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Abstract

Recent advances in next-generation sequencing technologies require alignment algorithms and 

software that can keep pace with the heightened data production. Standard algorithms, especially 

protein similarity searches, represent significant bottlenecks in analysis pipelines. For 

metagenomic approaches in particular, it is now often necessary to search hundreds of millions of 

sequence reads against large databases. Here we describe mBLAST, an accelerated search 

algorithm for translated and/or protein alignments to large datasets based on the Basic Local 

Alignment Search Tool (BLAST) and retaining the high sensitivity of BLAST. The mBLAST 

algorithms achieve substantial speed up over the National Center for Biotechnology Information 

(NCBI) programs BLASTX, TBLASTX and BLASTP for large datasets, allowing analysis within 

reasonable timeframes on standard computer architectures. In this article, the impact of mBLAST 

is demonstrated with sequences originating from the microbiota of healthy humans from the 

Human Microbiome Project. mBLAST is designed as a plug-in replacement for BLAST for any 

study that involves short-read sequences and includes high-throughput analysis. The mBLAST 

software is freely available to academic users at www.multicorewareinc.com.
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Introduction

Recent advances in next-generation sequencing (NGS) platforms [1] have made it possible 

to produce sequence data in vastly larger volumes and at a fraction of earlier costs. These 

NGS technologies have resulted in exponential growth of sequence data, outpacing the long-

term trend of computers to double in speed every 18 months (Moore’s law). This has led to 

the cost of compute infrastructure necessary to perform analytical processing being a 

limiting factor in several areas of genomics research. Sequence data by itself provides little 

information, and analysis is critical for creating knowledge. The most important analytical 

process is comparison of data to sequences with known molecular properties. This task is 

computationally complex, but algorithms capable of performing this type of database 

comparison such as the Basic Local Alignment Search Tool (BLAST; [2,3]) have been 

available for some time. Many variants of BLAST are also in use, with National Center for 

Biotechnology Information (NCBI) BLAST and WU-Blast [4] being the most popular. 

These programs have been optimized for over a decade and have become the de-facto 

standard for benchmarking comparisons in the bioinformatics industry.

The BLAST package of algorithms contains 4 major categories: nucleotide, protein, 

translated and special. Each of these has sub-components. For example, the protein searches 

can be conducted with BLASTP, Psi-, Phi- or RPS-BLAST [5,6]. While the original BLAST 

program was well optimized for searching the individual sequence reads (strings) produced 

by 1990s technology, a single run on a current-generation sequencer now generates over 109 

short read DNA sequence strings. Additionally, these must now be independently analyzed 

against a much larger data set of known sequences, which can be hundreds of gigabytes (or 

tens of billions of sequences) in size. A BLASTX or TBLASTX search of multiple sequence 

runs against GenBank databases thus requires substantial supercomputing resources. 

Considering that sequencing technology to emerge in the next one to two years will likely 

increase data output by yet more orders of magnitude, the importance of investment in 

optimized data analysis solutions to address the increasingly intractable problem of genomic 

sequence analysis becomes clear.

With that in mind, effort has been invested into developing ways to decrease the 

performance time of BLAST while still maintaining high sensitivity. Improvements on 

BLAST have included parallelized versions using threads on symmetric multiprocessor 

machines (though still limited due to the limited number of processors used); Hyper-blast 

achieved 12 times speed-up using inter-node parallelism and a specialized database 

partitioning method [7]; CloudBlast delivered 57 times speedup compared to the 52.4 of the 

publicly available mpiBlast [8]; Dynamic Blast on UABgrid resources showed 50% 

reduction in time [9] and because BLAST is highly parallel in nature, making it amenable to 

adaptation to a grid environment [10], researchers increasingly use larger grids to reduce the 

execution time of search jobs.

While these improvements in the execution time of BLAST are useful, there is still a 

considerable challenge for projects that produce terabase amounts of sequence data, where 

greater acceleration of BLAST execution is required. One such field that uses the 

technological breakthroughs associated with the decreased cost of DNA sequencing is 
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metagenomics (e.g. [11,12]). Shotgun sequencing for metagenomic profiling of microbial 

communities and other complementary technologies (e.g. [13]) provides information not 

only on the organismal components (bacterial, viral, and eukaryotic) of a microbiome, but 

also on the whole gene content of the community, for example allowing description of the 

metabolic capacity of a community, or detection of genes of interest such as antibiotic 

resistances or virulence factors. For shotgun metagenomic analysis there is a need for deep 

sequencing of each specimen, in order to adequately sample the genomes of many different 

organisms, present at a wide range of abundance. This results in terabase-scale data sets that 

must be analyzed at the level of individual DNA sequence reads. Since the source organism 

is unknown in these experiments, searches are necessary against all known sequences from 

all candidate organisms, further compounding the computational challenge. While such 

experiments are still expensive, it is now possible, for example, to contemplate sequencing 

the organisms capable of living on or in the human body [14], a project many times more 

challenging than the human genome itself. It is also possible to sequence whole genomes 

from entire ecosystems living on plants, in soils and in underground hydrocarbon deposits 

and contaminated locations. However, data analysis is the most significant bottleneck in the 

ability to convert massive metagenomic data sets into sound scientific conclusions.

To address this analysis challenge, we set out to optimize BLAST for the latest multi-core 

CPUs, which as a hardware class have greatly increased in their performance and 

parallelism since the original BLAST algorithm was devised. The mBLAST package 

consists of mBLASTX, mBLASTP and mTBLASTX, which perform alignments similar to 

BLASTX, BLASTP and TBLASTX respectively (named for the BLAST programs they 

closely emulate with an additional prefix “m”, connoting a thousand-fold performance gain). 

According to our performance tests on an 8 node cluster system, the mBLAST suite of 

programs achieved a speed-up of several thousand fold, with both read- and gene-length 

queries, and only marginal reduction in sensitivity. The algorithm was used to successfully 

process over 3TB of microbial sequences from the Human Microbiome Project (HMP) 

[15,16]within the time boundaries of the project. The datasets used for estimating speed-up 

and performance evaluation were from the HMP however the algorithm can be applied to 

any sequence data used for protein-level comparison to databases.

Materials and Methods

Hardware configuration

The computer used for NCBI blast time benchmarks was a Dell M610 blade with 2 × quad-

core E5540 2.53Ghz CPUs (hyperthreading disabled), 48GB of RAM, and 2× 300GB 10K 

RPM SAS drives striped in a RAID 0 configuration. The blade OS was Ubuntu 8.04 (kernel 

2.6.28-11-server). The configuration of the machine used for mBLAST algorithms was a 

Dell PowerEdge M610 Blade with 2 × Intel Xeon quad core E5540 (2.53GHz) processors, 

48 GB of RAM, 2 × 250 GB striped (RAID 0) hard drives (500 GB total), two 1 Gb/s 

Broadcom network interface cards (only one of them was actually connected to the network 

for a total of 1Gb/s) and running Ubuntu LTS 10.04 and LSF 7.04. The algorithms were also 

directly compared on different server class machines (with very similar specifications) at the 

University of Illinois with very closely comparable results.
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Each BLAST job was repeated 3 times and the average time is used as the standard for 

comparison. NCBI BLAST 2.2.22+ was used for all the benchmarks by strictly controlling 

the number of cores (1 core) with the most sensitive parameter sets. Between each run we 

cleared out the cached memory on the test blade (as processes are run on the blades, the 

Linux kernel will attempt to cache data in memory to avoid having to read it from disk).

Comparison of read level protein searches

Illumina reads from a metagenomic sample were mapped to a set of Roche-454 

pyrosequencing reads from the same sample using BLAT [17], with a cut off of 95% 

identify over 90% of the Illumina read. Mapping to KEGG version 58 [18] was used for 

selecting pyrosequences reads, requiring an alignment e-value of at least 1e-05 to be 

considered a hit. For each of 1,000 randomly selected Roche-454 reads that hit KEGG, we 

selected 100 random Illumina reads with significant sequence matches as representative data 

for comparing BLASTX hits of both sequence datasets. The Illumina read hits were parsed 

using 1e-05 and the Roche/454 pyrosequence hits were parsed using 35 bits and 55 % 

identity.

Running mBLASTX

To execute an mBLASTX alignment you first must pre-generate a neighborhood matrix 

from the scoring matrix you plan to use (this resource is pre-generated for the default 

BLOSUM62 matrix). Then you need to create a set of accelerated data files for the 

reference. Once these files are created for a specific scoring matrix and/or reference they can 

be used repeatedly. These steps are only needed the first time you use a new subject 

database.

MNeighborGen is used to generate the neighborhood matrix (for details see Supplementary 

File 1). The program MHashGen builds the accelerated data files for the reference, (for 

details see Supplementary File 2).

The mBLAST software package includes mBLASTX, mTBLASTX and mBLASTP for 

aligning translated nucleotide queries to a protein database, translated queries to a translated 

nucleotide database and protein queries to a protein database respectively. For proper usage 

of these tools along with a full description of available parameters and their function see 

Supplementary File 3 and Supplementary File 4.

iBLASTX

To evaluate the effects of optimizations on sensitivity, a program called inverseBLASTX 

(iBLASTX) was developed. In iBLASTX, the following notation is used: Q is the set of 

queries (in the case of BLASTX, a set of strings of nucleotide sequences), R is the set of 

references (in the case of BLASTX, the reference database of proteins used was NR), S is 

the set of seeds and neighbors that are candidates for extension, H is the space of High 

Scoring Pairs (HSP) (the output of BLASTX that identifies the alignments), U is the 

function that extends the seeds, calculates E-values, and then compares against the statistical 

E-values to identify the alignments H. With this notation, BLASTX can be described as 

follows: H=U(S(P1, P2,,…, PM) (Q)) where Pi are the parameters and M is the number of 
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parameters. mBLASTX can be described in exactly the same terms. Note that the 

transformation, U, which follows the seed finding stage, is essentially the same in BLASTX 

and mBLASTX.

In order to identify the correct settings of the parameters Pi, a sequential search of the 

parameter space (which would be otherwise computationally intractable itself) is conducted 

using iBLASTX to identify the (P1, P2,…, PM) so that at least 98% of the HSPs in H are 

present in H. For each common HSP in H and H, iBLASTX identifies the seed(s) in S, 

which would result in that HSP when subjected to transformation U. For each value of a 

parameter, it identifies whether this HSP would be output by mBLASTX or not and creates 

a histogram of the loss of sensitivity of mBLASTX vs. BLASTX for various values of the 

parameter. After identifying the values of the parameter for which the sensitivity is 

maintained, iBLASTX modifies the next parameter using the previously chosen parameter at 

that fixed value.

Comparison of BLASTX against mBLASTX

The input query used for this comparison is a random set of 100 bp Illumina reads obtained 

from the SRA sample SRS015890. A subset of queries with various sizes were randomly 

picked from a database containing 16,595,429 queries and used for testing mBLASTX. 

These 16.5 million queries were derived from a 20,599,707 sequence dataset that was 

screened for human contaminants, redundancy (100% identity over 100% length) and reads 

containing N, resulting in a 1.2 Gb database consisting of 2,482,697 proteins. Three distinct 

dataset sizes were chosen to address specific questions. A small dataset with 1000 reads was 

selected as a set of reads that can be processed in 5–10 mins, therefore appropriate for the 

quick testing of the correctness of the mBLAST algorithm and its sensitivity/specificity to 

NCBI BLASTX. The medium dataset consisted of 5,000 reads and it was designed to finish 

overnight with NCBI BLASTX. This set was aimed to provide comparisons of the algorithm 

on medium size sets. The large dataset of 100,000 reads was prepared to gauge the time 

performance of the datasets in addition to specificity comparisons. The program was also 

extensively tested on even larger datasets such consisting of 1 million and 20 million queries 

to analyze its memory handling capability and optimal time performance. Such large 

datasets have a very high run cost with NCBI BLAST algorithms, hence direct comparisons 

were not possible with datasets over 1 million.

The BLASTX alignments were generated using the NCBI-blastx-2.2.22+ with the following 

command ‘blastxplus -db All_annodb.faa -query <input> -word_size 3 -threshold 14 -seg no 

-num_descriptions 10 -num_alignments 10 -out <output>’. Top 10 hits that have an e-value 

of 1e-5 or lower were then parsed using a custom Perl script to obtain results for convenient 

comparison. The mBLASTX results were generated using mBLASTX Version 1.1.05 

02/24/2011 (Linux) with the following command line ‘mblastx -m 32 -q <input> -d <data 

directory containing the mhashgen hash files for the database> -o <output>’. The sensitivity 

and specificity of both algorithms were then compared by calculating the number of queries 

hit, common queries that have hits in both, queries that do not have hits in both, number of 

unique hits in each of the outputs and number of hits shared by both using a Perl script. The 

following criteria were used for considering hits found by both algorithms: a) Same query 
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hitting the same subject - top blastx hit present in top "n" mblastx hits where n = 1,5,10 and 

32; b) The subject in the alignments are in the same frame; c) The start and stop positions of 

the hit in the subject should be within +/−10 positions.

For the pathway module analysis the KEGG modules that represent modular functional units 

of the KEGG pathways [18] were used. Module coverage was calculated through HUMAnN 

[19] from MBLASTX alignments against the KEGG genes database(version 58) with top 20 

hit and e-value of 1. Modules that were covered at 90% or higher in 90% of the samples in 

each body site were identified and plotted. Only modules with at least 4 genes were 

considered. In total 624 samples were analyzed (stool 137 samples, posterior fornix 53, 

buccal mucosa 109, anterior nares 87, supragingival plaque 115 and tongue dorsum 123)

[16].

Comparison of TBLASTX against mTBLASTX

The database used for TBLASTX alignments for the virus detection pipeline included 

sequences from human and microbial genomes (bacteria, archaea, small eukaryota, virus and 

bacteriophage). The subject database included all sequences in NCBI NT, not just complete 

genomes (sequences 297,590, size 8.6 Gb), in order to incorporate as much diversity as 

possible. The query sequence was obtained from a plasma sample from a febrile child. Total 

nucleic acids were extracted from the sample, RNA was reverse transcribed, and the cDNA 

and DNA were amplified. We derived our methods for cDNA synthesis and amplification 

from [20,21]. Ungapped mTBLASTX results were compared to TBLASTX results, both 

parsed at 1e-5 (mTBLASTX top 32 results, TBLASTX also top 32) using Perl scripts and 

was used to generate the sensitivity report using the following criteria: a) Same query hitting 

the same subject - top TBLASTX hit present in top "n" mTBLASTX hits where n = 1, 5, 10 

and 32; b) The query in the alignments are in the same frame; c) The subject in the 

alignments are in the same frame; d) The start and stop positions of the hit in the subject 

should be within +/−30% of the TBLASTX alignment length.

For the virus detection analysis we obtained Illumina GAIIX sequences that had been 

generated from plasma samples collected from febrile children ([22]; Acc. No: SRR057960, 

SRR057863, SRR057962, SRR057864, SRR057938, SRR057831, SRR057939 and 

SRR057832). A nucleotide database was made from all of the viral entries in NT, 

downloaded on October 10, 2011. Database sequences that were less than 100 basepairs 

were removed. Illumina GAIIX sequences were aligned to this database using mTBLASTX 

with the following parameters: -f T –t 26 –Z 5 –X 7 –Y 20 –M 40 –T 64 –m 6 –I 50 –e 

1.0E-03. Output was parsed to retain alignments with greater than 70% identity for further 

analysis. The database was translated into 6 frames for mBLASTX alignments using transeq 

[23] with the following parameters: -frame 6 -table 0 –trim. Illumina sequences were aligned 

to the translated reference database using mBLASTX with the same parameters and parsing 

conditions described above for mTBLASTX. For comparison, nucleotide sequence 

alignments were carried out using BLASTN using the following parameters: --repeat-freq 

97% -e 10% -U –T 4 –w 15 –-top-random –read-names –penalize-unknowns.
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Comparison of BLASTP against mBLASTP

The input queries used for this comparison are the proteins deduced from genes predicted on 

the scaffolds from the metagenomic assembly of SRA sample SRS013215 (available at: 

ftp://public-ftp.hmpdacc.org/HMHASM/assemblies/SRS013215.scaffolds.fa.gz). The 

database used was uniref100 DB (version 11/30/2010; 11,465,597 sequences, size 5Gb). The 

BLASTP alignments were generated using the command 'blastall -v 20 -b 20 -X 15 -e 1e-5 -

M BLOSUM62 -J F -K 10 -f 11 -Z 25.0 -W 3 -U F -I F -E -1 -y 7.0 -G -1 -A 40 -Y 0.0 -F 

"T" -g T -p blastp -z 1702432768 -m 7'. Top 20 hits were parsed in the btab format. The 

mBLASTP results were generated using mBLASTP version 1.4.0 01/27/2011 (Linux) with 

the following command line (30 % identity of HSP), 'mblastp -F S -t 22 -Z 2 -X 5 -Y 42 -d 

<data directory containing the mhashgen hash files for the database> -q <input>'. The 

sensitivity and specificity was calculated similar to the BLASTX vs. mBLASTX 

comparison, using internal Perl scripts. The criteria for considering hits found by both 

algorithms were: a) Same query hitting the same subject - top blastp hit present in top "n" 

mblastp hits where n = 1, 5, 10 and 32; b) The subject in the alignments are in the same 

frame; c) The start and stop positions of the hit in the subject should be within +/−20% of 

the blastp alignment length.

Results

Read length and alignment sensitivity

Read lengths vary considerably on different sequencing platforms, from less than 100 to 

over 1,000 bases per read. Two of the major platforms are Illumina, with (at the time of 

performing our analysis tests) a standard read length of 100 bp, and Roche-454 with reads 

that average around 400 bases. Illumina has advantages over Roche-454 in producing more 

reads per run at a lower cost and higher accuracy. In some cases, however, the shorter 

Illumina reads provide less information for database alignments than Roche-454 data. To 

examine the differences in using Illumina reads or longer Roche-454 reads, we compared 

alignments to a common reference database from both sets of data. 1,000 Roche-454 reads 

and 100 Illumina reads that mapped to each were randomly selected from a metagenomic 

DNA sample collected from human stool (available in the NCBI Short Read Archive under 

the accession no. SRS015890) as representative data to allow a direct comparison between 

the two technologies. Each of these sets were aligned to the KEGG database [18], and the 

hits from the Roche-454 reads were compared to the hits of the 100 corresponding Ilumina 

reads. In 90% of the cases, the same KO (KEGG ortholog) annotation was obtained from 

corresponding sets of Roche-454 and Illumina reads. False negative rate, defined as KOs hit 

only by the Roche/454 but not Illumina reads, was estimated to be 12% (117/1,000). False 

positive rate, defined as the Illumina reads that hit additional or different KOs than the 

Roche-454 reads, was 8% (84/1,000). We thus concluded that the lower cost of sampling 

with 100 bp Illumina reads does not sacrifice the sensitivity seen with longer read lengths. 

We have thus focused on accelerating BLAST for use with Illumina data, which is expected 

to pose the biggest challenge.
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Optimization of BLASTX

The BLAST algorithm can be divided into six stages (Figure 1, A–F). The seeding step (B) 

finds and marks the locations of short sequences of length W (word size) in the queries and 

reference strings that are either identical or are neighbors, i.e., whose score when computed 

using a substitution matrix such as the Blosum62 matrix [24] is above a certain T (threshold) 

value. Finding seeds is a critical aspect of the BLAST algorithm. By identifying the “right” 

seeds, i.e., the ones that result in sought-after alignments, and reducing the number of 

“wrong” or unproductive seeds at this step, the number of computations can be reduced 

dramatically. In the extension step (C), alignments are generated from the seeds. When the 

critical parameter controlling extensions, X (drop-off score), is set too low, the alignments 

terminate after only a few mismatches have been found, while high values of X allow 

alignments to continue through dissimilar regions. In the evaluation step, alignments are 

compared to an E-value threshold to identify alignments that are statistically relevant. The 

combination of these parameters (W, T, X) has a significant effect on the speed and 

sensitivity (S, score) of BLAST searches.

Our BLAST time benchmarks were performed on dedicated systems with hardware 

configuration specified in three replicates (see Methods). An average total time per query (of 

100 bp length) against the NR database for NCBI’s BLASTX using default parameters is 

828 milliseconds (ms). The “finding seeds” step (B) consumed 654 ms of the processing 

time, while 46 ms was spent in extension (C) and scoring (D) steps, and 128 ms was 

required for loading and writing data (steps A & F), and for identifying the highest scoring 

alignments (E) (Figure 2). For a data analyst to be able to keep up with NGS data production 

one would need at least a 1,000× reduction in processing time per query, i.e., to go from 828 

ms to less than 828 microseconds (µs) per query, therefore it was necessary to significantly 

reduce computational time at each step of the process. Seed finding was investigated first 

because it was the lengthiest stage, and moreover, reducing the number of seeds sent to later 

stages of the pipeline would also reduce subsequent extension computations considerably, 

allowing for early elimination of insignificant alignments.

Optimization of the Seeds in mBLASTX

We reduced the number of seeds that are present in the seed finding stage by increasing the 

seed size parameter W. By increasing W we potentially missed some local alignments that 

BLASTX finds, however, that was offset by decreasing the size of the parameter T, which 

increases the number of neighbors that each seed has. iBLASTX was used to evaluate the 

interrelationship between the parameter set, (W, T), and the strength of the hits and missed 

hits. The sensitivity target was set as greater than 98%, i.e. 98% of the HSPs in H of 

BLASTX should be present in the output H of mBLASTX. False positives (i.e., alignments 

that were found by mBLASTX and not found by BLASTX) were less than 1% (Figure 3A), 

compared to BLASTX alignments used as the gold standard, and found to contribute to 

better downstream utilization of the HSP results. Increasing the number of top hits (N) of 

mBLASTX increased the overall sensitivity compared to the BLASTX algorithm (Figure 

3B).
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For example, a simplified version of this method for optimizing the parameter T while 

maintaining greater than 98% sensitivity follows: The queries that were used are Illumina 

reads of a whole genome shotgun (WGS) metagenomic sample with 100,000, 1,000,000 and 

6,000,000 query sequences against a protein database. The reported data (Table 1) are 

derived from the set with 100,000 queries. Figure 4 (Single Seed (Hit) iBLASTX and 

various word sizes W with HSPs with at least 1e-05 E-value) shows a simplified version of 

iBLASTX where the effects of changing the W from 3 to 8 (W3, W8 respectively) are 

scanned, represented in the various curves with the impact of changing the threshold versus 

percentage of HSPs missed. This graph enables choosing the correct threshold per word size 

while retaining acceptably small loss of sensitivity. For example, W6 with T31 resulted in a 

loss of less than 1% of the HSPs (Figure 4). While using W6 with T29 and a less stringent 

match for the HSPs (cutoff of at least 23 positives out of 33 amino acids or more; data not 

shown) results in approximately the same percentage of missed HSPs, the first can be 

thought of as casting a smaller net for only the seeds of interest and results in significantly 

less work than W6 T29.

In order to further reduce the workloads that do not result in an alignment, it is possible to 

add additional parameters to drop seeds that result in unlikely extensions. With these 

additional parameters, mBLASTX can be described as follows:

H=E(S(P1, P2,,,…, PM,, O1,, O2,…, ON)(Oj))

where Oj are the parameters and N is the number of new parameters. After completing the 

search for the parameters, iBLASTX does a similar sequential search of the thresholds for 

the new parameters Oj. This allows users of particular sets of queries and particular HSP 

acceptance criteria to find the set of parameters (P1, P2,,,…, PM,, O1,, O2,…, ON) to 

achieve the required sensitivity.

Several other optimizations were applied that did not impact the sensitivity of the search:

i. Repetitive building of accelerated data structures for the reference database. 

Frequently users need to run BLASTX for billions of queries against several 

different protein databases (e.g. NR, KEGG [25], UniRef [26], MetaCyc [27], 

Antibiotic resistance genes DB [28], transporter DB [29], CAZy [30], to name a 

few). Building of the accelerated data structure of the reference database was 

separated from the other steps, so that it would occur only once per database, using 

the mHashGen program (Figure 1). Adding these data structures significantly 

increased the size of the reference data, by a factor of 15. For example, the 

GenBank non-redundand protein (NR) database used as a standard contained about 

3.4 billion amino acids, which required approximately 57 GB of disk space to store 

the accelerated data structure with additional filtering information. This data 

structure can easily be stored on disks, but is still too big to be processed 

simultaneously in servers with normal configurations. Therefore the subject 

database was split into 8 distinct parts of nearly the same size that could then be 

processed separately by servers with 32 GB (Gigabytes) of RAM memory. 

Building the accelerated data structure files for the NR database took around 2 

hours. Since this process only happens once for the entire dataset of 500 billion 
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queries, it only added 14 ns (nanoseconds) to the per query time. This time is 

within the measurement noise of the final per query time and was not included in 

estimating speed-up.

ii. Creation of query batches of optimized size and streaming them in parallel through 

multiple CPU cores. We were able to process approximately 600 million amino 

acids in the same batch. By this means, redundant words in the batch need not be 

searched repeatedly, and thus the main gain in speed is not seen with a limited 

number of input sequences (Figure 5).

iii. Avoidance of redundant extensions: Redundant extensions happen when multiple 

seeds map into the same extended region. This was eliminated by keeping track of 

all the extensions in an accelerated data structure and performing a lookup of this 

accelerated data structure prior to the execution of the extension step.

iv. Trades-offs in favor of larger memory and disk spaces that are available on servers 

used for analysis: With larger RAM available on modern servers, accelerated data 

structures can be used to quickly access information. In addition, due to the highly 

ordered way that the data is being processed, it can be organized so that all queries 

are only streamed once.

v. Elimination of huge features lists supported in BLAST that impact performance: 

Many of the options in BLASTX resulted in additional checks within the key 

segments of execution that were eliminated in mBLASTX. Features that impacted 

speed but have a limited impact for the short-read queries we are focused on were 

thus either modified or dropped. These included our application of a simplified 

gapping strategy, dropping scoring refinement by adjusting the substitution matrix 

on a per query basis, and removing the low-complexity filtering programs SEG 

[31] or DUST [32] that are an integral part of BLAST. These had either an effect 

on a very small subset of queries or no impact on queries of 100 bp. Simplified 

gapping resulted in the biggest effect of these changes, a loss of around 0.1% of 

HSPs. Re-scoring usually resulted in no significant changes in bit scores for these 

short queries. For SEG/DUST low complexity filtering, this can still be applied in a 

pre-processing step, which is desirable for large datasets to both optimize compute 

time for query sets subject to multiple searches, and to enable more control over 

finding low complexity regions.

vi. Avoidance of poor multi-threading: Pipelining and parallelizing work for this 

algorithm was achieved easily as no inter-dependencies exist between individual 

queries. A near-linear speedup was achieved as the number of cores was increased 

in the tested server configurations, up to 32 cores.

Evaluating Performance of mBLASTX

The performance of mBLASTX was evaluated using 100bp Illumina reads against a 

database of proteins (see Methods). BLASTX with the typical parameters described above 

was treated as the golden standard. The 100bp shotgun metagenomic reads were screened to 

remove low complexity regions using the ‘DUST’ program [32]. Overall performance for an 

8 core Intel Nehalem node with 32 GB of memory was approximately 1600 fold the 
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performance of the exact same node running NCBI BLASTX on all 8 cores (Table 2, Figure 

2). Performance benchmarks for mBLASTX were taken from one million to twenty million 

queries, where the average time per query was used for determining the acceleration factor 

(similar to NCBI BLASTX, see Methods). Most of the reduction in CPU time was derived 

from: a) database preprocessing, parallel query processing, dropping duplicate extensions 

and reduction in the number of seeds; these enabled a savings of ~699.74 ms; b) Reducing 

the feature list, pipelining I/O and parallelization. These optimizations are hard to quantify 

directly, but the remaining time saved by this class of optimization was approximately 

~128.76 ms.

Evaluating Sensitivities of mBLASTX

The sensitivity of mBLASTX was measured by comparing the highest scoring HSPs found 

for a set of 100,000 queries by NCBI BLASTX and mBLASTX on the KEGG database [18]. 

For this sensitivity measurement, the NCBI BLASTX was run with W3 T14 (recommended 

parameters for protein search based on [33]) and mBLASTX was run with W6 T26. A 

match is defined as the top HSP found by NCBI BLASTX also being found by mBLASTX 

with the same values for query and reference sequence offsets, length of the HSP and E-

value. The criteria for considering overlapped hits between BLASTX and mBLASTX 

included: i) same query hitting the same subject – the top BLASTX hit can be any of ‘n’ top 

ranked mBLASTX hits where n =1, 3, 5, 10 or 32; ii) the subject sequence should be in the 

same frame in the alignment between BLASTX and mBLASTX; iii) the start and stop 

positions of the hit in the subject should be within +/− 10 residues for read level searches. 

For this set of queries and parameter setting, BLASTX found 26,339 top HSPs and 

mBLASTX found 26,174 matching HSPs – a sensitivity measurement of 98.6% (Table 1). 

For the above set of parameters, BLASTX runs at a pace of 828 ms/query while running 2 

million queries, while mBLASTX runs at a pace of about 510 µs / query – a speedup of 

about 1,600× (Figure 2). HSPs missed by mBLASTX (Figure 3A) were a result of using 

larger words size with T26 (~0.46% of HSPs; 77% of missed HSPs) and missed gaps 

(~0.54% of HSPs; 23% of missed HSPs). The additional 216 HSP found by mBLASTX that 

were not top hits with BLASTX were a result of the lower average 3mer threshold of 13 vs. 

14 used when performing protein searches (based on [33]).

This approach resulted in a dramatic performance gain in mBLASTX. The processing time 

per query dropped from 828 ms to 510 µs with a 98.6% sensitivity, saving 827.49 ms per 

query; 1,600 times faster and 0.6% above target sensitivity of 98% (Table 2; Figure 3A). 

Other advantages of mBLASTX include the ability to map millions of queries at a time 

(Figure 5), no database size limitations, no limit on the read/query length and an option to 

compress peptide strings in the output for a more manageable result file size.

The performance and sensitivity obtained with mBLASTX enables performing metabolic 

reconstruction of metabolic capabilities of microbial communities at a read level in a time 

frame not possible before. The mBLASTX output generated when Illumina 100 base reads 

(microbiome samples from healthy humans) were searched against the KEGG database [18] 

provided a framework to compare functional diversity and organismal ecology in the human 

microbiome. For example, when microbiomes of 4 body regions are compared, a total of 
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115 metabolic modules are detected; of these 16 are ubiquitously present modules, and 42 

are shared only among the digestive tract (i.e. oral cavity and stool; Figure 6A). Of the 107 

metabolic modules within the oral cavity 82 were common to all Figure 6B, and the others 

were shared among two or unique to one oral cavity niche within the microbiome. When 

examining the pathway modules unique to a body site (for example the 4 modules unique to 

the supragingival plaque (M00012 Glyoxylate cycle, M00095 C5 isoprenoid biosynthesis, 

mevalonate pathway, M00117 Ubiquinone biosynthesis, prokaryotes, chorismate and 

M00326 RTX toxin transport system)), the results indicate that these modules are either 

absent in the buccal mucosa and the tongue dorsum, or alternative reactions are present 

because the coverage is lower than the required 100% (average 0.43% and 0.56% coverage 

of the modules for buccal mucosa and tongue dorsum, respectively). Metabolic capabilities 

of ~700 microbial communities (determined using mBLASTX) occupying 6 different body 

niches of healthy individuals and their associations with the environment are in details 

investigated in [34].

Evaluating performance of mTBLASTX

As BLASTX and TBLASTX are very similar, with the main difference being the need to 

translate the database before doing the search. We applied the same methodologies 

developed for mBLASTX (see above) to increase the performance of mTBLASTX, 

resulting in very similar sensitivity performance to mBLASTX (Table 1) and with a much 

higher speed up (over 6,000 fold, Table 2). The beta version of mTBLASTX has improved 

gap analysis compared to the original algorithm used in mBLASTX for longer queries. To 

demonstrate the importance of rapid translated alignments in metagenomic sequence 

analysis, we analyzed several ssDNA and ssRNA viruses in plasma samples obtained from 

febrile children (Figure 7)[22]. In metagenomic samples, virus sequences are generally rare. 

Therefore, it is important to detect every read of viral origin by aligning to a genome or 

proteome database in order to characterize the virome (Figure 7A). Nucleotide alignments 

identify highly conserved sequences (Figure 7B, enteroviruses, and 7C, dependoviruses), 

however, since viral nucleotide sequences evolve very rapidly, translated alignments allow 

for the identification of many more viral reads in some cases (7B, enteroviruses; 7C, 

dependoviruses; 7D and 7E anelloviruses). This enhances the viral signal in the sample, and 

additional reads can enhance or enable contig assembly, virus subtyping, and comparative 

genomics [35]. In other cases, translated alignments are critical for even detecting a virus in 

a sample (Figure7B and 7C, anelloviruses). While the biological significance of low 

numbers of viral sequence reads is not clear, these observations can be confirmed with PCR 

experiments or additional sequencing [35].

Evaluating performance of mBLASTP

The BLASTP algorithm was also optimized via the same strategy described above, giving 

rise to mBLASTP (see Methods for details) with ~800× performance increase over BLASTP 

(Table 2). Using the following criteria for considering hits found by both algorithms: a) 

Same query hitting the same subject - top blastp hit present in top "n" mBLASTP hits where 

n = 1, 5, 10 and 32; b) The subject in the alignments are in the same frame; c) The start and 

stop positions of the hit in the subject should be within +/−20% of the BLASTP alignment 

length, we achieved > 99% match sensitivity relative to BLASTP (Table 1).
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The primary utility of mBLASTP in metagenomic projects is currently protein annotation 

from open reading frames (ORFs) in metagenomic assemblies. While assembly of 

metagenomic shotgun data is challenging, there are assemblers such as SOAP de novo that 

can be used for this purpose (e.g. [36]). mBLAST enables annotation of the millions of 

ORFs resulting from the metagenomic assemblies within days with a very high level of 

sensitivity.

Discussion

Current short read sequencng platforms produce enormous amounts of sequencing data, and 

these amounts have been increasing exponentially over the past few years. This has 

introduced new challenges in data analysis in terms of the computational resources and 

algorithms that are available. Alignment to known and characterized sequences is an 

important component of analysis and NCBI’s BLAST suite of algorithms, originally 

developed decades ago, is still considered the gold standard in alignment in terms of its 

sensitivity. In this study we have shown that there is still room for improvement of these 

legacy algorithms and have achieved a speed-up sufficient to deliver the performance 

necessary for current sequencing platforms while retaining a high level of sensitivity.

Application of mBLAST to Human Microbiome Data

The importance of being able to do BLAST alignments for huge metagenomic datasets in a 

timely manner cannot be overstated. The HMP produces two types of metagenomic shotgun 

data, sequences originating from reference genomes and from metagenomic communities. 

The advantages of the shotgun sequences originating from metagenomic communities 

compared to the community profiling using 16S rRNA gene are the ability to identify the 

presence of non-bacterial members (such as viruses and lower eukaryotes) and estimate the 

genetic potential and metabolic capabilities of the communities, among others. While ideally 

the metabolic profiling of the community should be done at a gene level, after assembly and 

gene calling, the metagenomic assembly is still very challenging [37]. However, read 

lengths of 100 nucleotides combined with the mBLAST programs make read level protein 

BLAST searches feasible.

Analysis of large amounts of sequences is a challenge that nearly every project using NGS 

faces routinely. For HMP, the analysis of 631 samples with approximately 5 GB of data (50 

million nucleotide reads of length 100bp) per sample (Table 3), a total of 3.5 terabases of 

clean (human free) microbial data, using BLASTX was a significant computational 

challenge. The necessary BLASTX analysis involved several different protein databases to 

answer many different biological questions. If one used a cluster of 200 constantly running 

machines with dual socket quad-Nehalem cores and 48 GB memory (large machine, Table 

3), it would have taken approximately 4.4 years (Table 3) to process this analysis or, 

alternatively, approximately $25 million dollars (in runtime on the current EC2 Amazon 

cluster using NCBI BLASTX based on web-advertised pricing (http://aws.amazon.com/ec2/

pricing/)). Neither of these options is viable, but with the development of mBLAST, this 

analysis is now tractable. The CPU version of mBLASTX, with 1,600× performance and 

over 98% sensitivity, was used to align 3.5 terabases of microbial data against different 
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functional protein databases. The use of mBLAST enabled the completion of the analysis of 

this data in about 4 weeks of processing time, mixed in with various other compute loads.

One of the primary aims in speeding up performance of TBLASTX in shotgun metagenomic 

projects is to identify novel viruses in a reasonable time frame. Virus detection pipelines 

includes two major steps [22], the first being the identification of known viruses using 

nucleotide level searches and the second one being the identification of distantly related 

homologies and novel viruses by TBLASTX. The second step is particularly useful for 

viruses with high sequence diversity, such as those with ssDNA and ssRNA genomes. For 

example, some anellovirus isolates have been shown to have up to 60% divergence at the 

amino acid level within ORF 1 [38]. Thus, a comprehensive analysis of the viral component 

of the microbiome requires the ability to carry out rapid and relatively sensitive translated 

alignments against viral reference genomes. In cases like this TBLASTX is preferred over 

BLASTX because it enables us to query a more comprehensive set of sequences, increasing 

the sensitivity and accuracy of the results. TBLASTX is more sensitive for virus detection 

and discovery because it translates a set of nucleotide references into six protein frames 

before alignment, allowing metagenomic sequences to be compared to all possible protein 

coding sequences and not just those that are easily predicted or deposited in public databases 

like NR. Accuracy is improved because the best alignment from a more comprehensive 

database is reported. For example, remote similarities to viral proteins may be detected when 

using BLASTX to align to NR, but the same sequences may have stronger alignments to 

another reference (such as the human genome) that can be detected using TBLASTX to 

query a nucleotide database like NT. Thus, a comprehensive analysis of the viral component 

of the microbiome requires the ability to carry out rapid and relatively sensitive translated 

alignments against viral reference genomes. Despite these very significant advantages, 

TBLASTX is rarely used in practice because it requires such an immense CPU time 

requirement (usually at least 6 fold that of BLASTX) so to complete such searches in a 

reasonable time frame (Table 3) accelerated algorithms such as mTBLASTX are essential.

Finally, BLASTP acceleration has compelling applications in the annotation of large 

metagenomic assemblies. For example, in the HMP [39] assemblies were generated using an 

optimized SOAPdenovo [40] protocol with parameters designed to achieve an assembly 

containing sufficiently large contigs for downstream analyses such as gene and function 

prediction. Annotation of the resulting 41 million contigs resulted in a total of 66,551,726 

predicted peptide ORFs using MetageneMark [41]. Functional annotation of the ORF was 

done on primary amino acid sequence identity level using mBLASP against the UniRef100 

[26] within a small (<1/500) fraction of the time needed if BLASTP was used (Table 3).

Summary

In metagenomics, the number of queries that require protein BLAST searches against 

different databases continues to increase as sequencing technologies evolve, and the 

databases continue to grow. Advances in computer speed are no longer sufficient to keep 

pace with this growth, thus new and/or improved software tools must be developed. The 

approach and the improvements implemented in the mBLAST algorithms enabled more than 

Davis et al. Page 14

J Data Mining Genomics Proteomics. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a thousand fold speed up with only marginal loss in sensitivity, regaining BLAST 

algorithms as a workable tool for metagenomic analysis.

For future development, we believe that further software optimization yielding gains similar 

to those presented here will prove more and more challenging. Hardware-based solutions 

such as a version of BLAST optimized for Graphics Processor Units (GPUs) are another 

possibility. Although beyond the scope of this study, we also made preliminary 

investigations into using GPUs to accelerate an advanced seed finding step for BLAST. 

Seed finding is the dominant part of the BLAST search process, constituting approximately 

85% of the total time prior to the mBLAST optimizations. It was relatively straightforward 

to achieve a 10× speedup with the GPU (compared to CPU-only mBLASTX) using either 

NVIDIA or AMD GPUs for this step. However, with the increased speed over mBLAST, 

disk I/O became a bottleneck and only a net 1.4× was achieved in the complete execution. 

The GPU version of the algorithm was also evaluated on a GPU cluster housed at the 

University of Illinois (Lincoln, TERAGRID, [42]) resulting in the same 1.4× performance 

gain as on a stand-alone server with a local NVIDIA Tesla card (C1060, DELL)). With 

advanced SSD drives and additional optimizations targeting the I/O bottleneck, indicate that 

additional, significant speedup should be possible in a future implementation of mBLAST 

using GPUs (unpublished observations).

This study demonstrated that proven, legacy algorithms that have previously been highly 

optimized for different search scenarios can still be very substantially improved to meet the 

needs of newer sequencing technologies.
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NR NCBI’s non-redundant database

KEGG Kyoto Encyclopedia of Genes and Genomes.
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Figure 1. 
The processing steps in the mBLASTX workflow. The database is first indexed using the 

mHashGen module and these index files are used in the alignment process. The query files 

are reads (A) and matching seeds between the queries and subjects are identified (B). These 

matches are then extended to high scoring segment pairs (C). These extensions are evaluated 

(D) and only significant alignments are kept (E) and displayed in the output (F).
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Figure 2. 
Timing per BLAST phases and X-factor speed-up. The BLAST steps on the x-axis are 

defined as: read data (A), seed (B), extend (C), score extensions (D), filter low scoring 

alignments (E), output results (F),.
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Figure 3. 
Sensitivity of mBLAST compared to NCBI BLAST algorithms. (A) Distribution of queries 

for each of the three mBLAST programs against the respective BLAST program. Percentage 

of queries that are shared, or unique to either BLAST and mBLASTX are shown. (B) 
Increasing the top n hits of mBLAST algorithms increases the overall sensitivity against the 

BLAST algorithms.
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Figure 4. 
Sensitivity of mBLASTX using different threshold (T) value. (A) Percentages of missed hits 

at different combinations of word (W) and threshold (T) values compared to BLASTX at E-

value cut-off of 1e-05 are shown. (B) Percentages of missed hits at different combinations of 

word (W) and threshold (T) values compared to BLASTX at cut-off of cutoff of at least 23 

positives out of 33 amino acids are shown.
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Figure 5. 
The effect of varying the number of input sequences on the increase in speed of mBLAST. 

Higher number of input queries decreases the execute time per query until the speedup 

reaches a plateau at 1 million sequences.
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Figure 6. 
Metabolic profiling of HMP samples. (A) Distribution of KEGG metabolic modules among 

4 distinct body niches and (B) among 3 sites of the oral cavity. Only modules covered at 

90% and present in 90% of the samples are considered. The overall analysis is based on 624 

samples and the oral cavity analysis is based on 347 samples.
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Figure 7. 
Metagenomic shotgun reads from 20 blood plasma samples from febrile children were 

aligned to viral reference genomes at the nucleotide sequence level and compared to 

translated alignments generated using mBLASTX and mTBLASTX. (A) Translated 

alignments improve detection of ssDNA and ssRNA viruses in metagenomic samples. (B–
E) Examples from 4 plasma samples from febrile children and the detected Anelloviruses 

(ssDNA genomes), enteroviruses (+ssRNA genomes), erythroviruses (ssDNA genomes), 

and dependoviruses (ssDNA genomes). The numbers of viral sequences detected by each 

alignment method are shown.
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