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Abstract

The membrane-surface migration of curvature-inducing proteins in response to membrane 

curvature gradients has been investigated using Monte Carlo simulations of a curvilinear 

membrane model based on the Helfrich Hamiltonian. Consistent with theoretical and experimental 

data, we find the proteins that generate curvature can also sense the background membrane 

curvature, wherein they preferentially partition to the high curvature regions. The partitioning 

strength depends linearly on local membrane curvature and the slope (or the coupling constant) of 

the partitioning probability versus mean curvature depends on the membrane bending rigidity and 

instantaneous curvature field caused by different proteins. Our simulation study allows us to 

quantitatively characterize and identify the important factors affecting the coupling constant 

(slope), which may be difficult to determine in experiments. Furthermore, the membrane model is 

used to study budding of vesicles where it is found that in order to stabilize a mature vesicle with a 

stable ‘neck-region’ (or stable membrane overhangs), the area (extent) of the intrinsic curvature 

region needs to exceed a threshold-critical value. The migration and partitioning of curvature-

inducing proteins in a budding vesicle with a stable neck (with a characteristic negative value of 

the Gaussian curvature) is investigated.
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1. Introduction

Cellular processes, such as endocytosis and cell motility, depend on the dynamic induction 

of curvature in the cell membrane or internal compartments [1]. While phospholipid 

asymmetry can result in lipid bilayers with non-zero spontaneous curvature, some stable 

curved membranes [2] and bilayer remodelling processes are driven by proteins (such as 

those with the epsin N-terminal homology or ENTH domains, Bin Amphysin Rvs or BAR 

domains) with curvature-inducing and curvature-sensing properties. Curved membranes can 

also serve to recruit curvature-sensing proteins to drive cellular processes, and therefore 

understanding the migration of such curvature-inducing proteins in response to regions of 

membrane curvature is crucial to understanding the dynamics of these processes.

In the case of clathrin-mediated endocytosis, growth of the clathrin coat and membrane 

invagination proceed in tandem. Concomitantly with the addition of clathrin triskelia to the 

coat, curvature is induced by membrane-binding proteins in the plasma membrane around 

the coat, stabilizing a growing bud on the cell surface [3]. The initial membrane deformation 

occurs during the nucleation and growth of clathrin-coated pits (CCP) [4]. As the spherical 

bud begins to emerge, a tubular neck region with large negative Gaussian curvature begins 

to form in the membrane; this region is subject to a large curvature, which is thought to 

attract proteins containing curvature-sensing N-BAR domains such as amphiphysin and 

endophilin [5]. In the presence of this high degree of curvature, it is thought that 

amphiphysin localizes to the membrane and simultaneously recruits dynamin there [6,7]. 

Dynamin frees amphiphysin to produce a greater membrane curvature to tighten the neck 

region of the bud and allows the vesicle to bud/pinch-off completely. The driving forces for 

how such curvature-inducing and sensing proteins migrate in curved membrane topologies is 

the subject of this article.

Membrane phase and dynamical behaviour have been modelled both in atomistic detail and 

with coarse-grained models [8,9]. Modelling efforts have been successful in delineating 

individual interactions between the membrane and membrane-bound biomolecules [8,10], in 

describing micelle formation and vesicle fusion [11,12], and in characterizing the elastic 

properties of membranes [13]. Phenomenological theories based on generalized elasticity 

(Ginzburg–Landau) [14] have also been used to describe meso- and macroscopic behaviour 

of membranes, membrane undulations, and curvature modulations. These models have been 

extensively employed, and specific choices of the governing equations (e.g. the form for 

membrane free energy) have been validated based on experimental studies [15]. Mechanistic 

models for cell membrane deformation and vesicle budding in the cellular context based on 

the elastic free energy formulations have been proposed [16], and these studies have further 

motivated the development of models for protein diffusion in ruffled surfaces [17] and the 

simultaneous diffusion of protein and membrane dynamics [7,18–20].

Interestingly, migration of trans-membrane and peripheral curvature-inducing proteins can 

be driven via both static membrane curvature gradients and dynamic membrane fluctuations. 

These material fluxes result from the interplay between membrane curvature, membrane-

tension, and membrane-entropy mediated chemical potential gradients. Several recently 

discovered protein membrane-binding domains have been postulated to assemble in a 
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process that is driven by membrane curvature and membrane tension and in the process 

induce local deformations of the bilayer [21]. During the process of endocytosis, clustering 

of proteins with the ENTH domain in regions of background mean curvature [7] have been 

reported. This has motivated the study of aggregation and phase separation properties of 

generic inclusions on bilayer membranes [22]. It has been demonstrated that curvature-

inducing proteins will aggregate and induce budding even in the absence of a direct 

attractive potential [12], and even in the face of a small repulsive force between proteins.

While closed-form solutions for interactions between more than two inclusions are difficult 

to obtain, simulations of protein migration in the presence of curvature fields can be highly 

instructive. Here, we employ a simulation methodology to investigate the behaviour of 

curvature-inducing inclusions on curved, thermally undulating membrane surfaces, in order 

to systematically identify protein partitionings versus curvature during vesicle budding. 

Section 2 describes the numerical implementation of the Monte Carlo method for membrane 

surface evolution at constant temperature and protein migration. The numerical results along 

with discussion are presented in Section 3, with concluding remarks provided in Section 4.

2. Methods

2.1. The Helfrich Hamiltonian

We model the energetics of protein-induced curvature on lipid bilayer membranes using the 

Helfrich Hamiltonian [23] which is described as:

(1)

where κ is the elastic bending rigidity,  is the Gaussian curvature modulus, H = 1/2(c1 + c2) 

and K = c1 c2 are the mean and Gaussian curvatures, c1 and c2 are the two principal 

curvatures, and H0 is the spontaneous curvature of the membrane. Considering only those 

membrane shapes for which the overall membrane topology does not change, the 

contribution of Gaussian curvature to the Helfrich Hamiltonian in Equation (1) is a constant 

and therefore is neglected in our simulations. Within the Helfrich Hamiltonian, the effect of 

protein-induced curvature is treated through the spontaneous curvature H0 term [22] which, 

in general, is a spatially varying function, as discussed in detail in Section 2.3.

2.2. Triangulated curvilinear model for membrane

In our model the membrane surface is discretized by a triangulation system consisting of (N 

+ 1)2 vertices connected by 3N2 + 2N links, here N is the number of links in each side of the 

square membrane. The total number of triangles is (2N2). Therefore the total Helfrich energy 

for bending elasticity associated with mean curvature (i.e. dropping the Gaussian curvature 

term) can be calculated by summation over all the vertices:

(2)
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Here, A(v) is the average surface area around vertex v. The two principal curvatures at vertex 

v are computed very efficiently through the transformation between the global Cartesian 

frame and local Darboux frame, (see [24] for a detailed description). The inclusions 

influence membrane topology by inducing spontaneous curvature H0. The equilibrium 

properties of the membrane-inclusion system are evaluated using a Monte Carlo (MC) 

technique [24]. The MC steps are divided into two classes; Vertex shift: as indicated in 

Figure 1(b) (top), the vertex (circle in the left) is randomly selected and an attempt is made 

to move it to a new position. In this step, the mean curvatures and therefore the Helfrich 

energies on all the connecting vertices (circles in the right) are updated, based on which the 

attempt is accepted or rejected. The step-size of the vertex movement is adjusted to ensure 

the acceptance rate ~30–50%. Link flip: as indicated in Figure 1(b) (bottom), the link (line in 

the left) connecting two vertices is randomly selected and an attempt is made to flip to the 

pair of opposite vertices. During this step, the mean curvatures and therefore the Helfrich 

energies on four related vertices (circles in the right) are recalculated, based on which the 

attempt is accepted or rejected.

For each of the movements, the energy of the new conformation is computed and the 

acceptance probability is based on the Metropolis criteria by comparing with old 

conformation energy. The duration of the simulation is measured in Monte Carlo steps and 

each step contains (N + 1)2 vertex shifts and (3N2 + 2N) link flips. The simulation size is 

250 nm × 250 nm and a fixed boundary condition (where the membrane curvature at the 

boundaries is pinned to assume a zero value) is applied. The number of links in each side of 

the boundary is N = 50.

2.3. Model for protein migration on membrane

In this work, as shown in Figure 2, a number of diffusive curvature-inducing proteins are 

placed onto the membrane surface. We model the curvature inducing proteins as localized 

migrating intrinsic curvature fields. Direct protein–protein interactions are only limited to a 

no-overlap criteria due to a size exclusion (i.e. repulsive interactions on the scale of the size 

of the solvated protein) [22]. However, indirect protein–protein interactions are dominant as 

the curvature fields interact through the Helfrich energy mediated by membrane undulations 

and curvature. Based on experimental observation [25] that addition of proteins such as 

epsin possessing an ENTH domain to lipids leads to tubulation of vesicles, we model the 

membrane curvature induced by each epsin, i as a Gaussian function with a range bi and 

magnitude C0,i:

(3)

where xi and yi are the x and y coordinates of the ith epsin on the membrane. The nature of 

the curvature function, namely Gaussian, is chosen to mimic a localized presence of 

curvature; in earlier studies, we have explored the effect of different functions (namely 

Gaussian versus Cosine functions) and verified that the results are insensitive to the nature 

of the functions but only sensitive to the magnitude and the range of the curvature field 

[22,26]. The values of the magnitude and range of the curvature functions are chosen based 

on agreement with independent biophysical experiments; a detailed description is provided 
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later in Section 3.1.3. The positions of epsins are evolved along the x, y plane using Monte 

Carlo moves; later in Section 3.2.2, we evolve the epsins along the curvilinear manifold 

rather than the x, y plane. When multiple proteins are present on the membrane, the resulting 

protein-induced membrane curvature is calculated as:

(4)

where Ne is the number of proteins present on the membrane. We choose bi = 8.3 nm while 

the value of C0,i was set to be 0.075 nm–1, consistent with the properties of epsin (ENTH 

domain) interacting with membranes, as described in our previous work [27]. Extensions to 

anisotropic structural effects reminiscent of proteins with N-BAR domains will also be 

briefly discussed in Section 3.2.3.

In addition to the local curvature induced by proteins described above, a background 

curvature (see Figure 2) induced in the membrane such as due to presence of a clathrin coat 

is modelled as [28]:

(5)

where Γ (r0) is a function that is unity within a circular domain (centred at zero) of radius r0 

and zero otherwise; r0 is the linear extent (radius) of the curvature-field induced by clathrin 

and projected on the x–y plane; and C0 is the magnitude of clathrin-induced curvature. It is 

to be noted that one rationale for imposing constant curvature due to the clathrin coat is that 

clathrin has an intrinsic pucker and can spontaneously assemble into cages in vitro at high 

concentrations; in addition, the clathrin lattice can bind curvature-inducing proteins and the 

assembly as a whole can provide a mean curvature field in the given area of the clathrin 

coat. Hence, in our simulations, we explore a range of C0 values. Finally the net intrinsic 

curvature at any position is then expressed as:

(6)

where the max operator denotes the maximum of the two values.

2.4. Monte Carlo evolution

Both epsin diffusion and membrane surface evolution are performed using Monte Carlo 

simulations at constant temperature. Each iteration consists of 50 × (N + 1)2 steps of 

membrane evolution and 50 × Ne steps of epsin diffusion. In each membrane evolution step, 

one vertex is randomly selected to proceed vertex shift and one link is randomly selected to 

proceed link flip, the procedures are described in Section 2.2. The total energy of the system 

is monitored and after the system reaches steady state, we average the results over 40,000 

Monte Carlo steps and over four independent realizations to obtain statistics. The statistical 

error bars are calculated based on the four different realizations and reported as one standard 

deviation.
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3. Results and discussion

3.1. Protein migration and partitioning in response to membrane curvature

We set up our models to investigate the migration of the curvature-inducing proteins (epsins 

with an ENTH domain) in response to the background (clathrin induced) membrane 

curvature deformations. The radius of the circular domain representing the clathrin coat is 

fixed at r0 = 40 nm and the magnitude of the clathrin induced curvature C0 is varied between 

0.0 and 0.1 nm–1. The clathrin coat is fixed with its centre at 0. The number of epsins is 

fixed at Ne = 50; the epsins are allowed to migrate on the membrane.

3.1.1. Membrane profiles—Figures 3–5 show (a) the distribution of membrane mean 

curvature H and (b) vertical displacement z as a function of distance from the centre for 

three different membrane bending rigidities. Different lines (symbols) are results from 

different values of C0 in units of nm–1. As illustrated, the magnitude of the mean curvature 

increases with C0 but the profiles are far from constant within the coat area. The vertical 

displacement distributions show the primary shapes of the membrane. The membrane shapes 

are smooth and we do not record formation of neck regions even at the highest C0; this is 

due to the implementation of the background curvature. The formation of the neck-region is 

discussed later in Section 3.2.1. As a consequence of the fixed boundary condition, H is 

slightly negative and z is slightly positive in the centre region for all the due to the presence 

of induced curvature by epsins even when C0 = 0.

3.1.2. Epsin partitioning—Recently, Capraro et al. [20] measured the distribution of the 

epsin N-terminal homology on cylindrical lipid membrane tethers by measuring the ratio of 

protein to lipid fluorescence intensities. The authors monitored the fluorescence intensities 

at different values of the externally applied membrane tension σ (or mean background 

curvature, see below), which was controlled by micropipette aspiration. The fluorescence 

intensities directly measure the relative local concentrations of the epsins, and the local 

mean curvature H of the membrane scales as H ~ σ1/2. The experimental measurements 

confirmed the linear dependence of the protein concentration with σ1/2, which led the 

authors to conclude that the epsins bind preferentially to high curvature membrane regions.

Using our MC simulations, we quantify the spatial distribution of the epsins in response to 

the clathrin-induced curvature as a partition coefficient g(r); g(r) effectively reflects the 

relative epsin concentrations at a given position r in a given system relative to the system 

without any background curvature. It is computed from a histogram of the number of epsins 

at a given radial position for a given C0 of the coat relative to the histogram for C0 = 0. Note 

that g(r) is a partition coefficient and is different from the radial distribution function.

Figure 6 shows the distributions of g(r) of the epsins at three different κ. Interestingly, as 

indicated, the epsins collectively not only generate curvature, but can also sense background 

curvature fields. The epsins tend to aggregate to the regions with high curvatures at r ≤ 40 

nm. The extent of aggregation/partitioning strongly depends on the local curvature as well as 

the membrane bending rigidity.
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3.1.3. Parameter sensitivitity and comparison with experiment

In [20], an analytical expression for the dependence of epsin ENTH concentration on the 

local membrane curvature based on a mean-field model was derived. In the expression, the 

epsin ENTH segregation varies linearly with local curvature. The slope is determined by the 

curvature-composition coupling parameter, Λ, see below. By measuring the relative 

fluorescence intensity as a function of applied membrane tension , the linear dependence 

was recovered and by fitting the experimental data to the analytical expression, for the first 

time the coupling parameter Λ was determined. It has been shown [29] that Λ = –κCα under 

certain approximations of the spontaneous curvature model; here is the membrane bending 

rigidity and Cα is a fitted parameter related to the average spontaneous curvature of protein, 

α.

The generality of the membrane as well as the protein models allows us to investigate a wide 

range of tunable parameters affecting the sensitivity to protein partitioning (or Λ). To enable 

comparison with experiments [20], we quantify epsin partitioning in Figure 6 by computing 

the averaged epsin concentrations Pe at different C0s relative to the result of  at C0 = 0 

inside the clathrin coat r ≤ 40 nm; we then plot the data as a function of maximum mean 

curvature measured in Figures 3(a), 4(a) and 5(a). Figure 7 shows the epsin partitioning as a 

function of maximum clathrin curvature at different membrane bending rigidities κ. The 

thick dashed line is from the experimental data reported in [20]. The epsin partitioning 

varies linearly with the local background curvature and the slope depends on κ. By 

analysing the experimental data, the effective membrane bending rigidity was ~13kBT, 

however, as shown in Figure 7, our numerical data with κ = 5kBT show the best fit to the 

experimental results. The discrepancy can be explained by considering that Cα (a fitted 

parameter in the experiment) has a large bearing on the slope (in Figure 7), which is directly 

related to the curvature field of a single epsin employed in our calculations, see below.

In our model, the epsin-induced curvature is controlled by two adjustable parameters: C0,e 

and b which define the two-dimensional Gaussian function. In principle, these two 

parameters should be determined from experimental data for each protein type. Indeed, as 

described in Section 2.3 and [27], these parameters are chosen for epsin based on 

independent biophysical experiments: in particular, C0,e was chosen as 1/R, where R is the 

characteristic radius of the cylindrical tubules induced by epsin, when mixed with 

phospholipids. Then the value b was chosen such that the induced membrane strain energy 

by a single epsin or ENTH domain is equal to its binding free energy with phosphoinositol 

bisphosphate (or PIP2), a lipid that ENTH domains bind to. The assmption behind the choice 

for b is that all of the binding free energy between ENTH domains and PIP2 contribute to the 

membrane strain, which is is clearly the upper limit on how much strain (or curvature) an 

ENTH domain can induce. In reality, the choice of b will be smaller because we expect that 

only a fraction of the binding free energy contributes to the membrane strain inducing the 

curvature. Hence, to assess sensitivity to these parameters, we fix κ at 5kBT and vary C0,e 

and b each by 25%. Figure 8 shows that clearly increasing the values of C0,e and b increase 

the slope, quantifying the sensitivity of the partitioning (or Λ) on the parameters determining 

the extent of protein-induced curvature. Noting the sensitivity, we can rationalize that for κ 

= 13kBT, a slightly smaller value of b (accounting for a smaller fraction of the binding free 
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energy) can also yield a slope consistent with the experimentally measured slope. Hence, the 

significance of our sensitivity analysis is that it now provides a direct means to interpret 

what fraction of the total binding free energy contributes to straining the membrane (or 

inducing intrinsic curvature) for a given value of the bending rigidity. Our results also give a 

physical and quantitative interpretation to the fitted parameter Cα employed in the 

experimental study of Capraro et al. [20].

3.2. Protein partitioning during vesicle budding (endocytosis)

3.2.1. Effect of coat area on vesicle budding

Recently, Agrawal et al. [27] investigated the role of the curvature-inducing protein epsin in 

CME using a simple one-dimensional surface evolution model and identified a critical size 

of the coat area above which a fully mature vesicular bud with a clear neck region was 

stabilized. Their model also provided an estimate of the number of epsins required to 

stabilize the vesicular bud and reproduced the distribution of vesicular intermediates 

observed in experiments. However, the authors assumed axisymmetric geometries and 

neglected thermal effects. We implement the curvilinear model to study the CME, by 

considering a simulation domain of 500 nm × 500 nm. We fixed the membrane bending 

rigidity at κ = 20 kBT and the magnitude of the clathrin-induced curvature at H0 = 0.1 nm–1. 

Similar to the method in [27], we explored the effect of increasing clathrin coat area as the 

surfaced area of the deformed surface over which the background curvature is applied; we 

note that this area is different from the projected two-dimensional area that was applied in 

Section 2.3. In particular, for results described in this section, the coat area as well as the 

curvature fields in equations (3), (4), and (5), are applied along the curvilinear surface and 

not the projected x, y plane; see section 3.2.2. As the area of the clathrin coat was increased, 

the membrane profiles experience a spontaneous budding event: Figure 9 shows the the 

steady state membrane profiles at different areas of the clathrin coat (a) Ac = 1960 nm2, (b) 

3850 nm2 and (c) 15,390 nm2. As shown, for the case of the largest coat area, a mature bud 

with a characteristic neck region is stabilized.

3.2.2. Epsin partitioning during vesicle budding—To study the epsin partitioning 

during the budding processes, we simultaneously evolve the epsins and the membrane such 

that the epsins move along the curvilinear manifold of the budding membrane; we denote 

this coordinate as s, i.e. along the membrane surface, as opposed to the projected distance r 

defined before. In this scenario, due to the large deformations near the neck region of the 

bud, the arc length s is a more suitable variable to monitor distances rather than the radial 

distance r; in this case, s = 0 defines the centre of the coat. In our simulations, the membrane 

bending rigidity is fixed at 20 kBT, the intrinsic curvature induced by clathrin C0 is set at 0.1 

nm–1 and the clathrin coat area Ac is increased systematically; all the other parameters are 

kept the same as before. Figure 10 shows the mean curvature, Gaussian curvature and 

vertical displacement distributions as a function of arc length from the centre of the 

membrane/coat. Figure 11 shows the epsin partitioning for different clathrin coat areas, 

where (as described earlier) the epsin partitioning is calculated based on the epsin 

distribution as shown in the inset. As evident from the snapshots on the right, the 

segregation of epsins initially increases as the capsid develops and grows, and then plateaus 

as the bud is formed and gets extended beyond a threshold coat area. Our results in Figure 
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11 show that the partitioning of epsins in a growing bud occurs similar to that in a capsid 

(see Figure 6) indicating that the mean curvature still dominates the partitioning behaviour.

3.2.3. Anisotropic effect—As an extension of our model, we included the effect of 

anisotropy in curvature induction for certain proteins; in particular, the BAR domain 

proteins are believed to induce anisotropic curvature fields on membranes. In recent work, 

we modelled such anisotropic fields using elliptic curvature field functions [30] and 

determined the orientational angular distributions of the ellipses during the vesicle bud 

formation [30]. For an elliptical Gaussian curvature field with an aspect ratio of 3, we found 

that the orientational distribution of the ellipses was peaked at a preferencial angle indicating 

that the ellipses align with their major axis tangential to the locus traced by the neck 

constriction. These results suggest that while mean curvature fields play a leading role in 

determining protein partitioning, (negative) Gaussian curvature can also play a significant 

role in systems inducing anisotropic curvature fields by providing a driving force for 

orientational reconfigurations in the neck region. Such an effect is significant in enabling the 

self-assembly of neck-stabilizing proteins such as BAR domains and bud-pinchase proteins 

such as dynamin.

4. Conclusions

Monte Carlo simulations on a curvilinear model for membranes has been implemented to 

study the protein (epsin) migration and partitioning in response to membrane deformations 

induced by a background intrinsic (clathrin-induced) curvature. Our modelling and 

simulation results predict preferential epsin partitioning to high curvature regions of the 

membrane, suggesting that the curvature-inducing epsins can also sense curvature fields. 

The epsin concentration increases linearly with increase in local mean curvature field, which 

is consistent with recent theoretical and experimental studies [20]. The model allows us to 

quantitatively characterize the effects of the membrane bending rigidity κ and epsin-induced 

instantaneous curvature on the slope. The slope of epsin partitioning versus mean curvature 

increases with κ and the instantaneous curvature, which is in agreement with both the 

theoretical analysis and experimental measurements reported in [20].

The attractive feature of the curvilinear model is that it can overcome the small deformation 

limit in traditional linear models (see Appendix 1, supplementary material), and 

accommodate extreme deformations; as we demonstrate here, this feature enables the study 

of vesicle budding in the context of clathrin-mediated endocytosis. With respect to CME, we 

showed that a critical size (area) of the coat is required to stabilize a mature bud with a 

characteristic neck region. This result is consistent with our previous findings using one-

dimensional axisymmetric surface evolution model [27]; moreover, we extend the results of 

the surface evolution study by (1) considering finite temperature effects, (2) protein 

partitioning on budding surfaces, and (3) the orientational assembly of proteins inducing 

anisotropic curvature fields. While cases (1) and (2) are dominated by regions of non-zero 

mean curvature, in case (3) the regions of negative Gaussian curvature (neck-regions) play a 

significant role. Our results quantify the thermodynamic driving forces determining the 

partitioning behaviour, which are very significant in understanding the spatial assembly of 
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accessory (curvature-inducing) proteins in elementary cellular trafficking processes 

including CME.
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Appendix 1. Supplementary material: protein migration using linear 

membrane model

In addition to the Monte Carlo curvilinear membrane model discussed in this article, we also 

explore the possibility of applying the linear membrane model for studying of protein 

migration. As illustrated in Figure 12, in this model the membrane surface is discretized by a 

two-dimensional regular mesh and for small deformations, the membrane shape is 

approximated in a Monge or a Cartesian gauge as z = z(x, y). The resulting Helfrich 

Hamiltonian obtained by linearizing the expressions for the mean curvature and the 

differential area element in Equation~(1) is given by [22]:

(7)

The equilibrium sampling of membrane conformations according to the Boltzmann 

distribution for a given functional form of H0(x, y) is performed using the Time-Dependent 

Ginzburg Landau (TDGL) simulations, using a protocol employed in our previous work 

[22,31]. In this protocol, we generate new membrane configurations from existing ones by 

numerically integrating the equation:

(8)

where,

(9)

In Equation (8), t represents a fictitious time, M is a scalar mobility term and ξ is the thermal 

noise term, which is drawn randomly from a Gaussian distribution with zero mean and with 

variance depending on the temperature T, i.e. 〈ξ(r, t)〉 = 0 and 〈ξ(r, t)ξ(r′, t′)〉 = 2kBTMδ(t – t

′)δ(r – r′). This ensures that membrane configurations generated by Equation (8) are 

consistent with the canonical ensemble with probability ∝ exp(–E/kBT).

Our simulations are performed for a square system with size of L × L in x, y dimensions, 

respectively, with periodic boundary conditions implemented in the xy plane. In this work, 

we have chosen L = 250 nm. For each system, the membrane is discretized using a 50 × 50 
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set of uniform spatial grid points in the xy plane. All the derivatives on the right-hand side of 

Equation (9) are approximated using a second-order centred-difference scheme. TDGL 

equations are then integrated in time using an explicit Euler scheme. We choose a value of 

M ( = 2.5 × 10–6 m2 s kg–1), this value was also used in our previous work [28]. The time-

step of integration Δt is set to be 1 ps based on linear stability analysis [28]. Additionally, we 

note that our results for the equilibrium properties of the membrane have been verified to be 

independent of the value of the mobility term, M.

The linear model was set up to study the proteins’ (epsins with ENTH) migration in 

response to the background curvature C0. The clathrin coat is within a circular domain of 40 

nm and the magnitude of the clathrin-induced curvature C0 is varied between 0.0 and 0.1 

nm–1, the number of epsins is Ne = 10 and the membrane bending rigidity is fixed at κ = 

20kBT. Figures 13 and 14 show the distribution of the membrane mean curvature and the 

vertical displacement respectively. The results are qualitatively similar to the results from 

the curvilinear model (Figure 3), but the mean curvature and vertical displacement are 

nearly zero within the centre region for the C0 = 0 case. This is due to the different treatment 

of the boundary conditions: in the linear model, the periodic boundary conditions are 

imposed while in the curvilinear model the fixed boundary conditions are used.

Figure 15 shows the distributions of the partition coefficient g(r) for different background 

curvatures C0. Similar to the results from the curvilinear model results (Figure 6), the epsins 

aggregate to the regions with high curvatures, and the aggregation increases with the 

magnitude of the local curvature at low curvatures (below 0.075 nm–1); this is consistent 

with the observations from the curvilinear model. However, at the highest curvature field 

(0.1 nm–1), the aggregation is decreased. This is inconsistent with the results from the 

curvilinear model and the experimental measurements [20], where they both observed a 

monotonic increase of epsin aggregation with local curvatures. This may reflect the 

breakdown of the small deformation assumption involved in the linear Monge model under 

large curvatures.
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Figure 1. 
(a) The membrane discretization in the triangulated curvilinear model and (b) schematic 

illustration of vertex shift and link flip moves.
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Figure 2. 
Schematic illustration of protein migration in response to the membrane curvature field: 

square – membrane patch; large circle – static intrinsic curvature field such as due to clathrin 

coat; dots – intrinsic curvature fields due to migrating proteins such as epsins.
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Figure 3. 
(a) The distribution of the mean curvature and (b) vertical membrane displacement as a 

function of distance from the membrane centre. Here r is the projected distance on the x, y 

plane and not the curvilinear distance along the membrane. Different lines (symbols) are 

results from different clathrin curvature C0. The membrane bending rigidity is κ = 20kBT. 50 

epsins are included in our simulations.
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Figure 4. 
(a) The distribution of the mean curvature and (b) vertical membrane displacement as a 

function of distance from the membrane centre. Different lines (symbols) are results from 

different clathrin curvature C0. The membrane bending rigidity is κ = 10kBT.
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Figure 5. 
The (a) distribution of the mean curvature and (b) vertical membrane displacement as a 

function of distance from the membrane centre. Different lines (symbols) are results from 

different clathrin curvature C0. The membrane bending rigidity is κ = 5kBT.
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Figure 6. 
Epsin partitioning as a function of distance from the membrane centre for membrane 

bending rigidities of (a) 20kBT, (b) 10kBT and (c) 5kBT.
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Figure 7. 
The effect of membrane bending rigidity κ on the epsin partitioning. The thick dashed line 

shows the experimental results from [20]. The error bars are based on four independent 

realizations.
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Figure 8. 
The effect of epsin parameters C0,e and b on the epsin partitioning. The membrane bending 

rigidity is fixed at κ = 5 kBT. The thick dashed line shows the experimental results from 

[20]. The error bars are based on four independent realizations.
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Figure 9. 
The three-dimensional membrane profiles at different coat areas. (a) Ac = 1960 nm2, (b) Ac 

= 3850 nm2, and (c) Ac = 15,390 nm2; here κ = 20 kBT. We note that we have chosen to 

depict the buds to nucleate upwards. However, in the z(r) and z(s) plots, we depict the 

deformation as occurring downwards.
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Figure 10. 
The distributions of (a) mean curvature, (b) Gaussian curvature and (c) vertical displacement 

as a function of arc length s from the centre of the membrane. The membrane bending 

rigidity is κ = 20 kBT and the intrinsic clathrin curvature is fixed at C0 = 0.1 nm–1, different 

symbols represent results with different clathrin coat areas. 50 epsins moving along s were 

included in these simulations.
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Figure 11. 
The partitioning of the epsins during budding as a function of clathrin coat areas. The inset 

shows the epsin distribution as a function of arc length. We note that in the representative 

snapshots, we have chosen to depict the buds to nucleate upwards. However, in the z(r) and 

z(s) plots, we depict the deformation as occurring downwards. The membrane bending 

rigidity is κ = 20 kBT and the intrinsic clathrin curvature is fixed at C0 = 0.1 nm–1.
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Figure 12. 
The membrane discretization in the Monge linear model.
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Figure 13. 
The distribution of the mean curvature as a function of distance from the membrane centre. 

Different lines (symbols) represent results from different clathrin curvature C0.
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Figure 14. 
The distribution of the vertical membrane displacement as a function of distance from the 

membrane centre. Different lines (symbols) represent results from different clathrin 

curvature C0.
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Figure 15. 
Epsin partition as a function of distance from the membrane centre. Different lines 

(symbols) represent results from different clathrin curvature C0.
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