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Abstract

Since brown adipose tissue (BAT) dissipates energy through UCP1, BAT has garnered attention 

as a therapeutic intervention for obesity and metabolic diseases including type2 diabetes. As we 

better understand the physiological roles of classical brown and beige adipocytes, it is becoming 

clear that BAT is not simply a heat-generating organ. Increased beige fat mass in response to a 

variety of external/internal cues is associated with significant improvements in glucose and lipid 

homeostasis that may not be entirely mediated by UCP1. We aim to discuss recent insights 

regarding the developmental lineages, molecular regulation, and new functions for brown and 

beige adipocytes.
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Introduction

Thermogenic adipocytes and Ucp1

Brown and beige adipose cells have the capacity to burn glucose and fat to produce heat. 

This thermogenic function is mediated, in large part, by the action of Uncoupling Protein-1 

(UCP1), a polypeptide that resides in the inner mitochondrial membrane of brown and beige 

adipocytes. UCP1, when activated, dissipates the proton gradient generated by the electron 

transport chain. This futile cycle of proton pump and leak reduces mitochondrial membrane 

potential which, in turn, drives high levels of substrate oxidation and results in the 

generation of heat (Cannon and Nedergaard, 2004; Lowell and Spiegelman, 2000).
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Brown adipose cells develop in dedicated deposits of brown adipose tissue (BAT). In mice, 

the large BAT depots, including the interscapular, axillary and cervical BAT develop 

prenatally and provide a source of heat to protect newborns against cold-exposure. The 

sympathetic nervous system (SNS) is intimately involved in regulating both the growth of 

BAT and its thermogenic function. Brown adipocytes are innervated by sympathetic fibers, 

which upon cold-exposure, release norepinephrine (NE) to acutely activate thermogenesis 

(Cannon and Nedergaard, 2004). NE also elicits a signaling cascade via P38 MAPK and 

PGC-1α to increase the transcription of thermogenic genes in brown adipocytes; this allows 

for sustained thermogenesis during longer term cold exposure (Cao et al., 2004). Finally, 

cold exposure stimulates BAT expansion through activating the proliferation and 

differentiation of brown adipose precursor cells (Bronnikov et al., 1992; Geloen et al., 

1988). Another notable feature of BAT is its dense capillary bed that supplies adipocytes 

with substrate and oxygen for oxidation and enables the efficient distribution of heat to the 

rest of the body.

Brown-like adipocytes that have a multilocular morphology and express UCP1 can also be 

found in white adipose tissue (WAT) depots (Cinti, 1999; Collins et al., 1997; Guerra et al., 

1998; Himms-Hagen et al., 2000; Vitali et al., 2012; Young et al., 1984). These so-called 

“beige” (Ishibashi and Seale, 2010) or “brite” adipocytes (Petrovic et al., 2010) are only 

readily detected in the WAT of animals that have been exposed to cold or other inducers. 

This dependency on external stimuli for UCP1 induction is a distinctive feature of beige fat. 

By contrast, brown fat cells express relatively high amounts of UCP1 even under non-

stimulated conditions. This difference is, at least, partly fat cell-autonomous since 

preadipocytes from BAT differentiate ex vivo into adipocytes that express UCP1 and have 

high levels of mitochondria; under the same conditions beige fat precursors undergo 

adipocyte conversion but do not activate the brown fat program unless they are treated with 

certain inducers, such as β-adrenergic agonists or PPARγ activators (Klaus et al., 1995; 

Ohno et al., 2012; Petrovic et al., 2010; Wu et al., 2012). Notably, fully stimulated beige 

adipocytes express similar UCP1 levels as brown adipocytes and undergo UCP1-mediated 

uncoupled respiration (Long et al., 2014; Okamatsu-Ogura et al., 2013; Shabalina et al., 

2013; Wu et al., 2012).

The induction of beige adipocytes is highly adipose depot-dependent. In mice, the 

subcutaneous inguinal WAT undergoes the most profound induction of beige adipocytes, 

whereas the epididymal WAT of male mice is particularly resistant to “beige-ing” (Ohno et 

al., 2012; Vitali et al., 2012). There also exists a great deal of variability in the beige-ing 

response amongst inbred strains of mice as first reported by Collins et al. (Collins et al., 

1997). Kozak and colleagues used classical genetic approaches to study this trait in great 

detail and identified several loci that affect UCP1 induction in white fat (Guerra et al., 1998; 

Koza et al., 2000; Xue et al., 2007). The genetic variability controlling UCP1 activation was 

only observed in white fat, providing some of the earliest evidence that beige and brown fat 

cells may belong to different lineages (see later). Importantly, the induction of UCP1 in 

white fat (i.e., beige-ing of WAT) is associated with a reduction in obesity in animals treated 

with the β3-adrenergic agonist, CL 316,243 (Guerra et al., 1998). Thus, the capacity for 
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UCP1 induction in white fat is strongly correlated with obesity-reduction caused by β3-

agonists.

Human BAT

Do humans have thermogenic brown and/or beige fat? And if so, do these tissues affect 

systemic metabolism in a meaningful way? Through the use of 18F-fluoro-2-deoxy-d-

glucose (18F-FDG) positron emission tomography computed tomography (18F-FDG-PET) 

imaging, it is now evident that humans have substantial depots of UCP1+ adipose cells and 

that these tissues are activated to take up glucose by cold or β-adrenergic agonist-treatment 

(Cypess et al., 2014; Cypess et al., 2009; Cypess et al., 2015; Nedergaard et al., 2007; Saito 

et al., 2009; van Marken Lichtenbelt et al., 2009; Virtanen et al., 2009). In adult humans, the 

supraclavicular region appears to be the most enriched with UCP1+ adipocytes. While 18F-

FDG-PET imaging relies on glucose uptake capacity, and may not necessarily reflect BAT 

mass per se, there are higher amounts of detectable BAT in young and lean subjects. This 

suggests that variation in BAT activity could participate in the natural regulation of body 

weight. Reduced BAT activity could also be a consequence of obesity and/or insulin 

resistance.

Various marker genes/proteins that are selectively expressed in mouse brown versus beige 

fat cells have been identified. The expression levels of these genes have been used as a way 

to classify human UCP1+ adipose depots as brown or beige. Human infants have a thin layer 

of interscapular BAT that shares morphological and molecular features with rodent brown 

fat (Heaton, 1972; Lidell et al., 2013a). This infant interscapular BAT expresses genes that 

are characteristic of classical brown adipocytes (Lidell et al., 2013b). In adult humans, BAT 

depots are generally heterogeneous, containing multiple cell types including UCP1 positive 

and negative adipocytes (Cypess et al., 2009; Cypess et al., 2013; Virtanen et al., 2009). At 

the molecular level, supraclavicular BAT possesses a molecular signature that closely 

resembles mouse beige adipocytes (Lee et al., 2014c; Sharp et al., 2012; Shinoda et al., 

2015; Wu et al., 2012). Notably, global expression analyses of clonally-derived brown 

adipocytes indicate that adult human BAT depots in the supraclavicular region are largely 

composed of beige-like adipocytes (Shinoda et al., 2015). However, other depots, including 

those from the cervical and perirenal regions contain adipocytes that express classical brown 

markers like ZIC1 and LHX8 (Cypess et al., 2013; Nagano et al., 2015; Xue et al., 2015). In 

summary, the FDG-PET+ depots are heterogeneous with some composed mostly of beige-

like cells while others resembling classic brown fat. In this review, we refer to the FDG-PET

+ and UCP1+ human adipose depots collectively as BAT.

Of note, BAT activity is increased after prolonged cold exposure in the supraclavicular 

region of adult humans who had previously lacked detectable BAT depots before treatment 

(Lee et al., 2014b; van der Lans et al., 2013; Yoneshiro et al., 2013). Given the inducible 

nature of rodent beige adipocytes, it seems likely that cold can similarly promote beige fat 

biogenesis within these adult human depots. However, again, since these studies utilized 

FDG-PET, which measures glucose uptake, it will be important to determine the cellular and 

molecular changes in these tissues before and after chronic cold. Interestingly, it has also 

been shown that prevalence of FDG-PET+ human BAT is lower in elderly populations 
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(Yoneshiro et al., 2011). This may be analagous to the reduction in beige fat mass that 

occurs in aging mice (Rogers et al., 2012). It will now be important to determine how aging 

suppresses beige and/or brown fat recruitment.

1. Developmental Lineages of Brown and Beige Adipocytes

The major classical BAT depots in mice, including the interscapular, cervical and axillary 

depots, are interspersed in and around deep back (epaxial) muscles and develop before WAT 

during embryogenesis. Most of the adipocytes in these tissues originate from precursors in 

the somites that also give rise to skeletal myocytes, dorsal dermis as well as a subset of 

white adipocytes in certain depots. The somitic multipotent precursor population is marked 

by the expression of certain transcription factors, including Pax7, Engrailed-1 (En1) and the 

myogenic factor, Myf5 (Atit et al., 2006; Lepper and Fan, 2010; Sanchez-Gurmaches et al., 

2012; Seale et al., 2008; Wang et al., 2014b) (Fig. 1). These genes are almost certainly 

expressed at the earliest stages of BAT development, likely in multipotent cells, before 

adipogenic commitment factors, such as PPARγ are detectable. Through prospective 

analyses of different Myf5Cre lineage-traced precursor populations, Early B-Cell Factor-2 

(Ebf2) was identified as a specific marker gene of embryonic brown preadipocytes (Wang et 

al., 2014b). EBF2 marks cells in the somitic mesoderm that do not express markers of other 

developmentally-related lineages, including muscle or dermis. The activation of Ebf2 is 

likely to be an early step in brown adipose lineage commitment (Fig. 1). Further studies are 

needed to determine which inductive cues initiate Ebf2 expression and adipogenic 

commitment. An obvious candidate is BMP7, which has been shown to play a pivotal role in 

BAT development. Loss of BMP7 or BMP-receptor signaling results in a near-complete 

absence of BAT development (Schulz et al., 2013; Tseng et al., 2008).

The common somitic origin of brown adipocytes and muscle suggested that these lineages 

may be closely related in development. Consistent with this, brown preadipose cells express 

many muscle-specific genes and the mitochondrial proteome of brown fat and muscle are 

highly related to one-another (Forner et al., 2009; Timmons et al., 2007). Interestingly, 

several factors influence muscle versus brown fat cell fate including PRDM16, C/EBP-β, 

EHMT1, EWS and ZFP516 (Dempersmier et al., 2015; Kajimura et al., 2009; Ohno et al., 

2013; Park et al., 2013; Seale et al., 2008) (Fig. 1). Notably, ectopic expression of PRDM16 

and C/EBP-β is sufficient to convert non-adipogenic fibroblasts, such as skin fibroblasts, 

into functional brown adipocytes in vivo (Kajimura et al., 2009). EHMT1, an important co-

regulator of PRDM16, is required to suppress the expression of muscle-specific genes in 

BAT. Similarly EWS was shown to be required for BAT development and its deletion 

causes the ectopic expression of muscle genes in BAT (Park et al., 2013). PRDM16, which 

can potently suppress muscle gene expression, is however not required for BAT 

development in mice, presumably because other related factors can compensate in its 

absence (Harms et al., 2014).

The embryonic origin(s) of beige fat cells (and white fat cells) is more complicated. Lineage 

tracing analysis showed that beige adipocytes in the inguinal WAT are not derived from 

Myf5-expressing cells (Sanchez-Gurmaches et al., 2012; Seale et al., 2008). However, there 

may be beige adipocytes traced by Myf5-activation in other WAT depots, such as the 
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retroperitoneal WAT (Sanchez-Gurmaches et al., 2012). Through clonal analyses of 

adipogenic cell lines from the inguinal WAT of mice, Wu et al. discovered that beige and 

white adipocytes are distinct cell types that have distinctive molecular profiles (Wu et al., 

2012). Importantly, only the beige clones activate UCP1 expression in response to β-

adrenergic stimulation. Consistent with this finding, Ebf2-expression marks a subpopulation 

of adipogenic cells in WAT that are competent for Ucp1 induction, whereas Ebf2-negative 

adipogenic cells differentiate into UCP1-negative adipocytes (Wang et al., 2014b). Distinct 

molecular signatures at the precursor stage between brown/beige and white adipocytes are 

also found in adult humans (Shinoda et al., 2015; Xue et al., 2015).

Recent studies show that some beige adipocytes originate from smooth muscle or smooth 

muscle-like cells and express various smooth muscle markers (Long et al., 2014). 

Interestingly, the smooth muscle versus beige adipogenic fate of mesenchymal precursors is 

controlled by cytoskeletal tension and RhoA signaling (McDonald et al., 2015). TGFβ 

activates Rho-activated protein kinase (ROCK) to increase G-actin and favor smooth 

muscle-like differentiation whereas BMP7 inhibits ROCK activity to facilitate beige 

adipogenesis. Smooth muscle cells are heterogeneous and have multiple origins during 

development, so further studies will be needed to delineate whether a particular subset of 

smooth muscle or smooth muscle-like cells are beige adipogenic precursors.

Another related and debated topic is whether beige adipocytes induced by cold exposure or 

other stimuli arise from pre-existing mature adipocytes or via the de novo differentiation/

maturation of resident precursor cells. There are compelling data to support both modes of 

WAT beige-ing (Fig.2). Studies by Cinti and others demonstrated that β-adrenergically-

induced beige-ing occurs without significant increases in adipocyte proliferation or DNA 

content (Barbatelli et al., 2010; Himms-Hagen et al., 2000). This pointed to mature 

adipocytes as the likely precursor for the UCP1+ cells. Indeed, recent fate-mapping studies 

from the Granneman lab using a tamoxifen-inducible system suggest that most UCP1+ 

adipocytes in inguinal WAT come from mature adipocytes (Lee et al., 2015b). However, in 

sharp contrast to these results, the Scherer lab, using a Doxycycline-inducible (Adipochaser) 

system to label mature adipocytes, found that a large proportion of cold or β-agonist-induced 

beige cells do not come from pre-existing adipocytes (Wang et al., 2013). This implies that 

beige adipocytes can develop de novo from other sources, likely from resident beige 

precursor cells. How then does one explain these apparently conflicting fate-mapping 

results? First, it is important to note that the Adipochaser studies of Wang et al. demonstrate 

that mature adipocytes as well as non-adipocytes contribute to beige adipocytes. The 

inability to detect any contribution of precursor cells in the Granneman study could be due 

to the environmental history of animals (see next paragraph) and/or because of caveats 

associated with use of the tamoxifen-labeling system. Tamoxifen, given its hydrophobic 

properties is difficult to “wash-out” of fat tissue (Philipp Scherer, in preparation). This might 

then have led to the unintended labeling of newly differentiating beige adipocytes during the 

“chase” period after tamoxifen withdrawal.

Altogether, the available data suggest that cold/β-adrenergic signaling promotes both de 

novo beige fat differentiation as well as induction of UCP1/thermogenic characteristics in 

mature adipocytes. The latter process may or may not reflect bona fide “transdifferentiation” 
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as it has been called in many papers. It seems more likely that there are latent or “masked” 

beige adipocytes that persist when the thermogenic stimulus subsides. These adipocytes may 

appear morphologically white but have a beige identity (lineage) and thus the capacity to 

quickly re-initiate the thermogenic program in response to cold (Fig. 2). Instead of 

“transdifferentiation” from a different cell type/lineage, cold/β-agonist treatment may simply 

“activate” (or unmask) the thermogenic properties of pre-existing beige cells. This concept 

is supported by a recent study showing that cold-induced UCP1+ cells acquire a white-like 

unilocular morphology after the animals are warmed and that these same cells re-activate 

UCP1 in response to another bout of cold (Rosenwald et al., 2013). Given this model, the 

extent to which beige fat cells arise by recruitment or activation may depend on the 

environmental history and age of the animal. For example, animals housed in warmer 

conditions may not acquire many beige adipocytes during normal tissue turnover and may 

therefore depend on higher levels of de novo beige adipogenesis when subjected to cold. 

This does not preclude the possibility that some white fat cells transdifferentiate to beige fat 

cells under unusual circumstances, perhaps very extended cold.

It is important to note that many of the studies described above have used the inguinal WAT 

of mice as a model of WAT beige-ing. The inguinal WAT is a major subcutaneous depot 

that expresses relatively high levels of PRDM16 and has an inherently high beige-ing 

response (Seale et al., 2011). Mechanisms of beige fat development (i.e., emergence of 

UCP1+ adipocytes) may differ greatly in other WAT depots. For example, the epididymal 

WAT of mice, a depot that is much less prone to beige-ing, contains bipotent adipogenic 

precursor cells that can give rise to both white and beige (UCP1+) adipocytes depending on 

environmental conditions (Lee et al., 2012). Ongoing and future studies will determine 

whether there are functionally distinct types of beige adipocytes in different WAT depots of 

mouse and man. In adult humans, UCP1-positive beige adipocytes emerge in subcutaneous 

WAT depots of severely burned subjects (Sidossis et al., 2015). The emergence of beige 

adipocytes appears to be highly location-dependent, such that future studies will need to 

establish the consensus regarding the locations of adipose tissue biopsies.

2. Molecular Regulation of Beige Adipocyte Development

Because beige adipocyte development is highly inducible, a special emphasis has been given 

to this cell type as an appealing cellular target of new obesity therapeutics. Given the recent 

reports that adult human BAT largely contains beige-like adipocytes (Lee et al., 2014c; 

Sharp et al., 2012; Shinoda et al., 2015; Wu et al., 2012), understanding the molecular 

circuits that promote WAT beige-ing may lead to new therapeutic opportunities in obese 

and/or elderly people who lack sufficient amounts of active BAT depots.

Over the past few years a number of studies have identified positive or negative regulators 

of brown and beige adipocyte development, as summarized by recent reviews (Harms and 

Seale, 2013; Kajimura and Saito, 2014; Wu et al., 2013). Another important advance is the 

development of new expression databases. As an example, independent groups have 

developed publically available expression databases of brown and beige adipocytes, 

including RNA-sequencing in mice and in humans (Alvarez-Dominguez et al., 2015; Ohno 

et al., 2013; Shinoda et al., 2015; Wang et al., 2014b), microarrays (Wu et al., 2012; Zhao et 
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al., 2014), translating ribosome affinity purification (TRAP) analysis (Long et al., 2014), 

mitochondrial proteome (Forner et al., 2009), and ChIP-sequencing (Loft et al., 2015; 

Rajakumari et al., 2013). These databases serve as important resources for the scientific 

community to search for novel regulators and cell-type selective markers. Here, we review 

recent progresses on molecular circuits that control beige adipocyte development in response 

to a variety of external and internal cues.

Transcriptional and epigenetic regulators—While many of the transcriptional 

regulators act as negative regulators of brown/beige adipocyte biogenesis, a few 

transcriptional regulators function as powerful activators for brown and beige adipocyte 

development. Such regulators include Forkhead box C2 (FoxC2) (Cederberg et al., 2001), 

and PRDM16 and its binding partners in the PRDM16 transcriptional complex, such as 

PPARγ coactivator 1α (PGC1α), C/EBP-β, and Euchromatic histone-lysine N-

methyltransferase 1 (EHMT1) (Fig. 1). Intriguingly, PRDM16 expression in white 

adipocytes not only activate the brown fat-selective gene program but also represses the 

white or muslce-selective gene program (Kajimura et al., 2008; Seale et al., 2008; Seale et 

al., 2007). Genetic ablation of these regulators leads to a substantial impairment in the 

determination and/or maintenance of brown adipocytes (Harms et al., 2014; Harms et al., 

2015; Kajimura et al., 2009; Ohno et al., 2013; Rajakumari et al., 2013; Seale et al., 2008). 

Furthermore, beige adipocyte development is significantly attenuated when PRDM16 or 

EHMT1 are deleted in an adipose-specific manner (Cohen et al., 2014; Ohno et al., 2013; 

Ohno et al., 2012). Recent studies identified several new transcriptional regulators that 

control brown and beige adipocyte differentiation through the PRDM16 pathway. For 

example, ZFP516 promotes beige adipocyte development by directly interacting with 

PRDM16 and activating its transcriptional activity (Dempersmier et al., 2015). PLAC8 acts 

as an upstream activator of C/EBP-β and induces brown fat differentiation (Jimenez-Preitner 

et al., 2011) (Fig. 1). On the other hand, TLE3 antagonizes the function of PRDM16 and 

suppresses brown fat differentiation and thermogenesis (Villanueva et al., 2013). Currently, 

all the identified transcriptional and epigenetic regulators appear to act both in classical 

brown adipocytes and beige adipcoytes.

Modulation of cellular fate is associated with dynamic chromatin remodeling. Recent ChIP-

sequencing analyses of histone modifications identified distinct chromatin artetectures 

between BAT and WAT (Loft et al., 2015; Rajakumari et al., 2013). In addition, histone 

modifying enzymes, such as EHMT1 and JMJD1A (also known as KDM3A), are essential 

for the maintenance of chromatin artitechtures that favor brown/beige adipocytes through 

interacting with the key transcriptional complexes. EHMT1 function as an essential lysine 

methyltransferase in the PRDM16 transcriptional complex and required for brown/beige 

adipose cell fate (Ohno et al., 2013). We have previously shown that PRDM16 potently 

represses the muscle-selective or WAT-selective gene programs in a EHMT1-dependent 

fashion (Harms et al., 2014; Ohno et al., 2013). Consistent with the clinical observations that 

approximately 40-50% of the EHMT1 haploinsufficiency patients exhibit an obese 

phenotype (Cormier-Daire et al., 2003; Willemsen et al., 2012) and that EHMT1 expression 

correlate well with UCP1 in adult human BAT (Nagano et al., 2015), adipose-specific 

deletion of EHMT1 in mice reduces BAT-mediated thermogenesis and causes obesity and 
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insulin resistance (Ohno et al., 2013). JMJD1A forms a transcriptional complex with the 

SWI/SNF nucleosome remodeling complex and controls β1-adrenergic receptor (b1-AR) 

and it’s downstream BAT-selecive genes in BAT (Abe et al., 2015). Whole body knockout 

mouse for Jhjd1a gene reduces β-AR-induced fatty oxidation and oxygen consumption in 

BAT and confers an obese phenotype (Inagaki et al., 2009; Tateishi et al., 2009).

Non-coding RNAs—Non-coding RNAs provide another layer of regulation in the 

differentiation of brown and beige adipocytes. Several microRNAs (miR), including 

miR-133, miR-193b, and miR-365, target PRDM16 and negatively regulate brown and 

beige adipocyte development in mice (Liu et al., 2013; Sun et al., 2011; Trajkovski et al., 

2012; Yin et al., 2013). miR-196a activates C/EBP-β expression and induces beige 

adipocyte differentiation through repression of HoxC8, a negative regulator of C/EBP-β 

(Mori et al., 2012), whereas miR-155 represses CEBP-β expression and impairs brown 

adipocyte differentiation (Chen et al., 2013). Additionally, miR-378 and miR-30 activate 

brown or beige adipocyte differentiation by targeting repressors of BAT thermogenesis, 

such as phosphodiesterase1b (PDE1b) and receptor-interacting protein 140 (RIP140), 

respectively (Hu et al., 2015; Pan et al., 2014). Similarly, long non-coding RNAs, such as 

Inc-BATE1 and Blinc1, are required for brown and beige adipocyte differentiation by 

forming a nuclear ribonucleoprotein complex to control the thermogenic gene program 

(Alvarez-Dominguez et al., 2015; Zhao et al., 2014). Conversely, miR-34 acts as a repressor 

of beige and brown adipocyte differentiation by repressing FGF21 and SIRT1 expression in 

mice (Fu et al., 2014). In cultured human adipocytes, miR-26 has been identified as activator 

of beige adipocyte differentiation and cellular respiration (Karbiener et al., 2014). While 

such non-coding RNAs are appealing tools to modulate BAT-thermogenesis, cell/tissue-type 

selectivity of the actions need be carefully examined.

3. Environmental Cues that Control Beige Adipocyte Recruitment

Table 1 summarizes recent findings regarding the molecular mechanisms of environmental 

cue-induced beige adipocyte biogenesis. Chronic cold exposure is a well-known stimulus 

that powerfully promotes brown and beige adipocyte development. Human studies using18F-

FDG-PET/CT scans found that adult human BAT activity increases after chronic cold 

exposure even in subjects who do not possess appreciable amounts of BAT before cold 

exposure (Lee et al., 2014b; van der Lans et al., 2013; Yoneshiro et al., 2013). Upon cold 

exposure, NE may be released from the sympathetic nerve or M2 macrophages to activate 

the BAT/beige fat thermogenic program (Nguyen et al., 2011; Young et al., 1982). These 

pathways also stimulate Ucp1 transcription through enhancing phosphorylation of 

transcriptional regulators including PGC1α, CREB, and ATF2 (Collins, 2011). While the β-

adrenergic signaling pathway is clearly a dominant circuit, recent observations indicate that 

alternative pathways play roles in regulating beige adipocyte biogenesis. In many cases, it 

remains unclear whether these non-canonical stimuli that affect beige fat development also 

affect the recruitment and/or thermogenic activity of brown fat. Given the inducible nature 

of beige adipocytes as compared to classical brown adipocytes, it has been easier to identify 

factors that regulate UCP1 levels in the beige compartment. A key question for future 

studies will be to determine if increased beige fat development and UCP1-induction in white 

fat in response to various stimuli is associated with increases in local thermogenesis.
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Recent studies, as summarized below, report new regulatory circuits of beige adipocyte 

development, some of which do not necessarily demand thermogenesis per se (e.g., exercise 

and bariatric surgery). These studies imply that biological significance of beige adipocytes 

may go beyond simply generating heat in response to sympathetic nerve stimulation.

Exercise—Irisin and Meteorin-like (METRNL) are recently identified exercise-induced 

myokines that are induced in muscle through the PGC1α pathway. Administration of Irisin 

and METRNL via adenoviral vectors powerfully activates beige adipocyte development in 

mice (Bostrom et al., 2012; Rao et al., 2014). In adult humans, circulating irisin is also 

increased during cold exposure (Lee et al., 2014a). Mechanistically, irisin induces the beige 

adipocyte-gene program in a cell-autonomous manner, presumably through a selective 

receptor. Human irisin has recently been shown to employ a non-canonical initiator codon 

(ATA) for its translation, suggesting that it might be subject to complex regulation in muscle 

and/or other tissues (Jedrychowski et al., 2015). On the other hand, METRNL promotes an 

eosinophil-dependent activation of M2 macrophages to elicit beige adipocyte biogenesis 

(Rao et al., 2014). IL6 is a well-known exercise-induced myokine that has been shown to 

activate beige adipocyte development and also be required for exercise-induced WAT beige-

ing in mice (Knudsen et al., 2014). In addition, metabolites derived from skeletal muscle 

after exercise, such as lactate and ß-aminoisobutyric acid (BAIBA), promote beige 

adipocyte biogenesis in the subcutaneous WAT depots in mice (Carriere et al., 2014; 

Roberts et al., 2014). Intriguingly, a recent study also showed that transplantation of the 

subcutaneous WAT from exercised-trained mice into the visceral cavity of sedentary mice 

significantly improves systemic glucose homeostasis. This improvement is associated with 

an enhanced insulin-stimulated glucose uptake in the skeletal muscle and BAT, suggesting a 

role for secreted molecules/metabolites from the subcutaneous WAT (Stanford et al., 2015).

Cancer Cachexia—Cancer cachexia, characterized by weight loss, chronic inflammation 

and muscle/adipose atrophy, is often associated with higher resting energy expenditure. This 

increased energy expenditure may be partly due to enhanced WAT beige-ing as has been 

seen in mouse models of K-ras induced pancreatic and lung cancer (Petruzzelli et al., 2014). 

For instance, blockade of IL6 or BAT denervation significantly impaired cachexia-

associated beige adipocyte biogenesis (Petruzzelli et al., 2014). In addition, Parathyroid 

hormone related protein (PTHrP) derived from the Lewis lung carcinoma potently promotes 

beige adipocyte biogenesis (Kir et al., 2014). High level of serum PTHrP is associated with 

lean body mass in cachectic mice and humans. Treatment of cachectic mice with 

neutralizing antibody for PTHrP blocked WAT beige-ing and the loss of muscle mass and 

strength, indicating that PTHrP is the major lung-tumour-derived factor stimulating beige 

adipocyte biogenesis and hypermetabolism, at least in this experimental model of cachexia.

Burn-induced cachexia—In addition to cancer cachexia, a recent study by Sidossis’s 

group reported that beige adipocyte development is highly induced in the human 

subcutaneous WAT of severely burned subjects. In the burn patients, significantly higher 

levels of urinary epinephrine and norepinephrine excretion are observed. In addition, several 

inflammatory cytokines, including IL-6, IL-8, and IL-10, are high. While the underlying 
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mechanisms here require further study, these circulating factors may contribute to the burn-

induced WAT beige-ing in humans (Sidossis et al., 2015).

Environmental enrichment—Mice in an enriched environment with complex physical 

and social stimuli exhibit higher whole body energy expenditure and are more resistant to 

diet-induced obesity. Hypothalamic brain-derived neurotrophic factor (BDNF) mediates the 

environment-associated activation of the sympathetic nerve system (SNS) and promotes 

beige adipocyte differentiation. Notably, hypothalamic overexpression of BDNF is sufficient 

to promote beige adipocyte biogenesis and increased energy expenditure (Cao et al., 2011).

Innate immunity—Innate immune pathways are known to control adipose tissue function 

and systemic glucose homeostasis (Molofsky et al., 2013; Wu et al., 2011). Interestingly, 

decreased group 2 innate lymphoid cells (ILC2) in WAT are associated with obesity in 

humans and mice (Brestoff and Artis, 2015). IL-33 is required for the maintenance of ILC2s 

in WAT and also for beige adipocyte development in mice (Brestoff et al., 2015; Lee et al., 

2015a). Conversely, IL-33 treatment is sufficient to promote beige adipocyte biogenesis and 

increased whole body energy expenditure. IL33-action in WAT involves multiple 

mechanisms including: (1) increasing the production of Met-enkephalin peptides by ILC2s 

which acts on adipocytes (Brestoff et al., 2015); and (2) stimulating IL4 secretion by 

eosinophils which acts to promote the proliferation and beige differentiation of adipogenic 

precursor cells (Lee et al., 2015a). In addition, alternatively activated (type2/M2) 

macrophages are recruited to the subcutaneous WAT and secrete catecholamines to activate 

BAT and induce beige adipocyte development (Nguyen et al., 2011). Mice that lacked IL4 

signaling or the capacity to produce catecholamines selectively in macrophages appeared to 

have an impaired beige adipocyte development under cold (Qiu et al., 2014). However, 

relative contribution of M2 macrophage versus sympathetic nerve-mediated beige adipocyte 

development and whole body energy expenditure awaits further investigation.

Bariatric surgery—Bariatric surgery is an effective approach to reduce body weight and 

ameliorate type 2 diabetes. In a human study using FDG-PET scans, higher BAT activity 

(i.e., glucose uptake) was observed in morbidly obese subjects one year after laparoscopic 

adjustable gastric banding surgery (Vijgen et al., 2012). Similarly, body weight reduction by 

the Roux-en-Y gastric bypass (RYGB) was associated with an increase in BAT activity 

under cold. This increase in BAT activity levels appears to be independent of hypothalamic 

activity (Rachid et al., 2015). In mice, higher expression of UCP1 was observed in the 

gonadal WAT but not in the inguinal WAT after RYGB surgery. This increase in UCP1 

expression is associated with an increase in the gene expression of b3-adrenoceptor, 

natriuretic peptides, ANP, and BNP (Neinast et al., 2015). The underlying mechanisms by 

which bariatric surgery promotes beige adipocyte biogenesis remain elusive.

Extrinsic regulators—Studies over the past few years have identified a variety of 

secreted factors and hormones that control beige adipocyte development. Such factors 

include Bone Morphogenetic Protein (BMP)4 (Qian et al., 2013), BMP7 (Schulz et al., 

2011; Tseng et al., 2008), BMP8b (Whittle et al., 2012), Fibroblast Growth Factor (FGF)21 

(Emanuelli et al., 2014; Fisher et al., 2012), Growth Differentiation Factor (GDF)5 (Hinoi et 
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al., 2014), natriuretic peptides (Bordicchia et al., 2012), prostaglandins (Madsen et al., 2010; 

Vegiopoulos et al., 2010), and Vascular Endothelial Growth Factor (VEGF) (During et al., 

2015; Sun et al., 2012). When treated with each factor, mice exhibit increase whole body 

energy expenditure and are protected from diet-induced body weight gain and insulin 

resistance. Conversely, Transforming Growth Factor (TGF)-β and Notch are up-regulated 

under obesity and blocks beige adipocyte differentiation. Blockade of TGF-β signaling by 

genetic ablation of Smad3 or by neutralizing antibody for TGF-β promote beige adipocyte 

development and protects animals from diet-induced obesity and insulin resistance 

(Koncarevic et al., 2012; Yadav et al., 2011). Similarly, genetic or pharmacological 

inactivation of Notch signaling induces beige adipocyte development (Bi et al., 2014). 

Therapeutic application of these endocrine regulators in obese humans would be an 

important topic in the near future.

Neuronal circuits—BAT thermogenesis is highly regulated by the core thermoregulatory 

neural network in the central nerve system (CNS). Series of neuroanatomical studies 

developed a neuroanatomical network model for thermoregulation in the interscapular BAT 

in response to cold and warm temperature (Morrison et al., 2014). Recent studies further 

identified new neuronal circuits that control brown and beige adipocyte thermogenesis. For 

example, activation of hepatic glucokinase leads to impaired thermogenesis in BAT through 

the BAT-liver connection between the afferent vagues from the liver and sympathetic 

efferents from the medulla to BAT (Tsukita et al., 2012). More recently, Elmquist’s group 

reported that deletion of PPARγ in the Phox2b-positive vagal sensory neurons promotes 

beige adipocyte biogenesis (Liu et al., 2014).

Activation of hypothalamic POMC neurons by leptin and insulin treatment promotes beige 

adipocyte biogenesis (Dodd et al., 2015), whereas inhibition of AgRP neurons by genetic 

deletion of O-linked β-N-acetylglucosamine promotes beige adipocyte biogenesis (Ruan et 

al., 2014). On the other hand, depletion of serotonergic neurons in the CNS attenuates the 

thermogenesis in the interscapular BAT as well as WAT beige-ing (McGlashon et al., 2015). 

These studies indicate new neuronal circuits that control brown and/or beige adipocyte 

thermogenesis in rodents. It would be important to address if such neuronal regulatory 

circuits are conserved in adult humans.

4. Therapeutic Opportunities in Adult Humans

A major goal in this field is to determine if activation of brown/beige fat thermogenesis can 

prevent body weight gain and reverse metabolic abnormalities in adult humans. Several 

studies clearly demonstrate that chronic cold acclimation is able to recruit higher levels of 

activated BAT depots in the supraclavicular region of adult humans (Lee et al., 2014b; van 

der Lans et al., 2013; Yoneshiro et al., 2013). Importantly, this chronic cold-stimulated BAT 

recruitment is associated with an improvement in post-prandial insulin sensitivity (Lee et al., 

2014b) or with an increase in cold induced energy expenditure (van der Lans et al., 2013; 

Yoneshiro et al., 2013). Hence, promoting BAT recruitment is an important aspect to be 

considered for those who do not possess sufficient amounts of active BAT, such as obese 

and elderly population.
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The β3-AR pathway is a dominant signaling pathway to activate BAT thermogenesis in 

rodents and in humans, however, adverse effects on the cardiovascular system hampered the 

use of β-AR agonists in the clinic (Villarroya and Vidal-Puig, 2013). Recently, Cypess and 

colleagues reported that oral administration of a selective β3-AR agonist Mirabegron 

robustly stimulated glucose uptake in the BAT depots in healthy adult humans, in parallel 

with an increase in resting metabolic rate (Cypess et al., 2015). On the other hand, minimal 

efficacy on BAT activity was observed in obese subjects after administration of a pan-

adrenergic agonist Ephedrine (Carey et al., 2013). The lack of efficacy of β-AR agonists in 

obese subjects appears to be due to an impaired β-AR signaling and/or development of 

resistance to the β-AR agonists in adipose tissues. The underlying mechanisms for the β-AR 

resistance remain poorly understood and should be further investigated.

Saito’s group demonstrated that six weeks treatment of with capsinoids, non-pungent 

capsaicin analogs, led to an increase in cold-induced thermogenesis that may have been 

associated with the recruitment of new BAT in subjects with undetectable BAT before the 

treatment (Yoneshiro et al., 2013). More recently, Saito’s group found several dietary 

substances, such as catechins are able to increase BAT recruitment (In Preparation). These 

data indicate that new BAT can be recruited (and/or activated) by dietary supplements as 

well as cold-exposure in humans.

In addition to the above compounds that have been tested in adult humans, new candidates 

are identified through a variety of approaches and shown to be effective at least in rodent 

models. For example, we have recently developed a mouse model, termed ThermoMouse in 

which luciferase expression is regulated by the Ucp1 gene regulatory elements. A cell based 

high-throughput screen platform using brown adipocytes from ThermoMouse identified a 

small compound WWL113 that induces UCP1 expression and whole body energy 

expenditure in vivo (Galmozzi et al., 2014). This study provides an important proof of 

concept that targeting UCP1 using small molecules can be a plausible approach for 

enhancing whole body energy expenditure in vivo. Additionally, a number of synthetic 

agonists or inhibitors, such as the PPARγ agonists (Ohno et al., 2012; Petrovic et al., 2010; 

Qiang et al., 2012), FXR agonist fexaramine (Fang et al., 2015), soluble guanylyl cyclase 

(Hoffmann et al., 2015), GLP-1 agonist (Beiroa et al., 2014), Notch inhibitor (Bi et al., 

2014) and amlexanox, an inhibitor of TBK1 and IKK-e (Reilly et al., 2013), potently 

increase whole body energy expenditure by activating thermogenesis in BAT and/or by 

promoting beige adipocyte biogenesis. Clinical applications of the above compounds await 

further investigation.

5. New Function of Beige Fat in Energy Homeostasis

The biomedical interest in brown and beige fat cells is centered on the capacity of these cells 

to counteract obesity and metabolic disease. Classical experiments by Rothwell and Stock 

first demonstrated that brown fat is activated by various high-calorie diets and that this 

provided a potential mechanism to limit weight/fat gain (Rothwell and Stock, 1979). In 

support to this, BAT and beige fat-deficient mice expressing a Ucp1-driven toxygene, 

develop obesity and insulin resistance in the absence of hyperphagia (Lowell et al., 1993). 

Further evidence supporting a natural role for BAT in regulating body weight/composition 
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came from recent studies of UCP1-knockout mice. These animals display an increase in 

metabolic efficiency and gain more weight than wild-type controls when housed under 

thermoneutral conditions (Feldmann et al., 2009). Importantly, high fat diet increases the 

thermogenic capacity of BAT in wild-type but not in UCP1-knockout animals. Of note, 

UCP1-knockout mice are not obese when housed under standard room temperature 

conditions. This suggests that alternative thermogenic mechanisms, which are engaged in 

response to cold, also suppress weight gain and can conceal the role of UCP1 in body weight 

regulation.

Genetic or pharmacological elevation of brown and/or beige fat activity in mice provides 

further protection against metabolic disease and obesity. Many mouse models have 

increased brown/beige fat function and a correlated resistance to high fat diet-induced 

obesity and insulin resistance. Importantly, these results indicate that the ectopic increases in 

brown fat are not necessarily counteracted by increases in metabolic efficiency or higher 

food intake.

Currently there is no experimental system that allows for quantitative estimation of brown 

vs. beige in rodents and in humans. However, recent results, as discussed below, indicate 

that beige adipocytes contribute significantly to the regulation of whole-body energy 

expenditure and systemic glucose/lipid homeostasis.

Anti-diabetic role of beige fat—Perhaps the most obvious area of interest is in type 2 

diabetes and insulin resistance. In fact, improvement in systemic glucose homeostasis and 

insulin sensitivity is associated with glucose uptake activity in adult human BAT 

(Chondronikola et al., 2014; Lee et al., 2014b). Loss of fat mass would be expected to be 

accompanied by improvements in insulin resistance and indeed that is usually observed. 

However, the improvements in glucose tolerance and/or insulin resistance often seem well 

out of proportion to the anti-obesity effects. For example, fat selective expression of 

PRDM16 in obese transgenic mice causes a modest but significant decrease in total adipose 

mass, accompanied by a small improvement in insulin resistance (Seale et al., 2011). On the 

other hand, glucose tolerance was vastly improved. This data strongly suggested that 

expansion and activation of (in this case) beige adipocytes improved glucose tolerance by 

mechanisms that may not be limited to insulin sensitivity. Perhaps the beige adipocytes clear 

glucose from the blood through mechanisms that are not totally insulin-dependent or 

perhaps systemic glucose tolerance is improved via some as yet unknown mechanisms. 

Conversely, adipose-specific deletion of PRDM16 (Cohen et al., 2014) or its co-activator 

EHMT1 (Ohno et al., 2013) significantly impaired adipocyte development and caused 

insulin resistance before the development of obesity. While this stimulates a mild obesity, 

with increased fat accumulation in the subcutaneous depot, a striking metabolic phenotype 

in the adipose-specific knockout mice of PRDM16 or EHMT1 is hepatic steatosis. Taken 

together, these data strongly suggest (but do not prove) that brown and beige fat play some 

important function in glucose homeostasis that goes beyond the dissipation of calories stored 

as fat. A specific role for beige fat in directly lowering circulating glucose and blood fatty 

acids via oxidation could explain a “kick-on” effect on other aspects of glucose homeostasis 

if the liver is forced to absorb this energy and become steatotic when beige fat is lost. In 

fact, BAT functions as a major “metabolic sink” not only for glucose but also for 
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lipoproteins and fatty acids (Bartelt et al., 2011), and presumably for other metabolites. 

Hence, therapeutic potential of brown and beige fat may not simply be limited to anti-

obesity therapy, but can also be explored in the treatment of fatty liver diseases.

Endocrine Function—Since white fat cells secrete many adipokines, it is not far fetched 

to think that brown and beige fat cells might secrete “batokines” with various functions. 

Along the same lines, endurance exercise has been shown to stimulate beige-ing of the 

subcutaneous adipose tissue in rodents (Bostrom et al., 2012). Transplantation of the 

inguinal WAT depots from exercised mice improves various aspects of glucose homeostasis 

much more than equivalent fat transplantations from sedentary mice (Stanford et al., 2015). 

Hence, the notion that classical brown and/or beige fat may secrete other molecules that 

improve glucose homeostasis must be considered and studied. Regarding this hypothesis, 

two polypeptides secreted by muscle with exercise, irisin and METRNL, have also shown to 

be secreted by beige fat when challenged with cold. FGF21 and BMP8b have also been 

shown to be secreted by adipose tissues and induced in the cold, suggesting a paracrine or 

autocrine “batokine” function. More recently, it has been shown that neuregulin 4 (NRG4), a 

member of the epidermal growth factor (EGF) family of extracellular ligands, is secreted 

from BAT and regulates hepatic lipid metabolism by inhibiting lipogenesis in the liver 

(Wang et al., 2014a). The substrate depletion and “batokine” models are of course not 

mutually exclusive.

Adipose tissue remodeling—WAT beige-ing is associated with dynamic adipose 

remodeling in the subcutaneous WAT. For instance, increased microcapillary formation and 

tyrosine hydroxylase (TH)-positive nerve (i.e., sympathetic nerve) innervation are tightly 

coupled with the clusters of beige adipocytes within WAT (Cinti, 1999). Xue et al., reported 

that chronic cold exposure activates angiogenesis in the inguinal WAT both in wild type and 

UCP1 null mice (Xue et al., 2009). Neutralizing antibody for VEGF-R2, but not VEGF-R1, 

significantly blocked the cold-induced angiogenesis in WAT. Conversely, adipose tissue-

selective VEGF expression promotes beige adipocyte biogenesis in WAT (During et al., 

2015; Sun et al., 2012), indicating that VEGF controls not only angiogenesis but also the 

beige adipocyte differentiation program. Nerve growth factor (NGF) is also abundantly 

expressed in BAT and regulated by cold and obesity (Nisoli et al., 1996). However, whether 

NGF is required for nerve innervation during WAT beige-ing is unknown.

In addition to angiogenesis and innervation, innate and adaptive immune cells, including 

eosinophil, macrophages, T-regs, and ILC2, are recruited within adipose tissues and controls 

not only inflammatory responses but also beige adipocyte biogenesis (Brestoff and Artis, 

2015), providing an alternative pathway to regulate adipose tissue composition. Another 

intriguing aspect during the WAT beige-ing may be adipose fibrosis. TGF-β expression in 

the WAT is highly increased under obesity and powerfully drives adipose fibrosis, while 

blocking the TGF-β signaling pathway promotes beige adipocyte development (Koncarevic 

et al., 2012; Yadav et al., 2011). Given the recent studies showing that a population of beige 

adipocytes arises from a SMA+ smooth muscle lineage (Long et al., 2014) and that 

expression of SRF-target genes, such as SMA and Collagen1a1 and 3a1, are down-regulated 
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during beige adipocyte differentiation (McDonald et al., 2015), it is conceivable that beige 

adipocyte recruitment is coupled with inhibition of adipose fibrosis.

UCP1-independent thermogenesis—UCP1 dissipates the proton gradient in the form 

of heat by uncoupling cellular respiration from mitochondrial ATP synthesis. Because UCP1 

null mice are cold sensitive and fail to maintain body temperature in response to prolong 

cold exposure (Enerback et al., 1997; Golozoubova et al., 2001), UCP1 is considered to be 

the major “thermogenin” that is responsible for adaptive non-shivering thermogenesis 

(Nedergaard et al., 2001). On the other hand, Granneman et al. reported that chronic 

stimulation of β3-AR significantly increased metabolic rate in UCP1 null mice, although the 

induction was lower than what was observed in wild type mice (Granneman et al., 2003). 

This UCP1-independent increase in metabolic rate is accompanied by an increase in 

mitochondrial biogenesis and lipid oxidation in the WAT of UCP1 null mice, indicating that 

beige adipocyte may possess UCP1-independent thermogenesis. Intriguingly, two recent 

papers showed that FGF21 treatment was able to reduce body weight gain and improved 

glucose and lipid homeostasis even in UCP1 null mice (Samms et al., 2015; Veniant et al., 

2015). While the FGF21’s effects appear to be partly due to reduced food intake (Samms et 

al., 2015), FGF21 also potently increases PGC1α expression in the inguinal WAT of UCP1 

null mice (Veniant et al., 2015).

Recent data indicates that beige adipocytes contain a second thermogenic pathway that relies 

on futile cycling of creatine and creatine phosphate. It is noteworthy that this pathway is 

thermogenic but depends on coupled rather than uncoupled respiration. Interestingly, several 

components of this pathway are elevated in UCP1 KO mice, and chemical inhibition of this 

pathway suggests that it is indeed involved in thermal defense when the UCP1 pathway is 

ablated (Kazak et al., 2015). These data indicate the existence of UCP1-independent 

mechanisms that control thermogenesis and/or metabolism in adipose tissues and maybe in 

other organs.

6. Emerging Questions

A major function of BAT remains thermogenesis via UCP1. However, as we learn more 

about the two types of thermogenic adipocytes, i.e., classical brown adipocytes and beige 

adipocytes, it is important to ask whether these cells have additional functions in regulating 

systemic metabolism that may go beyond UCP1-mediated thermogenesis. In this regard, it is 

likely that BAT is not simply a heat-generating organ: some of the metabolic improvements 

observed through increasing beige fat mass are not mediated by UCP1 (Fig.3). In particular, 

brown/beige fat secrete several “batokines” that may function in an endocrine, autocrine, 

and/or paracrine manner to control systemic glucose and lipid homeostasis. Furthermore, the 

metabolic significance of brown/beige fat acting as “metabolic sink” for toxic substances 

should be investigated. Finally, WAT beige-ing is associated with large-scale tissue 

remodeling, including increased micro-capillary formation, nerve innervation, and 

modulation of immune cell populations. These changes in other tissue components likely 

affect the local and systemic metabolism. Determining how the various cell types in adipose 

interact with one another is an important area for future study.
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Another important goal is to establish reliable quantitative methods to measure human BAT 

mass regardless of environmental conditions. While 18F-FDG-PET based measurement has 

recently been substantially improved, the assessment is highly variable depending on the 

conditions of measurement, such as outside temperature and length of cold exposure 

(Sidossis and Kajimura, 2015). Furthermore, FDG measurements are based on glucose 

uptake, which represents only one function of BAT. It will also be important to development 

new devices/techniques that have enough sensitivity and resolution to detect beige 

adipocytes that sporadically reside in subcutaneous WAT and other adipose depots. The 

identification of specific cell surface markers and circulating markers that reflect brown fat 

mass would be a huge advance.

Lastly, an improved understanding of the beige adipocyte-selective signaling pathways will 

allow us to selectively target WAT beige-ing for therapeutic effect. We also need to 

understand the mechanisms of beige adipocyte maintenance, as beige adipocytes gradually 

lose their thermogenic characteristics after removing the appropriate external cues. These 

studies will lead to a plausible approach to increase whole body energy expenditure and 

improve glucose/lipid homeostasis in human populations who have little or no existing 

active BAT, such as obese and/or elderly populations.
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Figure 1. Brown adipocyte development
A multipotent cell population in the somitic mesoderm gives rise to: dorsal dermis, skeletal 

muscle, brown adipocytes and white adipocytes in certain depots. EBF2 marks committed 

brown preadipocytes and may also regulate the commitment process from upstream stem 

cells. EWS controls the expression of BMP7 by brown fat precursor cells, which in turn 

promotes brown adipocyte differentiation by acting in an autocrine manner. EBF2, 

PRDM16, C/EBP-β, and ZFP516 specifically regulate the induction of brown fat-specific 

genes during the differentiation process. PRDM16 binds and activates C/EBP-β, PPARγ, 

PPARα, Thyroid receptor (not shown) and ZFP516. Cold exposure/norepinephrine (NE) 

activates brown adipocytes to express high levels of thermogenic genes; this activation 

process is controlled, in large part, by PGC1α which interacts with IRF4 (Kong et al., 2014) 

and various Nuclear Receptors (NRs). MYF5 or MYOD control myoblast cell commitment, 

while MYOD, MYOG and MRF4 regulate myocyte differentiation and maturation. TLE3 

plays an important role in driving a white fat-specific differentiation program.
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Figure 2. Beige fat biogenesis
(Top panel) In inguinal WAT, β-adrenergic stimulation stimulates the de novo 

differentiation of EBF2+ precursor cells into beige adipocytes. In the absence of stimuli, 

these beige adipocytes lose their expression of UCP1 and their multilocular morphology and 

could be considered as “masked”. The thermogenic characteristics of these cells can be re-

activated by repeated stimulation. (Bottom panel) In epididymal WAT, bipotent precursor 

cells can be induced to undergo beige adipocyte differentiation in response to cold/β-agonist. 

Under other conditions (such as high fat diet), these cells may differentiate into white 

adipocytes.
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Figure 3. Physiological roles of brown and beige fat in energy metabolism
Thermogenic and non-thermogenic functions of brown and beige adipocytes are listed.
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Table 1

Cues and mediators that promote beige adipocyte recruitment.

Stimuli Mediators References

Chronic cold exposure beta-adrenergic receptors Lee et al., 2014b; van der Lans et al., 2013; Yoneshiro et al., 2013 
(Adult humans)

Exercise Irisin
Meteorin-like

IL-6
BAIBA
Lactate

Bostrom et al., 2012
Rao et al., 2014

Knudsen et al., 2014
Roberts et al., 2014
Carriere et al., 2014

Biatric surgery ANP, BNP? Rachid et al., 2015; Neinast et al., 2015

Cancer
Cachexia

IL-6
PTHrP

Petruzzelli et al., 2014
Kir et al., 2014

Burn-induced cachexia Epinephrine, norepinephrine, 
inflammatory cytokines?

Sidossis et al., 2015

Environmental enrichment BDNF Cao et al., 2011

Innate immunity IL-33
IL-4

Brestoff et al., 2015
Qiu et al., 2014

Endocrine hormones

BMP4
BMP7
BMP8b
FGF21
GDF5

Natriuretic peptides
Prostaglandins

VEGF

Qian et al., 2013
Schulz et al., 2011; Tseng et al., 2008

Whittle et al., 2012
Emanuelli et al., 2014; Fisher et al., 2012

Hinoi et al., 2014
Bordicchia et al., 2012

Madsen et al., 2010; Vegiopoulos et al., 2010
During et al., 2015; Sun et al., 2012 Ohno et al., 2012; Petrovic et 

al., 2010; Qiang et al., 2012

Synthetic compounds

PPARg agonists
FXR agonist

Notch inhibitor
GLP1 agonist

TBK1 and IKK-e inhibitor
Soluble guanylyl cyclase

TGF-beta antagonists

Fang et al., 2015
Bi et al., 2014

Beiroa et al., 2014
Reilly et al., 2013

Hoffmann et al., 2015
Koncarevic et al., 2012; Yadav et al., 2011
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