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A gene-based information gain method for detecting
gene–gene interactions in case–control studies

Jin Li1,2,3,5, Dongli Huang1,5, Maozu Guo*,1, Xiaoyan Liu1, Chunyu Wang1, Zhixia Teng1, Ruijie Zhang3,
Yongshuai Jiang3, Hongchao Lv3 and Limei Wang*,3,4

Currently, most methods for detecting gene–gene interactions (GGIs) in genome-wide association studies are divided into

SNP-based methods and gene-based methods. Generally, the gene-based methods can be more powerful than SNP-based

methods. Some gene-based entropy methods can only capture the linear relationship between genes. We therefore proposed a

nonparametric gene-based information gain method (GBIGM) that can capture both linear relationship and nonlinear correlation

between genes. Through simulation with different odds ratio, sample size and prevalence rate, GBIGM was shown to be valid

and more powerful than classic KCCU method and SNP-based entropy method. In the analysis of data from 17 genes on

rheumatoid arthritis, GBIGM was more effective than the other two methods as it obtains fewer significant results, which was

important for biological verification. Therefore, GBIGM is a suitable and powerful tool for detecting GGIs in case–control studies.
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INTRODUCTION

Genome-wide association studies (GWAS) have rapidly become a
popular and powerful tool for human disease-associated gene
discovery.1 Many single-SNP-based GWAS methods have emerged
for several years.1,2 However, due to the huge number of human
genome SNPs (hundreds of thousands or millions in a test), the
statistical power and efficiency of these methods are limited.3 In
addition, human complex diseases are generally caused by the
combined effect of multiple genes, and a single SNP is difficult to
explain the pathogenesis of diseases.4,5 The detection of interactions
between genes is important to gain a better understanding of the
genetic mechanisms of human complex diseases.
Large numbers of SNP–SNP interactions (SSIs) detecting methods

appeared in recent years. In a case–control study, one form of SSI (or
named co-associations) was epistasis, which was introduced ~ 100
years ago. These SSIs are associated with gene–gene interactions
(GGIs). The GGIs (or gene–gene epistasis) are often characterized to
be functional, compositional and statistical.6 The statistical definition
of epistasis was first given by Fisher7 and developed further by
Cockerham8 and Kempthorne,9 whereby the epistasis effect is
considered as a deviation from additive genetic effects.10 Currently,
popular SSIs detecting methods are based primarily on statistics,11–13

data mining,14–16 machine learning17,18 and so on.19,20 Statistical
methods contain logistic regression model,11 the information entropy
model;12,13 data mining methods contain dimensionality reduction
method,14 Bayesian method15,16 and so on; machine learning methods
are based on a tree and random forests17,18 and so on.
We take only one SNP in a gene as a basic research unit, and only

take into account the interactions between SNPs in these SSI methods.

However, a gene that contains many SNPs should be the basic research
unit, so the SSIs have limitations and cannot fully interpret the GGIs.21

We can use multiple SNPs in each gene (gene-based GGI methods),
and these methods come with a potential increase of power.
There are some gene-based GGI detecting methods, such as

canonical correlation-based U-statistic model,21 sparse canonical
correlation analysis model,22 kernel canonical correlation-based
U-statistic model (KCCU),23,24 kernel regression model (KR),25 partial
least squares path model (PLSPM and mPLSPM)26,27 and so on.
However, most of these methods can only reflect the linear relation-
ship between two genes, and cannot reflect the nonlinear relationship.
KCCU method can reflect nonlinear relationship between two genes,
and is a useful and classic method.
Information entropy28,29 is used to measure the uncertainty. The

greater the uncertainty variables, the greater the entropy. The SNP-
based entropy methods (SBEM) had been used to detect SSIs.12,13

We proposed a gene-based information gain method (GBIGM),
which is based on the entropy and information gain theory and
views all SNPs in a gene for detecting GGIs in case–control studies.
For a gene, we defined an information gain rate by comparing the
entropy of the data with and without a gene’s information.
We consider IGR as a measure of genetic contribution for disease
for this gene. While considering two genes, the IGR can be
determined by comparing the joint entropy and individual entropies
and we use it as a measure for epistasis. After comparing GBIGM
with KCCU and SBEM both in the simulated and real data,
we found that GBIGM can detect several epistasis types, and it is
a valid and powerful gene-based method for detecting GGIs.
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MATERIALS AND METHODS

Simulation data
Get the template data. The template data in simulation experiments
are taken from HapMap.30,31 In this study, we randomly select two gene
regions,23 PARP1 and KRAS. PARP1 is located on chromosome 1, including
seven SNPs (rs7537552, rs7537636, rs10495278, rs9287011, rs12090413,
rs12092786 and rs12093044). KRAS is located on chromosome 12,
including five SNPs (rs3924649, rs12307733, rs7980769, rs11836162 and
rs11047882).

Disease models. A disease model is a model that expresses the relationship
between the gene and the disease.32 Disease models are usually divided into two
types, namely, single-site and multi-locus disease models. In single-site disease
models, the disease is linked to only one locus, and in multi-locus model the
disease is related to multiple loci.

This paper concentrated on the interaction between two genes, so we
generate case–control data with two-locus disease model. There are eight two-
locus disease models when generating simulation data using gs2.0 software,33 as
showed in Supplementary Figure 1.

In Supplementary Figure 1, α is the baseline value, which indicates the odds
of disease when the two SNP’s joint genotype is aabb. θ is the growth leading to
illness when other genotype with respect to aabb.

Generate case–control data sets. In this study, we utilize all these eight two-
locus disease models in gs2.0 program to generate simulated case–control data.
In the simulation, one SNP in each gene is randomly selected to set the
parameter in generating case–control data, and other SNPs are generated using
the information of linkage disequilibrium. The parameter settings are given in
Table 1.

In case of the null hypothesis H0 (to generate negative data sets), there is
no interaction between genes, then the odds ratio (OR) was set to be 1.0.
We set same sample size for cases and controls (N cases and N controls,
N is set to be 1000, 2000, 3000, 4000 and 5000) and prevalence rate to
be 0.1.

In the case of the alternative hypothesis H1 (to generate positive data sets), to
test the effects of OR, sample size and prevalence rate respectively in GGIs
detecting, we set three scenarios to perform experiments. In the first scenario,
we set OR to be 1.2, 1.4, 1.6, 1.8, 2.0 and 2.2, sample sizes to be 2000 and
prevalence rate to be 0.1. In the second scenario, we set OR to be 1.6, sample
size N to be 1000, 2000, 3000, 4000 and 5000 and prevalence rate to be 0.1. In
the third scenario, we set OR to be 1.6, sample size N to be 2000 and prevalence
rates to be 0.01, 0.05, 0.10, 0.15 and 0.20. For each parameter setting, we
performed the experiment 100 times.

Rheumatoid arthritis data set
We apply our method to a rheumatoid arthritis (RA) data set (GSE39428).34

The data set contains 266 cases (RA) and 163 health controls. Genotyping is
performed using a custom-designed Illumina 384-SNP VeraCode microarray
(Illumina, San Diego, CA, USA) to determine possible associations of genes to
RA. After pretreatment, we obtain 381 SNPs encoding 17 genes.

GBIGM
In a case–control study, we assume that there are Ncase cases and
Ncontrol controls. For arbitrary two genes G1 and G2, there are k SNPs in gene
G1 and t SNPs in gene G2. The framework of the GBIGM is described as
follows.

ALGORITHM: GBIGM
Input: SNPs on two genes (G1 and G2) in a case–control study, times of permutationm.

Output: P-value.
Step 1: Compute the entropy H0 of initial data set.

Step 2: Compute the conditional entropy and information gain rate for gene G1, G2.

Step 3: Compute conditional entropy H1,2 and information gain rate ΔR1,2 for gene

G1 and G2.

Step 4: Perform relabeling and generate new data set.

Step 5: Repeat steps (2) to (5) m times.

Step 6: Estimate P-value.

The detailed description is as follows.
Step 1: Compute the entropy H0 of initial data set
In the initial data set D, the samples are divided either cases or controls, and

p(case) is the proportion of cases in D, which is calculated

p caseð Þ ¼ Ncase

Ncase þ Ncontrol
ð1Þ

H(•) is defined as a classic entropy function, and the entropy H0 of D can be
defined as

H0 ¼ HðDÞ
¼ �p caseð Þlog p caseð Þð Þ � 1� p caseð Þð Þlog 1� p caseð Þð Þ ð2Þ

Step 2:
(1) Compute the conditional entropy H1 and information gain rate ΔR1 for

gene G1

The k SNPs in gene G1 are quantified as X,

X ¼ x1; x2y; xkð Þ xiA 0; 1; 2f g i ¼ 1; 2;yk

The conditional entropy H1, information gain IG(D\X) and information gain
rate ΔR1 for gene G1 are defined as follows:

H1 ¼ HðDjXÞ ¼ HðD;XÞ �HðXÞ
¼ HðD; x1; x2;?xkÞ � Hðx1; x2;?xkÞ ð3Þ

IGðDjXÞ ¼ H0 �H1 ð4Þ

DR1 ¼ H0 �H1

H0
ð5Þ

Here the conditional entropy H1 of D conditioned on X can be calculated as the
difference between joint entropy of D and X and entropy of X. For any D and X,
H(D\X)≤H(D) constant sets up. So the information gain IG(D\X) describes the
difference value of entropies conditioned on X or not, which can reflect the
importance of X. The information gain rate ΔR1 is a normalized information gain.
(2) Compute the conditional entropy H2 and information gain rate ΔR2 for

gene G2

The t SNPs in gene G2 are quantified as Y,

Y ¼ ðy1; y2;?; ytÞ yjAf0; 1; 2g j ¼ 1; 2;?; t

Similarly, the conditional entropy H2, information gain IG(D\Y) and informa-
tion gain rate ΔR2 for gene G2 are defined as follows:

H2 ¼ HðDjYÞ ¼ HðD; YÞ � HðYÞ
¼ HðD; y1; y2;?; ytÞ � Hðy1; y2;?; ytÞ ð6Þ

IGðDjYÞ ¼ H0 � H2 ð7Þ

DR2 ¼ H0 �H2

H0
ð8Þ

Step 3: Compute conditional entropy H1,2 and information gain rate ΔR1,2 for
gene G1 and G2

H1;2 ¼ HðDjX; YÞ ¼ HðD;X; YÞ �HðX; YÞ ð9Þ

DR1;2 ¼ min H1;H2f g �H1;2

min H1;H2f g ð10Þ

Table 1 The parameter settings in simulation using gs2.0

Odds ratio Sample size Prevalence rate

Negative data sets 1.0 1000∼5000 0.1

Positive data sets I 1.2∼2.2 2000 0.1

Positive data sets II 1.6 1000∼5000 0.1

Positive data sets III 1.6 2000 0.01∼0.2
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ΔR1,2 is the normalized difference between the entropy conditioned on X and Y
and the entropy conditioned on X or Y (the minimum between entropy
conditioned on X and entropy conditioned on Y). It represents the normalized
information gain while considering both X and Y and considering only X or Y.
Therefore, the larger the ΔR1,2, the larger probability of epistasis between X and Y.
In the initial data, we calculate statistics ΔR1,2 and denote it as DR0

1;2.
Step 4: Perform relabeling and generate new data set
As the model does not assume any distribution of the data, it is difficult to

use conventional parametric test for significant inference. In this study, we use a
displacement detection test method (Permutation)35,36 for detecting significant
GGIs. In the permutation test, we relabel the samples to generate a new random
case and control groups, then recalculate the statistic, construct the empirical
distribution and finally estimate P-values.
Step 5: Repeat steps (2) to (4) m times
For a given number (m) of permutation times, repeat steps (2) to (4)

m times. We will obtain m statistics ΔR1,2, and we denote them as
DR1

1;2;DR
2
1;2;?;DRm

1;2.
Step 6: Estimate P-value
Define the null hypothesis, alternative hypothesis and significance level.

H0 : DR1;2 ¼ 0H1 : DR1;2 > 0 a ¼ 0:05

While we perform the permutation, the random samples are following the null
hypothesis H0. Therefore, according to m statistics from random permutation
samples, we can get the experience sampling distribution (empirical distribu-
tion) for the statistics ΔR1,2 following the null hypothesis H0.
We count the number of statistics DRi

1;2that will be equal to or greater than
DR0

1;2.

num ¼
Xm
i¼1

IðDRi
1;2ZDR0

1;2Þ;

IðDRi
1;2ZDR0

1;2Þ ¼ 1 DRi
1;2ZDR0

1;2

0 DRi
1;2oDR0

1;2
;

�
ð11Þ

here /(·) is an indicator function.
Then the P-value can be estimated as

P ¼ num

m
ð12Þ

SBEM
The SBEM has been used to detect SSIs.12,13 We use one SNP as a
representative in a gene each time, then calculate the entropy-based statistic
and estimate the significance similar to GBIGM; at last we select the most

Figure 1 The power comparison among three different GGIs detecting methods under different disease models and different OR values. The horizontal axis is
the odd ratios ranging in 1.2 to 2.2 and the vertical axis is the power obtained from the three methods. There are 8 different disease models from a to h.
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significant SSI result as the significance of GGI. So SBEM is a univariate SNP
method and GBIGM is a multiple SNPs method. The detailed description of
SBEM can be found in the paper of Dong et al.12

KCCU
The kernel canonical correlation-based U-statistic model (KCCU)23,24 can
reflect nonlinear relationship between two genes and is a useful and classic
method. In KCCU, the maximum kernel canonical coefficient of the two genes
is taken as a measure of GGI in cases and controls. Let the genotyped data of

case–control study be ðxD1 ; xD2 ;?; xDk Þ and ðyD1 ; yD2 ;?; yDt Þ for gene G1 and

gene G2 for cases, and ðxC1 ; xC2 ;?; xCk Þ and ðyC1 ; yC2 ;?; yCt Þ for controls.

The maximum kernel canonical coefficient krD between ðxD1 ; xD2 ;?; xDk Þ and

ðyD1 ; yD2 ;?; yDt Þ obtained through kernal canonical correlation analysis (KCCA)
could be considered as a measurement of gene-based GGI in cases and krc
between ðxC1 ; xC2 ;?; xCk Þ and ðyC1 ; yC2 ;?; yCt Þ be a measurement of GGI in
controls. After a transformation to krD and krc analogous to Fisher’s simple
correlation coefficient transformation, we can obtain a KCCU statistic.
The detailed description of KCCU can be found in the paper of Yuan et al.23

Evaluation indexes
To test the effectiveness of GBIGM, we select power and false positive rate
(Type I error probability) pa as evaluation indexes, and perform a comparative
analysis with SBEM12 and KCCU.23

Power. The power of a statistical test is the probability that it correctly rejects
the null hypothesis when the null hypothesis is incorrect (the alternative
hypothesis is true). In this study, we performed the simulation m (100)
times. The power is the frequency of rejection of the null hypothesis case in the
positive data sets (the alternative hypothesis H1 is true) under a certain
significance level (α= 0.05). As the total numbers of tests are different
among SBEM, GBIGM and KCCU, we use 2 different formulas to calculate
the power.

For SBEM, when testing the GGIs, we need to compute all the SSIs between
the two genes. Therefore, we need to make a multiple testing adjustment. Here
we made use of the Bonferroni adjustment method.37 Assume the significance
level α= 0.05, gene G1 has k SNPs, gene G2 has t SNPs, then there are a total of
k× t SNP pairs to be tested. For each SNP pair, we simulate m times to get
P-values. If the number of P-values less than α is m1, the power of SBEM can be
calculated as follows:

power1 ¼
m1

k ´ t ´m
ð13Þ

For GBIGM and KCCU, if the number of the P-values less than α is m2, the
power can be calculated as follows:

power2 ¼
m2

m
ð14Þ

Figure 2 The power comparison among three different GGIs detecting methods under different disease models and different sample sizes. The horizontal axis is
the sample size ranging in 1000 to 5000 and the vertical axis is the power obtained from the three methods. There are 8 different disease models from a to h.
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False positive rate Pα. False positive rate Pα is the probability that it falsely
rejects the null hypothesis when the null hypothesis is true, and it is also known

as the probability of committing a Type I error. At a specific significance level
(α= 0.05), we perform the simulation 100 times with each different sample
sizes when the null hypothesis is true. The observed Pα changes when the
sample size changes from small to large. When Pα is stable near the significance
level α, we consider that the sample size is large enough to obtain a robust test

result.

RESULTS

Power
The effect of OR. When OR value changes from 1.2 to 2.2, the power
of GBIGM, SBEM and KCCU are indicated as Figure 1.
With the increasing OR value, the power of GBIGM, SBEM and

KCCU are monotonously increasing under seven different genetic
models except the recessive–recessive model. The power of GBIGM is
significantly higher than the power of SBEM and KCCU under seven
different genetic models except the recessive–recessive model. When
the OR value reaches 1.8, under the five disease models of the
dominant–dominant model, a special interaction model, multiplica-
tive–multiplicative model, exclusive OR model and additive–additive
model, the power of GBIGM has reached 80%, whereas the power of

SBEM and KCCU are only about 40%. Under the recessive–recessive
model, when the OR value gradually changes from 1.2 to 2.2, the
power of the three GGIs detecting models are consistently below 20%,
which indicates that these three GGIs detecting models are unsuitable
when the disease data conform with the recessive–recessive model.

The effect of sample size. When sample size changes from 1000 to
5000, the power of GBIGM, SBEM and KCCU are shown in Figure 2.
With an increase in the sample size, the power of GBIGM, SBEM

and KCCU are monotonously increasing under seven different genetic
models except the recessive–recessive model. The power of GBIGM is
significantly higher than the power of SBEM and KCCU under seven
different genetic models except the recessive–recessive model. When
the sample size reaches 4000, under the six disease models of the
dominant–dominant model, a special interaction model, multiplica-
tive–multiplicative model, exclusive OR model, addictive–addictive
model and threshold model, the power of GBIGM have reached 80%,
whereas the power of SBEM and KCCU are only about 40%. Under
the recessive–recessive model, when the sample size gradually changes
from 1000 to 5000, the power of the three GGIs detection model are
consistently below 20%, which indicates that these three GGIs

Figure 3 The power comparison among three different GGIs detecting methods under different disease models and different prevalence rates. The horizontal axis is
the prevalence rate ranging in 0.01 to 0.2 and the vertical axis is the power obtained from the three methods. There are 8 different disease models from a to h.
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detecting models are unsuitable when the disease data conforms with
the recessive–recessive model.

The effect of prevalence rate. When the prevalence rate changes from
0.01 to 0.20, the power of GBIGM, SBEM and KCCU are shown in
Figure 3.
From the results, we can see that there are no significant

correlations between the power and prevalence rate, which indicate
these GGIs detecting methods are not influenced from the prevalence
rate. In the recessive–recessive model, the addictive–addictive model,
the multiplicative–multiplicative model and the exclusive model, the
power of GBIGM are significantly higher than the power of SBEM and
KCCU. There are no significant differences between the power of
these three methods in other models.
From the comparison of the power of these methods under

different disease models and parameter settings, we conclude that all
of these three methods are unsuitable for detecting GGIs when the
interactions are the recessive–recessive model type. In other disease
types, GBIGM is significantly powerful than SBEM and KCCU.

False positive rates
Set significance level α= 0.05, when the sample size gradually changes
from 1000 to 5000, the false positive rate Pα of GBIGM are shown in
Table 2.
When the sample size changes from 1000 to 5000 gradually, false

positive rate Pα are stable nearby the significance level α= 0.05 under
seven different genetic models except the additive–additive model. It
indicates that GBIGM is unsuitable for detecting GGIs when the
interaction is the additive–additive model type. The results confirmed
the stability of the model in most disease models.
GBIGM does not depend on any statistical distribution or model, so

it could detect both the linear relationship and the nonlinear
relationship between two genes. Integrate the power analysis and false
positive rate analysis, we believe that GBIGM we proposed is a valid
and robust method for detecting GGIs under six disease models except
additive–additive model and recessive–recessive model.

Applications in RA data
In these data, the genes and SNP numbers in these genes are shown in
Table 3. The numbers of SNPs in genes vary from 2 to 128. We
applied GBIGM, SBEM and KCCU in this data set for detecting GGIs
related to RA.
In GBIGM and KCCU, we set the significance level α= 0.05, and

obtained 5 (3.68%) and 76 (55.88%) significant GGIs, respectively.
In SBEM, for each gene–gene pair, we took the minimum SNP–SNP
P-value as the gene–gene P-value, and we obtained 123 (90.44%)
significant GGIs at the significance level α= 0.05 or 74 (54.41%)
significant GGIs at the significance level α= 0.001. The detailed results
are presented in Supplementary Table 1. As the total number of gene–
gene pair is 136, we obtained too many significant results when using
SBEM and KCCU. The GBIGM method we proposed can significantly
decrease the number of significant results, which is very important for
the biological verification.
Of the five significant GGIs detected by GBIGM, they were also

detected in KCCU, and the ranks of P-values were 33, 38, 24, 10 and
13. Especially, in these 17 genes, there was only one gene (PADI4)
confirmed to be related to RA by OMIM.38,39 We detected a potential
interaction between PADI4 and BUB3 in GBIGM (P-value= 0.038,
rank 4) and KCCU (P-value= 9.62E–13, rank 10), but not in SBEM at
the significance level α= 0.001 (P-value= 0.034, rank 118). The ranks
of these five significant GGIs in the three different methods are shown

in Table 4. Therefore, the gene-based methods, especially the GBIGM
method we proposed, have the potential to be more powerful than the
SNP-based methods.

DISCUSSION

The GBIGM we proposed used the information gain as a statistic to
detect the interactions between genes in case–control studies. As a
nonparametric method, our model could detect both the linear
relationship and the nonlinear relationship between two genes.
Compared with SBEM and KCCU in the simulated data, the power
of GBIGM proposed are larger than the others in the most cases. The
method we proposed is stable to the sample size through the test of

Table 2 False positive rate of the GBIGM in different sample sizes

Sample size

Model 1000 2000 3000 4000 5000

Dominant–dominant model 0.02 0.05 0.05 0.05 0.03

Recessive–dominant model 0.04 0.04 0.06 0.05 0.04

Recessive–recessive model 0.05 0.04 0.04 0.04 0.04

A special interaction model 0.07 0.05 0.05 0.06 0.04

Additive–additive model 0.80 0.78 0.78 0.77 0.76

Multiplicative–multiplicative model 0.04 0.05 0.04 0.06 0.05

Exclusive OR model 0.08 0.06 0.04 0.06 0.04

Threshold model 0.09 0.08 0.06 0.05 0.08

Table 3 The description of genes and SNP numbers in RA data

Gene Chromsome SNP number

PADI1 1 3

PADI2 1 7

PADI4 1 5

PADI6 1 6

PRKD3 2 7

GC 4 12

GLRX 5 2

CDSN 6 5

PSORS1C1 6 14

TXNDC5 6 128

CA1 8 38

BUB3 10 3

SORBS1 10 10

VDR 12 19

SERPINA1 14 5

PCSK6 15 74

DNAH9 17 43

Table 4 The ranks of the five significant GGIs in the results of three

methods

Rank

Gene 1 Gene 2 GBIGM KCCU SBEM

GC PRKD3 1 33 53

PADI1 PRKD3 2 38 1

CDSN SERPINA1 3 24 86

BUB3 PADI4 4 10 118

PADI6 SERPINA1 5 13 81
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false positive rates. It is a suitable and powerful tool for detecting
GGIs for most disease models except recessive–recessive model
(other methods are also not suitable) and additive–additive model
(high false positive rates). Compared with the other methods, GBIGM
can obtain fewer significant results, and it is important for biologists to
perform biological verification. We built an online analysis platform of
GBIGM for the scientists using (http://nclab.hit.edu.cn/GBIGM).
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