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Abstract

Purpose—To develop an imaging tool that enables the detection of malignant tissue with 

enhanced specificity using the exquisite spatial resolution of MRI.

Methods—Two mammalian gene expression vectors were created for the expression of the 

lysine-rich protein (LRP) under the control of the cytomegalovirus (CMV) promoter and the 

progression elevated gene-3 promoter (PEG-3 promoter) for constitutive and tumor-specific 

expression of LRP, respectively. Using those vectors, stable cell lines of rat 9L glioma, 

9LCMV-LRP and 9LPEG-LRP, were established and tested for CEST contrast in vitro and in vivo.

Results—9LPEG-LRP cells showed increased CEST contrast compared with 9L cells in vitro. 

Both 9LCMV-LRP and 9LPEG-LRP cells were capable of generating tumors in the brains of mice, 

with a similar growth rate to tumors derived from wild-type 9L cells. An increase in CEST 

contrast was clearly visible in tumors derived from both 9LCMV-LRP and 9LPEG-LRP cells at 3.4 

ppm.
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Conclusion—The PEG-3 promoter:LRP system can be used as a cancer-specific, molecular-

genetic imaging reporter system in vivo. Because of the ubiquity of MR imaging in clinical 

practice, sensors of this class can be used to translate molecular-genetic imaging rapidly.
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INTRODUCTION

Molecular-genetic MRI uses reporter-imaging probe pairs that can generate MR contrast (1). 

The goal of molecular-genetic MRI is to leverage the superior three-dimensional spatial 

resolution of MRI to develop reporter-based, targeted MRI systems. Many reporters have 

been identified as candidate MR contrast-generating genes. Those include: the β-

galactosidase-Gd3+-containing galactopyranosyl ring reporter-probe pair for T1 contrast (2); 

the tyrosinase-paramagnetic iron pair for T2 contrast (3); the transferrin receptor-

monocrystalline iron oxide nanocompound pair for T2 contrast (4); the ferritin and 

endogenous iron pair for T2 contrast (5,6); the Mag A-iron pair for T2 contrast (7); and, the 

secreted alkaline phosphatase (SEAP)-phospho-rylated metalloporphyrin pair for T1 contrast 

(8). We have developed an artificial gene, the lysine-rich protein (LRP), as a reporter for 

chemical exchange saturation transfer (CEST) MRI (9). The LRP provides a high density of 

amide protons, which enables detection by MRI without requiring administration of a 

cognate probe. LRP-expressing tumors in the mouse brain have been imaged by CEST MRI 

(9).

For imaging reporter genes to be applied in a target-specific manner, they should either be 

delivered exclusively to their targets or expressed specifically within the target cells. The 

latter can be accomplished by using a target-selective promoter to drive the expression of a 

reporter following systemic delivery of a reporter plasmid. Many promoters of genes with 

elevated expression in human cancers have been examined as potential cancer-specific 

promoters, but most are active only in cancers of certain tissues of origin (10,11). The 

optimal promoters for cancer-specific, molecular-genetic imaging would be active in a 

variety of human cancers, while remaining minimally active or silent in normal tissues. We 

have identified a minimal promoter from a rodent gene, the progression elevated gene-3 

(PEG-3 promoter), through subtraction hybridization while searching for genes involved in 

malignant transformation and tumor progression (12). We found that the PEG-3 promoter 

behaves as a cancer-specific promoter as it is active in a variety of human cancers, including 

brain, prostate, breast, pancreatic, and skin cancers, with minimal activity in normal 

counterpart tissues (13–16). Tumor specificity of the PEG-3 promoter has been attributed to 

binding sites of two transcription factors, AP-1 and PEA-3 (or E1AF, the human homolog), 

which are reported to be overexpressed in human cancer cells (13). Systemic delivery of the 

PEG-3 promoter-reporter plasmid followed by imaging with bioluminescence or single 

photon emission computed tomography (SPECT) enabled detection of micrometastases in 

experimental models of human breast cancer and melanoma (17). However, 

bioluminescence imaging cannot extend beyond preclinical models and SPECT is fraught 
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with relatively low spatial resolution. Accordingly we turned to MRI with the PEG-3 

promoter to drive production of LRP in a cancer-specific manner with the high spatial 

resolution of this modality.

The LRP is based on CEST, a relatively new MR contrast mechanism (18–20). CEST allows 

detection of bioorganic molecules, such as proteins (21,22), polysaccharides (23,24), 

metabolites (25–27), enzyme substrates (28–31) as well as injectable compounds (32) due to 

the exchange of MR-saturable, labile protons in these molecules with those of water. Here, 

we present a molecular-genetic imaging approach to detect tumor-specific gene expression 

in an animal model of glioma by using the MR reporter gene LRP and CEST MRI. The LRP 

was expressed under control of the tumor-specific PEG-3 promoter in rat 9L glioma cells 

(9LPEG-LRP). 9LPEG-LRP cells transplanted to a mouse brain showed higher CEST contrast 

compared with that from similarly transplanted wild-type cells. Our results demonstrate the 

feasibility of using a CEST-based reporter gene under a tumor-specific promoter for 

detection of tumors in vivo with MRI.

METHODS

In Vitro Assessment of PEG-Promoter Activity

The dual-luciferase assay was carried out to measure promoter activities in rat 9L glioma 

cells. 9L cells were grown in RPMI 1640 supplemented with 10% fetal bovine serum and 1× 

penicillin and streptomycin in a humidified incubator (37°C, 5% CO2). 9L cells were seeded 

in 24-well plates (1 × 105 cells per well). Forty-eight hours later, cells were transiently 

transfected with the following combination of plasmids using jetPRIME® according to the 

manufacturer's instructions (Polyplus-Transfection Inc., Illkirch, France); (i) pPEG-Luc (17) 

+ pGL4.74 (Promega, Madison, WI), (ii) pCMV-Tri (17) + pGL4.74, and (iii) pGL3-basic 

(Promega, Madison WI) + pGL4.74 with a 10:1 ratio for each preparation. pPEG-Luc 

possess PEG-3 promoter driven firefly luciferase (fLuc), pCMV-Tri has CMV promoter 

driven fLuc, and pGL3-basic plasmid has no promoter, serving as a promoterless control. 

pGL4.74 plasmid expresses Renilla luciferase (rLuc) to normalized the transfection 

efficiency. At 48 h post-transfection, fLuc activity was measured using the Dual-

Luciferase® Reporter Assay System (Promega). The fLuc activity was normalized to rLuc 

activity and total protein amount measured by the Coomasie® protein assay reagent kit 

(Pierce Biotechnology, Rockford, IL).

Cloning of the Expression Constructs

The pMONO-neo-mcs vector was purchased from InvivoGen (San Diego, CA) and the 

ferritin heavy chain core promoter was replaced with the PEG-3 promoter to create pPEG-

neo-mcs. Lysine-rich protein (LRP), which consists of four repeats of 

‘MGKKKKKKKKKKKKKKKKKKKKKKKKGS’ and a V5 tag, was amplified by 

polymerase chain reaction (PCR) using pLRP101 (9) as a template and inserted into pPEG-

neo-msc and pCEP4 (Life Technologies, Carlsbad, CA) to create pPEG-LRP and pCMV-

LRP, respectively. The sequence of the vector was confirmed (MacrogenUSA, Rockville, 

MD). Primers used for PCR were as follows: PEG-3 Promoter for pPEG-neo-msc (Forward: 

CAGAACTAGTAGAAAGAGAAAGAGAATGGGAC; Reverse: AAC 
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AGGATCCGTCCGGTTCGGTTTGC CAAAAGCG), LRP for pPEG-LRP (Forward: 

CTAAATCG ATCCATCATTTGTACAAAAAAGCAGGCTCCG; Reverse: 

AGCACCTAGGTTACTAACCGGTACGCGTAGAATCGAG), LRP for pCMV-LRP 

(Forward: CAGTAAGCTTCCATCAT TTGTACAAAAAAGCAGGCTCCG; Reverse: 

CACAATCTC GAGTTAC TAACCGGTACGCGTAGAATCGAG).

Establishing a Stable Cell Line Expressing pPEG-LRP and pCMV-LRP

9L cells were transfected separately with pPEG-LRP and pCMV-LRP using Lipofectamine 

2000 (Life Technologies, Carlsbad, CA) according to the manufacturer's instructions. 

9LPEG-LRP and 9LCMV-LRP were selected by maintaining cells after the transfection in 

growth medium containing 1 mg/mL of G-418 (Life Technologies, Carlsbad, CA) and 100 

μg/mL of Hygromycin B (Corning Cell-gro, Manassas, VA), respectively.

In Vitro CEST MRI

In vitro CEST MRI experiments were performed as previously described (33,34) with the 

following modifications. In brief, 1 × 107 cells were placed in a 5 mm NMR tube (three 

tubes from three separate preparations, for each cell type, 9L or 9LPEG-LRP) and placed 

within a vertical-bore 11.7T Bruker Avance system (Bruker Biosciences Corp., Billerica, 

MA) at 37°C. A modified RARE (repetition time/echo time [TR/TE] = 5000/20 ms, RARE 

factor = 8, 1 mm slice thickness, field of view (FOV) = 1.7 × 1.7 cm, matrix size = 128 × 64, 

resolution = 0.17 × 0.34 mm, and NA = 2) sequence, including a magnetization transfer 

(MT) module (B1 = 3.6 μT/3000 ms) was used to acquire CEST weighted images from −4.4 

ppm to +4.4 ppm (step = 0.2 ppm) around the water resonance (0 ppm). For B0 shift 

correction of each pixel in the CEST image, the absolute water resonant frequency shift was 

measured using a modified Water Saturation Shift Reference (WASSR) method (35), using 

the same parameters as in CEST imaging except TR = 1500 ms, saturation pulse of 500 ms, 

B1 = 0.5 μT and a sweep range from −1 ppm to 1 ppm (step = 0.1 ppm).

Animal Model

NOD/SCID/IL2rγnull (NSG) mice were purchased from the Animal Resource Core of the 

Sidney Kimmel Comprehensive Cancer Center of Johns Hopkins. Mice were anaesthetized 

by inhaling 1.5% isoflurane/oxygen gas. Small holes were made on the skull at 2 mm lateral 

to the bregma. 2 × 105 cells in 2 μL of media were directly injected into the striatum 3 mm 

deep from the skull using a 24 gauge Hamilton syringe over 5 min. Animal experiments 

were performed in accordance with protocols approved by Johns Hopkins Animal Care and 

Use Committee (ACUC).

In Vivo CEST MRI

Mice with bilateral tumors within striatum (9L and 9LPEG-LRP, n = 8) and (9L and 

9LCMV-LRP, n = 1) were used. Data were acquired using a horizontal-bore 11.7 Tesla (T) 

MRI scanner (Bruker Biospec) equipped with a circular polarized MRI transceiver coil (ID 

= 23 mm). Seven days after cell transplantation, mice were anesthetized with 1.5% 

isoflurane and CEST data were obtained as previously described (33,36), and with the 

following parameters: A single 1 mm slice with FOV of 1.6 × 1.6 cm2 and a 96 × 48 matrix 
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were used, resulting in an in-plane resolution of 0.167 × 0.333 mm. CEST-weighted images 

were acquired with a modified RARE pulse sequence (TR/TE = 6000/35 ms), using a 3.6 

μT/3000 ms saturation pulse from −4.2 to +4.2 ppm (0.2 ppm steps) around the water 

resonance, which was assigned to be at 0 ppm (total experimental time of 41 min). Pixel-

based B0 correction was used as described before (35) using the same parameters as above 

except for TR = 1500 ms, B1/tsat = 0.5 μT/500 ms, with a sweep range from −1 to +1 ppm 

(0.1 ppm steps). Mean CEST spectra (Z-spectra) were plotted from a region of interest 

(ROI) for each tumor and normal brain tissue, after B0 correction.

CEST Data Processing

Data processing was performed using custom-written scripts in Matlab as described earlier 

(33). Mean Z-spectra were used from a ROI for each sample, after B0 correction for each 

voxel. MTRasym = 100 × (S-Δω – SΔω)/S0 was computed at different offsets, Δω. To remove 

magnetization transfer effects, ΔMTRasym was defined as [MTRasym (tumor)] – [MTRasym 

(normal brain tissue)], as previously described (37).

Statistical Analyses

Because a series of frequencies was applied to the same sample in the in vitro CEST MRI, 

the generalized estimating equation (GEE) approach (38) was used to take into account the 

correlations across the frequencies when we compared the CEST contrast in 9L and 

9LPEG-LRP cells, and P values of the score test were reported. The GEE method was also 

applied to the comparisons in the in vivo CEST MRI study to account for the correlations 

arising from the fact that paired data of 9L and 9LPEG-LRP cells were collected from the 

same mouse and each was measured with a series of frequencies. All the tests were two-

sided. The analysis was performed using software SAS (version 9.4, Cary, NC)

RESULTS

We first examined whether the PEG-3 promoter was active in the 9L cell line. After 

transient transfection of 9L cells with pGL3-basic (no promoter control), pPEG-Luc (17), 

and pCMV-Tri (17), we measured fLuc activity driven by each promoter. The PEG-3 

promoter showed activity comparable to one third of that of the CMV promoter in 9L cells 

(Fig. 1).

To develop cell lines that stably express LRP, we created two mammalian expression 

vectors for constitutive (pCMV-LRP) and tumor-specific (pPEG-LRP) gene expression. The 

pCMV-LRP construct was equipped with the CMV promoter and the hygromycin B 

resistance gene. The pPEG-LRP construct was equipped with the tumor-specific PEG-3 

promoter and the neomycin resistance gene. To enhance the relatively weak activity of the 

PEG-3 promoter compared with the CMV promoter (Fig. 1), an SV40 enhancer and an 

SV40 polyadenylation site were inserted upstream and downstream of the PEG-3 

promoter:LRP construct, respectively. After transfecting rat 9L glioma cells with those 

vectors, we selected cells expressing LRP by maintaining them in media containing 

hygromycin B and G418 and used surviving cells (9LCMV-LRP and 9LPEG-LRP) for further 

study. We performed in vitro CEST MRI to test whether the LRP expressing cells generated 
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CEST contrast. 9LPEG-LRP cells showed increased CEST contrast compared with 9L cells at 

3.3–3.9 ppm, the frequency at which the original LRP generated contrast (9) (Fig. 2).

We then developed murine glioma models to test LRP in vivo. 9L, 9LCMV-LRP, and 

9LPEG-LRP cells were capable of forming tumors in the brains of immunocompromised NSG 

mice, as shown by T2-weighed MRI (Figs. 3a,c). An increase in CEST contrast was visible 

in tumors derived from both 9LCMV-LRP and 9LPEG-LRP cells compared with wild-type 9L 

tumors, as shown in Figs. 3b,d. We imaged a total of eight mice harboring 9L (left) and 

9LPEG-LRP (right) in the brain. The average CEST contrast, i.e., ΔMTRasym value, was 

significantly higher (P < 0.01; n = 8) for tumors derived from cells expressing LRP than 

from the wild-type 9L tumors at 3.4 ppm (Figs. 3e,f). These results demonstrate that a CEST 

reporter gene can be expressed in vivo in a tumor-specific manner and can be used as a 

tumor-specific biomarker for MR applications.

DISCUSSION

In this preclinical study, we present proof-of-principle for cancer-specific CEST MRI using 

reporter-based, molecular-genetic imaging. Many reporter genes that produce MR contrast 

for imaging have been identified and have shown promising characteristics for MR-based 

molecular-genetic imaging (10,39,40). To apply those reporters to the clinic, they should be 

selectively expressed in target cells, namely, cancer. Targeted delivery and selective 

transfection of reporter plasmid is a challenging task, especially for small or micrometastatic 

lesions. Using a target-specific promoter to control the expression of a reporter at the target 

is an alternative approach, which we have chosen. The optimal promoter for cancer-specific 

imaging would be robustly active in a wide variety of human cancers, while remaining 

inactive or minimally active in normal tissue. We leveraged the well-studied, cancer-specific 

PEG-3 promoter to drive the expression of the synthetic CEST probe, LRP. We have shown 

that the PEG-3 promoter is active in all human cancer types tested and is minimally active in 

the corresponding normal tissues (8,9,12). Because the PEG-3 promoter originated from a 

rodent genome, and humans do not have the orthologous gene, there is very little possibility 

of unwanted chromosomal insertion through homologous recombination. In addition, the 

relatively small size of the PEG-3 promoter (465 base pairs) will be an advantage for 

designing smaller imaging vectors for improved transfection efficiency (41).

The LRP does not require additional administration of the probe because the amide protons 

from the lysine residue are the source of CEST contrast. PEG-3 promoter-driven LRP 

expression with the SV40 enhancer in animal models of glioma was sufficient to generate 

detectable CEST contrast.

We designed the pPEG-LRP vector to be suitable for systemic delivery and clinical 

translation. The vector has the clinically compatible kanamycin resistance marker for the 

production of the plasmid (42). Additionally, the pPEG-LRP has a small size of 3575 base 

pairs, which can enable enhanced transfection efficiency (41). The present study 

demonstrated limited CEST contrast from LRP, potentially due to weak promoter activity of 

tumor-specific PEG-3 promoter. Further modifications of the small pPEG-LRP plasmid to 

augment the expression of LRP would enhance the sensitivity of detection. For example, a 
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two-step transcriptional amplification system can be introduced to increase the number of 

LRP molecules expressed (11,43). Adding scaffold/matrix attachment regions (S/MARs) to 

the plasmid will enable prolonged maintenance of the plasmid, resulting in accumulation of 

LRP within the transfected cancer cells. Also, using longer LRP would enhance CEST 

contrast. Indeed, CEST imaging using traditional pulse sequences, as in this study, is limited 

by low sensitivity, manifested by only a few percent change in contrast, especially for 

biological samples. This is also true for the LRP. As shown above, only a small yet 

significant (P < 0.01) change was observed. In a similar case, where LRP was used to 

monitor Oncolytic Virotherapy (44), a significant change was detected; however, it was on 

the same order of magnitude as described here. Nevertheless, CEST is an evolving field of 

MRI and new techniques that can improve the sensitivity are constantly under development, 

including methods for isolating the CEST signal from rapidly exchanging protons such as 

through length and offset varied saturation (LOVRS) (45), frequency-labeled exchange 

(FLEX) (46) as well as through separation of the contrast from endogenous contrast from 

proteins or magnetization transfer contrasts (47).

The PEG-3 promoter:LRP system enabled cancer-specific imaging using CEST MR in vivo 

in the rat 9L glioma model. Efforts to extend those findings to experimental models of 

human cancer in the periphery, with a focus on systemic delivery of the plasmid to detect 

metastatic disease, are under way.
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FIG. 1. 
a–e: Schematic diagram of the plasmids used. Promoter-less pGL3-basic (a), pPEG-fLuc 

(b), pCMV-Tri (showing only the fLuc expression cassette) (c), pCMV-LRP (d), and pPEG-

LRP (e). f: PEG-3 promoter is active in the rat 9L glioma cell line. Relative activities of 

PEG-3 promoter and CMV promoter in 9L cells were measured by the dual luciferase assay 

after transient transfection. Firefly luciferase activity was normalized to that of renilla 

luciferase and to total protein. Error bars represent standard deviation, n = 3. fLuc: firefly 

luciferase, V5: V5 tag.
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FIG. 2. 
9L cells overexpressing LRP generate CEST contrast in vitro. Rat 9L glioma cells stably 

expressing PEG-prom-driven LRP were generated to provide 9LPEG-LRP. a: In vitro CEST 

contrast in 9L vs. 9LPEG-LRP cells. b: The generalized estimating equation (GEE) approach 

demonstrated a difference in CEST contrast between wild-type and gene-tagged cells at 3.7 

ppm, n = 3.
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FIG. 3. 
PEG-3 promoter:LRP exhibited CEST contrast in a murine model of rat 9L glioma. 

Representative T2-weighted (a,c) and CEST images superimposed on T2-weighted images 

(b,d). The left hemisphere harbors the gene-tagged 9L tumor, namely, CMV-LRP in (a) and 

(b) and PEG-LRP in (c) and (d), while the right hemisphere has a tumor derived from 

implantation of wild-type 9L cells. Note that PEG-LRP enables CEST imaging due to the 

activation of PEG-3 promoter by transcription factors present in the 9L tumor cells. 

Temporal changes in the ΔMTRasym values of each tumor type (e). The generalized 

estimating equation (GEE) approach demonstrated difference in CEST contrast at 3.4 ppm 

between tumors derived from wild-type (9L) and gene-tagged (9LPEG-LRP) cells (f). The 

scale in (b and d) is of MTRasym and in (e) the scale is of ΔMTRasym. Mean ± standard 

deviation; n = 8.
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