from 1 to 9 s. Increasing the time inter-
al resulted in similar or worse predictive validity. Hence, in favour
f Ledalab, we report results for a window of 1 to 4 s only.

.2.3.2. Peak Scoring. For peak scoring, we defined a window of
 to 4.5 s after CS onset to find the onset of an anticipatory SCR,
nalogous to the previous analysis. A second window of 0.5 to 5 s
tarting from the onset of the response defined where a peak can
e identified (Fowles et al., 1981; Cacioppo et al., 2007; Boucsein,
012). Taken together, the peak is allowed to be estimated in a win-
ow between 1.5 up to 9 s after CS onset. All peaks were baseline
orrected and averaged.

.3. Model comparison

The ability of a method to correctly infer hidden neural states
rom observed data was evaluated by the ability to predict CS type
CS+/CS−) from the SA estimates on a group level. For the analyses
ere, CS+ trials in which a US was delivered were excluded from
nalysis to avoid potentially confounding impact of the UR. For each
articipant we calculated the mean SA for the CS+ and the CS−.

e formulated the prediction of CS+ and CS− as a linear regres-

ion model whereby the CS type serves as dependent variable and
A estimates of each CS as predictor variables, together with par-
icipant constants (across CS type) to account for between-subject
e Methods 255 (2015) 131–138

variability, analogous to a paired t-test. Because the dependent vari-
able (CS type) is the same for all models, we can then compare
the different models in terms of their model evidence. The model
was inverted using Matlab’s built-in maximum-likelihood method
glmfit (Dobson, 2001). The residual sum of squares (RSS) from this
model is related to the negative log likelihood (NLL) by

NLL = n log
(

1/nRSS
)

, which represents the negative model evi-
dence (Burnham and Anderson, 2004). We  subtract from this NLL
value the NLL of a reference model to report Log Bayes Factors (LBF).
As reference method, we used the current implementation in SCRa-
lyze 2.1.8 with its default parameters. An absolute LBF of >3 is often
regarded as decisive, by analogy to a classic p value. If a classic test
statistic falls into the rejection region, the probability of the data
given the null hypothesis is p < 0.05. Unlike p values, Bayes factors
allow quantification of evidence in favour of a null hypothesis. For
an LBF <3, the probability of the null hypothesis given the data is
1/exp(3) � 0.05 (Raftery, 1995; Penny et al., 2004). We  also com-
puted t-values for illustration of our results. T-values and LBF are
monotonically related, but only LBF allows principled statements
about significant differences in model evidence.

Note that this slightly deviates from a previous approach where
the condition (e.g. CS type) predicts the data (Bach et al., 2009;
Green et al., 2014). In both approaches, t- or F-values monotonically
relate to predictive validity. However, in the previous approach,
model evidence cannot be compared between the models. This is
because model evidence relies on the dependent variable which
is then different between the models. To illustrate this point, if
one multiplies the estimated SA parameters by a large constant,
in our approach this has no impact on model evidence or t-values.
In the previous approach where SA parameters are the dependent
variable, this rescaling would not change F-values, but RSS would
increase, and model evidence therefore decrease, although predic-
tive validity is unchanged by the rescaling.

3. Results

We  first sought to validate that participants learned the asso-
ciations. When using the default settings, SA estimates were
significantly higher for CS+ than for CS− trials, as expected (Table 1).
This was also confirmed in standard peak scoring. Results from
different configuration settings were then compared to these ref-
erence results.

3.1. Response function

First, we compared SA estimates obtained using cRF or iRF. Aver-
aged across all tested filter directions, filter cut off frequencies and
trial depth settings, estimates from the cRF showed significantly
higher predictive validity (lower LBF) compared to estimates from
iRF for both datasets (Fig. 2A). When contrasting cRF and iRF specif-
ically for the current default filter and trial depth settings, cRF had
a significant advantage in data set 1 and was on par with iRF in
data set 2. Next, we  analysed individual combinations of filter and
trial depth settings, and RF (Fig. 3). In data set 1, using the iRF was
significantly better than cRF only for 4 out of 24 particular combi-
nations of filter frequency, filter direction, and trial depth, and in
was better than cRF in one different combination in data set 2. For
many other combinations, the cRF was significantly better, and for
the rest no difference emerged. To summarise, cRF appears to be
the most appropriate choice.

3.2. High pass filter
Next, we  compared parameters of the high pass filter (Fig. 2B).
For both data sets, predictive validity averaged over filter frequen-
cies and trial depth settings was  significantly better when using
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Table  1
Test statistics for the comparison of SA elicited by CS+ and CS− are shown together with Log Bayes Factors (LBF), i.e. differences in negative log likelihood compared to the
default DCM. A low LBF indicates high model evidence and is inversely related to the t-score obtained from a paired t-test. Estimates from continuous decomposition analysis
(CDA)  were computed using Ledalab. Additionally, models are evaluated after normalisation of estimates across all trials, separately for each participant (z-scoring). The
default  DCM is superior to peak scoring and Ledalab both before and after normalisation of SA estimates.

Experiment 1 Experiment 2

CS+ > CS− Comparison with default DCM: CS+ > CS− Comparison with default DCM:

t(19) p LBF (smaller is better) t(29) p LBF (smaller is better)

Default DCM 3.88 0.001 3.55 0.001
Peak  1.99 0.062 18 2.32 0.027 11
CDA  (‘AmpSum’) 2.39 0.027 15 2.77 0.010 08
CDA  (‘SCR’) 2.56 0.019 13 2.64 0.013 09

DCM  (z-standard) 4.31 <0.001 −2 3.64 0.001 −1

b
o
t
b

t
n
b
fi
a

F
d
(
d
c

Peak  (z-standard) 2.12 0.047 17 

CDA  (‘AmpSum’) (z-standard) 2.59 0.018 13 

CDA  (‘SCR’) (z-standard) 2.92 0.009 10 

i-directional compared to uni-directional filtering. This advantage
f bi-directional filtering was also significant when only analysing
he default parameters for data set 2 (LBF for uni-directional: 5.7)
ut not data set 1 (LBF for uni-directional: 1.1).

Finally, we explored possible interactions between filter direc-
ion and high-pass filter cut off frequencies. Using cRF, there was

ever a significant advantage for uni-directional filtering (Fig. 3,
lack dotted line and black solid line). Instead, for cRF, bi-directional
ltering was significantly better at cut off frequencies of 0.0159 Hz
nd above for data set 1 and significantly better above 0.0159 Hz

ig. 2. Model evidence of the DCM for different implementation settings. A smaller log B
ifference to the default method. After each step (a) to (c), only winning settings were fo
averaged across filter settings and trial depth settings). (B) Average model evidence for u
epth  settings). (C) Model evidence for different trial depth settings (only cRF and bi-dire
onductance level (only cRF, bi-directional filtering at 0.0159 Hz and trial depth of 2).
2.64 0.013 09
2.95 0.006 06
2.94 0.006 06

for data set 2 at a trial depth of 2. A significant advantage for uni-
directional filtering emerged only in data set 1 for four models using
iRF, with filter frequencies of 0.0159 Hz and below, but this was
inconsistent across trial depth settings.

Taken together, a combination of cRF and bi-directional filtering
provided highest sensitivity across both data sets. Next, we deter-

mined the optimal cut off frequency for the high pass filter. For data
set 1, the current frequency of 0.0159 Hz provided highest predic-
tive validity, with a significant advantage over frequencies below
0.0159 Hz and above 0.03 Hz. In data set 2, a frequency of 0.0159 Hz

ayes factor (LBF) indicates higher model evidence, and absolute LBF <3 means no
rwarded to the next analysis. (A) Model evidence for canonical and individual RF

ni- and bi-directional filtering (only cRF, averaged across filter frequencies and trial
ctional filtering at 0.0159 Hz). (D) Model evidence with or without modelling skin
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Fig. 3. Model evidence of the DCM for all combinations of RF, filter settings, and trial depth. Upper panels: LBF for trial depth 2. Lower panels: LBF for trial depth 3. Smaller
L ative t
d ethod
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BF  indicates higher model evidence. Grey shaded area marks an absolute LBF <3 rel
epth  of 2), points outside the shaded are significantly different from the default m

rovided best predictive validity, but without significant advan-
age over other frequencies. To summarise, a cut off frequency of
.0159 Hz emerged as optimal choice across the data sets.

.3. Number of trials estimated at the same time (trial depth)

For both data sets, predictive validity was not significantly dif-
erent between a trial depth of 2 or 3, when using the optimal
ettings from previous steps, i.e. cRF and bi-directional filtering
t 0.0159 Hz (Fig. 2C). When analysing individual combinations
f RF/filter settings, models using iRF and bi-directional filtering
ere significantly better with a trial depth of 3 at some frequen-

ies (Fig. 3), but this was inconsistent across data sets. Only one of
hese combinations was better than the best RF/filter settings for
rial depth of 2: a model using iRF, a filter frequency of 0.05 Hz, and

 trial depth of 3 was significantly better than the best settings for
rial depth 2, but only in data set 2 not in data set 1 (Fig. 3, lower
ight panel). Given this inconsistency, a trial depth of 2 emerges as
he most plausible setting.

.4. SCL input

Not modelling SCL changes between trials significantly
ecreased predictive validity for a model with the optimal settings
rom previous steps (Fig. 2). We  then explored specific combina-
ions of RF/filter settings/trial depth with and without modelling
CL. In 3 out of 48 combinations of RF, filter parameters and trial
epth settings in data set 1, omitting SCL improved predictive valid-

ty. For the remaining comparisons, including SCL was similar or
etter. These combinations were not replicated across data sets.

or experiment 2, 4 different combinations of filter parameters and
esponse functions profited from omitting SCL, while the remaining
omparisons showed no difference or an advantage for inclusion of
CL. Importantly, in none of these combinations did omitting SCL

ig. 4. The effect of z-standardisation of model estimates on the model evidence across diff
rey  shaded area shows LBF range of −3 to +3 relative to the models without post-proces
o the reference model (i.e. using cRF, bi-directional filtering at 0.0159 Hz and a trial
.

result in higher model evidence (lower LBF) than the default setting
including SCL. Hence, including SCL is the optimal choice.

3.5. Inversion algorithm

VBA and SPM were compared in dataset 1. This favoured VBA
as inversion algorithm (LBF difference in favour of VBA: −3.2). In
terms of computation time, inversion by VBA took on average 61 s
per trial, which is more than 10 times faster than an inversion using
SPM (628 s per trial). Also, the SPM algorithm was not able to deal
with SCL input changes such that comparison was performed with-
out modelling these. In summary, the current VBA implementation
emerged as best inversion algorithm.

3.6. Post-processing

We  compare predictive ability after standardizing the model
estimates from each participant by centring the SA estimates on
their mean and dividing by the standard deviation (Table 1). This
step aligns individual response variability and marginally but con-
sistently increased model evidence across different high pass filter
frequencies (Fig. 4) with a significant difference for frequencies of
0.03 Hz and above in data set 1. In summary, z-standardising the
SA estimates within participants provides best predictive validity
although not significantly better than current best settings.

3.7. Benchmarking

To put the results into perspective, we compare the predictive
validity of our method to an alternative modelling approach and
conventional peak scoring. Table 1 shows differences in LBF scores

between DCM and the respective methods together with t-values
and LBF. Our default DCM had significantly higher predictive valid-
ity than the two  alternative methods. Parameter estimates obtained
from Ledalab and peak scoring benefit from z-standardisation, but

erent filter frequencies. Predictive validity is better or equal if data is post-processed.
sing.
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ven then show lower predictive validity than the default DCM
ithout z-standardisation.

. Discussion

This paper aimed at optimising a previously proposed model-
ased approach for estimating anticipatory SA (Bach et al., 2010a).
sing Bayesian model comparison, we identified a set of imple-
entation settings that optimises predictive validity across two

ata sets.
First, we found a significantly better predictive validity when

sing a cRF compared to using an iRF. A benefit of constraining
he shape of the RF was previously demonstrated for the GLM
pproach (Bach et al., 2010b), where, however, a strongly con-
trained iRF was advantageous compared to a cRF. This may  capture
.g. inter-individual differences in anatomy and physiology of the
ympathetic nervous system. The benefit of cRF in the present
pproach could reflect the unreliability of the iRF estimation which
ests on limited data from 7 s (minimum ITI) after US onset or its
mission. This approach precludes modelling the tail of the true RF.
his shortcoming of the iRF might be remedied by using a longer
TI or using data from a separate task on the same participant, a
ossibility that awaits further investigation.

For pre-processing of SCR data, a bi-directional filter is favoured
ver uni-directional filtering. One possible reason is that it retains
eak latencies while uni-directional filtering shifts SCR peaks in
ime. In a GLM approach, a uni-directional filter performed better
han a bi-directional one (Bach et al., 2013). This discrepancy is
robably explained by the fact that in the GLM inversion, the model

tself (i.e. the design matrix) is subjected to the same filter, and this
s not possible in the current DCM implementation.

The winning filter frequency of 0.0159 Hz in dataset 1 cor-
esponds to a time constant of 10 s and is recommended for
re-processing in the context of peak scoring analysis (Boucsein,
012). This is in contrast to the optimal filter settings in the GLM
pproach where an high pass filter cut off at 0.05 Hz increased pre-
ictive validity. A possible reason for this difference is again that

n GLM, model output and data are subjected to the same filter
hile they are not in DCM. However, it is also possible that opti-
al  filter settings depend on time intervals between experimental
anipulations which differ between the data presented here and

he experimental design reported in Bach et al. (2013).
We  found no consistent difference in predictive validity when

rial depth was increased from 2 to 3 in both data sets. Ideally,
ata from all trials would be considered at the same time. Because
f computational limitations, however, the algorithm splits up the
ata set into overlapping chunks of few trials to reduce compu-
ation time of the inversion procedure. An advantage of increasing
rial depth is expected if the response tail of a SCR after a sudomotor
erve burst is truncated when it exceeds the duration of the chunk.

n such a case a higher trial depth allows estimation of the entire
esponse to a stimulus. In the datasets presented here, the mini-
um  time for estimation of the US response is 18 s for a trial depth

f 2, which captures most of the response tail (Bach et al., 2010b).
his might be different for experiments with a faster pacing.

Model inversion using an SPM algorithm (Friston et al., 2003)
as less efficient than the current VBA implementation (Daunizeau

t al., 2009). This could be due to structure of the algorithm which
as optimised for a different set of models. As an example, the
erivative of the forward model with respect to parameters is com-
uted numerically in SPM, while in VBA, an algebraic formulation

an be provided. In our case this is faster and more precise.

We  compared our method to an alternative model-based
pproach engendered in Ledalab, which lacks a constraining neural
odel. While Ledalab estimates the driver signal of an SCR through
e Methods 255 (2015) 131–138 137

inversion of a forward model driver SCR, the neural states that
cause the estimated signal are then identified by peak scoring of
the driver. This method had lower predictive validity than PsPM,
in line with previous reports (Bach, 2014; Green et al., 2014). This
may  imply that the constraints imposed by the neural model help to
reduce noise and overfitting. Similarly, a conventional peak scoring
method had inferior predictive validity, compared to our PsPM.

In summary, we validated model specifications, and pre- as well
as post-processing, for a method that estimates SA by inverting a
highly constrained non-linear model of the causal relation between
SA and observable SCR. This model based approach for the char-
acterisation and interpretation of anticipatory SA was developed
for quantification of fear memory (Bach et al., 2011b). Yet, its for-
mulation is more general and extends to any event-related phasic
SA without precisely defined onset latency. Indeed, the method
is able to reliably retrieve SA caused by conditioning on positive
reward (Bulganin et al., 2014) and by decision processes (Nicolle
et al., 2011). With this work, we  hope to motivate further use of
this method in neuroscientific research.
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