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A new measure for quantifying diagnostic information from a multilead electrocardiogram (MECG) is proposed. This diagnostic measure is
based on principal component (PC) multivariate multiscale sample entropy (PMMSE). The PC analysis is used to reduce the dimension of the
MECG data matrix. The multivariate multiscale sample entropy is evaluated over the PC matrix. The PMMSE values along each scale are used
as a diagnostic feature vector. The performance of the proposed measure is evaluated using a least square support vector machine classifier for
detection and classification of normal (healthy control) and different cardiovascular diseases such as cardiomyopathy, cardiac dysrhythmia,
hypertrophy and myocardial infarction. The results show that the cardiac diseases are successfully detected and classified with an average
accuracy of 90.34%. Comparison with some of the recently published methods shows improved performance of the proposed measure of
cardiac disease classification.
Figure 1 Block diagram for classification of cardiac ailments from MECG
1. Introduction: Cardiac ailments are among the major causes of
death in the world, as per the World Health Organization’s
estimation [1]. Multilead electrocardiogram (MECG) is used as a
standard tool for the diagnosis of cardiovascular diseases.
Different types of diseases such as bundle branch block,
cardiomyopathy (CM), hypertrophy (HT), cardiac dysrhythmia
(DT), myocardial infarction (MI) and valvular disease [2] are
diagnosed by MECGs. Digital signal processing plays an
important role in quantifying the diagnostic information from an
electrocardiogram (ECG) signal. There are a number of methods
reported in the literature for measuring diagnostic information
from ECG signals [3–6]. These methods use a single lead ECG.
However, cardiologists use MECGs for accurate assessment and
localisation of pathologies [2]. For computer aided diagnosis, it is
beneficial to use MECGs for estimation of diagnostic information.

In this Letter, we propose a new measure for quantifying diagnos-
tic information fromMECGs. This measure is aimed at detection and
classification of normal (healthy control, HC) and cardiac ailments
such as CM, HT, DT and MI. The proposed measure is based on
the principal component (PC) multivariate multiscale sample
entropy (PMMSE). The MECG data are subjected to PC analysis
(PCA). In the PCA domain, the first few PCs capture the significant
clinical components of the MECG. The multivariate multiscale
sample entropy (MMSE) is evaluated over the reduced PC matrix.
The performance of PMMSE features is evaluated using least
square support vector machine (LS-SVM) classifier. The rest of
this Letter is organised as follows. In Section 2, the proposed
PMMSE diagnostic measure is described. The results and discussions
are presented in Section 3 and in Section 4, conclusions are drawn.

2. Method: Fig. 1 depicts a block diagram of the proposed method.
The block diagram comprises of three stages. These are
pre-processing and frame-based segmentation, PMMSE evaluation
and classification using LS-SVM. A detailed description of each of
the stages is given in the following subsections.

2.1. Pre-processing: An MECG contains different types of noises
[7]. First, these noises are filtered out [8]. Then, the Pan and
Tompkin algorithm is used for detection of the QRS-complexes
[9]. After the R-point detection, the MECG signals are divided into
frames of 4 s duration each, which correspond to approximately four
beats. MECGs have three types of correlations. These are
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inter-lead, intra-beat and intra-sample correlations [10]. The
inter-lead correlation corresponds to the correlation between leads
in the MECG. The inter-sample correlation corresponds to the
correlation between samples along each lead. Similarly, the
intra-beat correlation is the correlation between the rhythms or
RR-intervals. The beat-by-beat segmentation of the MECG can
reveal the inter-sample and the inter-lead correlations. The DT
(sinus arrhythmia, premature ventricular ectopic beats, supra
ventricular arrhythmia and ventricular arrhythmia), HT
(supra-ventricular and ventricular HT), bundle branch block and
acute myocardial ischaemia pathologies are diagnosed from
intra-beat or RR-interval variations in ECGs [11, 12]. To exploit
intra-beat correlation, frame-based processing is needed.

2.2. Proposed PMMSE diagnostic measure: PCA is an
unsupervised learning method used in filtering [13], compression
[8], feature extraction [14] and dimension reduction [15]. The
PCA of MECG is defined by B = XV. The atoms (columns) of
matrix B are the PCs and X is the MECG data matrix. The size
of the MECG data matrix is n ×m, where n and m are the
number of samples and number of channels, respectively. The
eigen matrix V transforms the MECG data matrix into PC
domain. The first six PCs contain significant diagnostic
information [8]. The MMSE has recently been proposed to
measure the regularity in multichannel time-series data [16]. In
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Figure 2 Selection of training and testing instances from each class using 5-fold cross-validation scheme
this work, the MMSE is evaluated over the reduced PC matrix (B).
The algorithm for evaluation of PMMSE is given below:

† The reduced PC matrix B is obtained by applying PCA of MECG
data. The matrix B is defined by [(bq,k )

n
k=1], where q = 1, 2, ..., 6

represents the number of PCs and n is the length of each PC.
† A coarse grained PC multivariate data matrix Y e

j = yeq,j is evalu-
ated from beq,k . The y

e
q,j is defined by

yeq,j =
∑ je

k=(j−1)e+1 bq,k
e

(1)

where 1 ≤ j ≤ (n/e), ε represents the scales (label of decomposition).
† The PMMSE is defined as the multivariate sample entropy of the
coarse grained PC multivariate data matrix Y e

j at a scale of ε. The
number of scales (decomposition labels) varies from ε = 1 to ε = 20.

The multivariate sample entropy is evaluated using composite
delay, embedding and time-lag vectors [16]. The composite delay
vector for q variate time-series data [(yq,j)

n
j=1] is given by

ym(j) = [y(1,j), y(1,j+t), . . . , y(1,j+(m1−1)t)

y(2,j), y(2,j+t), . . . , y(2,j+(m2−1)t)

y(q,j), y(q,j+t), . . . , y(q,j+(mq−1)t)] (2)
Figure 3 PCs PC1, PC2, PC3, PC4, PC5, PC6 for HC, CM, HT, MI and DT M
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The embedding and time lag vectors are given by m = [m1, m2, ...,
mq] and t = [t1, t2, ..., tq]. The composite delay vector ym( j)∈
Rm contains ‘m’ elements with m = ∑q

j=1 mj. The multivariate
sample entropy is evaluated in five steps as

(i) the (n–p) number of composite delay vectors are computed.
Each composite delay vector is in the form of ym( j)∈ Rm

with ( j = 1, 2,..., n− p). The value of ‘p’ is given by p =
max(m) × max(t);

(ii) the distance between the jth and the kth composite vectors is
given as

D[ym(j), ym(k)] = max l=1,2,...,m x(j + l − 1)− x(k + l − 1)
∣∣ ∣∣

(3)

(iii) then, the total number of distances for the jth composite delay
vector is evaluated with respect to a certain condition. This
condition is given as D[ym( j), ym(k)]≤ r, j≠ k. where r is a
threshold value. The total number of distances for the jth com-
posite delay vector is denoted as dj;

(iv) the frequency of occurrence is given as
Bm
j (r) = (1/(n− p− 1))dj. Then, the Bm(r) value is given as

Bm(r) = (1/q(n− p))
∑q(n−p)

i=1 Bm
j (r);
ECG frames
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Figure 4 Probability density plots of first ten PMMSE features for CM, HT, MI, DT and HC subjects
(v) similarly, the Bm+1(r) is evaluated by extending the dimension
of composite delay vector to (m + 1). Then, the multivariate
sample entropy is given by

e(m, t, r, n) = − ln
Bm+1(r)

Bm(r)

[ ]
(4)
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2.3. Classification using LS-SVM: The 20-dimensional
PMMSE-based feature vector from normal as well as pathological
MECG frames is used as an input to multiclass LS-SVM
classifier. The LS-SVM classifier detects and classifies different
cardiac ailments. In this work, the HC, HT, MI, DT and CM are
five different classes. LS-SVM is based on the least square
Healthcare Technology Letters, 2014, Vol. 1, Iss. 4, pp. 98–103
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Table 1 Mean and standard deviation values of first ten PMMSE features

Classes Parameters F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

HC μ 0.2551 0.2497 0.2464 0.2445 0.2435 0.2434 0.2429 0.2424 0.2426 0.2429
HC σ 0.0750 0.0754 0.0758 0.0763 0.0765 0.0768 0.0773 0.0775 0.0780 0.0789

CM μ 0.3360 0.3329 0.3309 0.3293 0.3281 0.3273 0.3268 0.3260 0.3257 0.3257
CM σ 0.1278 0.1284 0.1281 0.1272 0.1255 0.1242 0.1232 0.1216 0.1211 0.1204

MI μ 0.3351 0.3294 0.3253 0.3228 0.3217 0.3208 0.3199 0.3185 0.3181 0.3173
MI σ 0.0908 0.0930 0.0948 0.0958 0.0966 0.0969 0.0984 0.0990 0.0995 0.1006

DT μ 0.2808 0.2765 0.2739 0.2723 0.2715 0.2710 0.2708 0.2706 0.2704 0.2710
DT σ 0.0890 0.0901 0.0911 0.0921 0.0932 0.0945 0.0960 0.0971 0.0983 0.1005

HT μ 0.2937 0.2889 0.2861 0.2845 0.2837 0.2834 0.2833 0.2838 0.2835 0.2842
HT σ 0.0629 0.0634 0.0638 0.0645 0.0652 0.0660 0.0666 0.0681 0.0682 0.0683
conceptualisation of the support vector machine (SVM) [17]. It is
widely used in applications such as function estimation [18] and
electroencephalography time-series classification [19]. In this
work, the LS-SVM with polynomial (poly) and radial basis
function (RBF) kernels is used. For selecting training and testing
instances, the 5-fold-based cross-validation technique is used [5].
Fig. 2 depicts the selection of training and testing instances of
each class. In each fold, 4/5th of the instances are used for
training. For testing, the remaining 1/5th are used. The accuracy
values along each fold are evaluated. The total accuracy of the
LS-SVM classifier is the average of accuracy value along each fold.

3. Result and discussion: For testing of the proposed method, a
publicly available database (PTB diagnostic ECG database) is
used [20]. This database comprises of both normal and
pathological MECG signals with 15 leads, 1000 Hz sampling
frequency and 16 bit resolution. In this work, we have used 16,
15, 11, 7 and 16 pathological MECG signals such as MI, CM,
DT, HT and HC. The lead I, II, III, aVR, aVL, aVF, V1, V2, V3,
V4, V5 and V6 ECG signals are used. The MECG signals are
subjected to pre-processing and frame-based segmentation. After
segmentation, PCA is applied to each MECG frame. The signals
for the different PCs of CM, DT, MI and HT pathological and
HC MECGs are shown in Fig. 3. It is observed that the signal
characteristics from the same PC are different for the pathologies
and HC. The variations in signal characteristics along each PC,
Table 2 Individual class accuracy values for LS-SVM classifier with
polynomial kernel and ‘One VS One’ multiclass coding technique

Classes Fold1, % Fold2, % Fold3, % Fold4, % Fold5, %

HC 83.75 88.12 86.25 89.37 90.62
CM 75.55 85.18 86.66 85.18 78.51
MI 88.88 93.05 90.27 88.88 88.88
DT 82.82 76.77 78.80 70.70 73.71
HT 65.07 85.71 79.36 57.14 68.25

Table 3 Individual class accuracy values for LS-SVM classifier with RBF
kernel and ‘One VS One’ multiclass coding technique

Classes Fold1, % Fold2, % Fold3, % Fold4, % Fold5, %

HC 87.87 86.25 81.87 85.62 89.37
CM 58.51 78.51 73.33 76.29 82.22
MI 88.19 88.88 82.63 84.72 84.72
DT 86.86 86.86 85.84 81.80 85.84
HT 69.84 84.12 90.47 85.71 88.88
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depending on the pathology, are highlighted and shown in
Figs. 3a–e. The signals vary across the different PCs for the same
pathology. These characteristics can be used for detection and
classification of pathologies.

Fig. 4 depicts the probability density plot of the first ten PMMSE
features for normal and pathological MECG frames. It is evident
that the peaks in the probability density plot are different for patho-
logical and normal cases. The mean and standard deviation values
for the first ten PMMSE features are shown in Table 1. It is
observed that the mean and standard deviation of PMMSE features
are highest for the CM pathology-based MECG frames. Due to CM
pathology, the heart muscle enlarges and, as a result, pumping of
blood in the heart decreases [2]. The irregular heartbeats generated
in ECGs are due to the consequential CM. As the PMMSE captures
the irregularity along each of the PCs, the PMMSE value along each
scale shows a higher standard deviation value than that of HC and
other pathologies. The standard deviation of PMMSE features in the
case of HT is less than in other pathologies. The PMMSE features
for the HC class have the lowest mean value compared to those of
the MI, CM, HT and DT classes. From these results it can be con-
cluded that the PMMSE features extracted from the PCs will
capture the diagnostic information that can differentiate between
cardiac diseases.

In this work, 63 HT, 144 MI, 135 CM, 99 DT and 140 HC
MECG frames are extracted. The PMMSE features from each
MECG frame are computed. The performance of PMMSE
Table 5 Individual class accuracy values for LS-SVM classifier with RBF
kernel and ‘One VS All’ multiclass coding technique

Classes Fold1, % Fold2, % Fold3, % Fold4, % Fold5, %

HC 88.58 92.82 85.53 93.85 86.19
CM 92.31 91.58 95.38 91.17 94.72
MI 95.83 94.20 94.20 92.25 93.28
DT 91.25 88.17 90.90 90.53 89.61
HT 88.47 84.64 83.15 84.64 85.57

Table 4 Individual class accuracy values for LS-SVM classifier with
polynomial kernel and ‘One VS All’ multiclass coding technique

Classes Fold1, % Fold2, % Fold3, % Fold4, % Fold5, %

HC 88.12 92.5 85.00 93.75 82.5
CM 91.85 90.37 96.29 90.37 94.81
MI 94.67 93.75 93.75 91.66 94.67
DT 90.90 87.87 89.89 90.90 90.90
HT 87.30 84.12 82.53 82.53 88.88
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Table 6 Accuracy values for LS-SVM classifiers along each fold

Classifiers Coding scheme Fold1, % Fold2, % Fold3, % Fold4, % Fold5, %

LSSVM-Poly One VS One 79.21 85.76 84.26 78.25 80.00
LSSVM-RBF One VS One 78.25 84.92 82.82 82.82 86.20
LSSVM-Poly One VS All 89.80 89.72 89.49 89.84 90.18
LSSVM-RBF One VS All 91.28 90.26 89.83 90.48 89.87
diagnostic features are evaluated using a multiclass LS-SVM clas-
sifier. Two different multiclass coding techniques are used. These
are ‘One VS One’ and ‘One VS All’. The training and testing
instances or frames are chosen on the basis of 5-fold cross-
validation. Table 2 shows individual class accuracy values of
LS-SVM classifier with polynomial kernel and ‘One VS One’ mul-
ticlass coding technique. For the MI class, detection accuracy
values are 88.88, 93.05, 90.27, 88.88 and 88.88% in Fold1,
Fold2, Fold3, Fold4 and Fold5, respectively. Similarly, for the
HC class, accuracy values are 83.75, 88.12, 86.25, 89.37 and
90.62%. The detection accuracy for the HT class is lower than
for other pathological cases along each fold. The individual class
accuracy values of LS-SVM classifier with RBF kernel and ‘One
VS One’ multiclass coding method is shown in Table 3. It has
been observed that accuracy values for LS-SVM classifier with
RBF kernel are higher than those of polynomial kernel-based
LS-SVM, for the ‘One VS One’ multiclass coding technique.

The individual class accuracy values of polynomial and RBF
kernel-based LS-SVM classifier with the ‘One VS All’ multiclass
coding method are shown in Tables 4 and 5. It is seen that both
polynomial and RBF kernel LS-SVM with ‘One VS All’ multiclass
coding scheme have higher accuracy values than in previous cases.
The accuracy values of LS-SVM classifier with polynomial and
RBF kernel and different multiclass coding methods are shown in
Table 6. It is observed that the RBF kernel LS-SVM with ‘One
VS All’ multiclass coding technique has higher accuracy values
of 91.28, 90.26, 89.83, 90.48 and 89.87% along Fold1, Fold2,
Fold3 and Fold4; the polynomial kernel LS-SVM has higher accur-
acy at Fold5 than that of RBF kernel LS-SVM. The average accur-
acy of RBF kernel LS-SVM classifier with ‘One VS All’ multiclass
coding approach is found to be 90.34%. This value is higher than
RBF as well as polynomial kernel LS-SVM with ‘One VS One’
multiclass coding scheme. It can be concluded that the ‘One VS
All’ multiclass coding approach-based LS-SVM detects and classi-
fies the cardiac diseases effectively from the PMMSE features.

The performance of the proposed PMMSE measure is compared
with vector cardiography-based disease detection methods.

Dehnavi et al. [21] proposed a method for the detection and clas-
sification of myocardial ischaemia using the neural network. They
have used independent component analysis and PCA to extract fea-
tures from vectorcardiogram (VCG) signals. An accuracy of 73% is
found using the neural network. Eriksson et al. [22] proposed a
method for the detection and classification of acute MI and
bundle branch block. They have used QRS-complex and
ST-segment shape magnitudes as features. A detection accuracy
of 71 and 77% has been found for bundle branch block and MI
cardiac ailments, respectively. Multiscale recurrence quantification
analysis from VCG signals has been proposed [23] for classification
of MI and HC subjects. Discrete wavelet transform is used to seg-
regate the clinical components of VCG into different scales. The re-
currence quantification analysis is performed over each sub-band to
extract various features. The quadratic discriminant analysis, linear
discriminant analysis and K-nearest neighbour classifiers are used
for detection of MI. Individual class detection accuracy (sensitivity
and specificity) values of 75 and 96.5% have been found for HC
and MI classes, respectively. The performance of the proposed
PMMSE measure with LS-SVM classifier has the highest accuracy
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value of 89.39, 93.03, 93.95, 90.09 and 85.29% for HC, CM, MI,
DT and HT, respectively. This shows that the proposed PMMSE
measure with LS-SVM classifier has a better performance than
other methods.
4. Conclusion: In this Letter, a new measure for quantifying
diagnostic information from MECG is proposed. The measure is
defined as the principal component multivariate multiscale sample
entropy (PMMSE). PMMSE values along different scales are
used as the diagnostic feature vector for the detection and
classification of different cardiovascular diseases such as CM,
CT, MI and HT. An average accuracy of 90.34% is found using
the LS-SVM classifier with RBF kernel function and ‘One VS
All’ multiclass coding technique. Comparison with existing
methods shows that the proposed PMMSE measure with
LS-SVM classifier has a better performance.
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