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Abstract

The limitations of cancer cell lines have led to the development of direct patient derived xenograft 

(PDX) models. However, the interplay between the implanted human cancer cells and recruited 

mouse stromal and immune cells alters the tumor microenvironment and limits the value of these 

models. To overcome these constraints, we have developed a technique to expand human 

hematopoietic stem and progenitor cells (HSPCs) and use them to reconstitute the radiation-

depleted bone marrow of a NOD/SCID/IL2rg−/− (NSG) mouse on which a patient’s tumor is then 

transplanted (XactMice). The human HSPCs produce immune cells that home into the tumor and 

help replicate its natural microenvironment. Despite previous passage on nude mice, the 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence: Antonio Jimeno, M.D., Ph. D., Professor of Medicine/Oncology and Otolaryngology, University of Colorado School 
of Medicine, 12801 E. 17th Avenue, MS-8117, Aurora, CO 80045, Phone: 303-724-3808; Fax: 303-724-2478, ; Email: 
Antonio.Jimeno@ucdenver.edu. Yosef Refaeli, Ph. D., Associate Professor of Dermatology, University of Colorado School of 
Medicine, 12800 E. 19th Avenue, MS-8320, Aurora CO 80045, Phone: 303-724-0966; Fax: 303-724-3051, ; Email: 
Yosef.Refaeli@ucdenver.edu
*denotes equal contribution

COMPETING FINANCIAL INTERESTS
A.J., Y.R., XJ.W. and D.R.R. are co-inventors of technology presented in this report. The other authors declare no competing financial 
interests.

HHS Public Access
Author manuscript
Oncogene. Author manuscript; available in PMC 2016 May 18.

Published in final edited form as:
Oncogene. 2016 January 21; 35(3): 290–300. doi:10.1038/onc.2015.94.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


expression of epithelial, stromal, and immune genes in XactMice tumors aligns more closely to 

that of the patient tumor than to those grown in non-humanized mice – an effect partially 

facilitated by human cytokines expressed by both the HSPC progeny and the tumor cells. The 

human immune and stromal cells produced in the XactMice can help recapitulate the 

microenvironment of an implanted xenograft, reverse the initial genetic drift seen after passage on 

non-humanized mice, and provide a more accurate tumor model to guide patient treatment.
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INTRODUCTION

The absence of native tumor stroma and interaction with the immune system are major 

limitations of xenograft models for studies of human tumor growth and metastasis. In order 

to produce a representative environment, xenograft tumor models must account for 

interactions between tumor, stromal, vascular, and immune cells (1, 2). Cell lines become 

homogeneous, and epithelial-stromal interactions are no longer present in vitro (3–5), 

consequently, conventional studies in cell line-derived tumors poorly predict clinical efficacy 

(6). Patient derived xenografts (PDX) implanted into immunocompromised mice are more 

representative of patient tumor growth, although genetic drift is observed in 

microenvironment genes (7–10), perhaps because the tumor stroma consists of recruited 

mouse cells (11).

Recent studies have taken incremental steps toward overcoming this obstacle. It has been 

shown that human tumors implanted with their own stromal tissues can temporarily simulate 

aspects of the host tumor microenvironment in immunocompromised mice (12). 

Alternatively, human hematopoietic cells can be engrafted in NOD/SCID/IL2rg−/− (NSG) 

mice to generate many features of the human immune system in these animals (13). In vitro 
modification of hematopoietic progenitor cells can produce human leukemia and lymphoma 

models with accurate bone-marrow tumor microenvironments (14, 15), while the 

introduction of human T cells and experimental monoclonal antibodies can be used to test 

immunotherapies in NSG xenograft models (16). Finally, the infiltration and activation of 

myeloid cells in xenografts has been examined in genetically modified NSG mice (17). 

However, a comprehensive examination of the growth, tumor-stroma interaction, and impact 

of humanization on gene expression of PDX in humanized mouse models has not been 

conducted.

We have developed an ex vivo technique to expand human hematopoietic stem and 

progenitor cells (HSPCs) derived from either cord blood or G-CSF mobilized adult 

peripheral blood (18). These HSPCs contain a population of rare hematopoietic stem cells 

(HSCs), capable of reconstituting the hematopoietic system of a mouse into which patient 

tumors are subsequently transplanted. In these humanized xenochimeric mice, or XactMice 

(Fig. 1a), the engrafted human HSPCs can express the chemical stimuli necessary to give 

rise to stromal and immune cells that recreate the original tumor microenvironment observed 
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clinically. The promise of this model is that it can provide a tumor microenvironment more 

representative of the human host, and it can reverse, at least partially, the genetic drift 

observed in classical PDX models.

RESULTS

Expansion of human HSPCs enables the generation of cohorts of XactMice

The generation of cohorts of XactMice with HSPCs from the same donor requires the 

expansion of HSPCs. The expansion of HSPCs from donated cord blood, or from G-CSF 

mobilized patient peripheral blood, was achieved using a protocol recently described by Bird 

et al, which utilizes MYC and Bcl2 proteins fused with the HIV protein transduction peptide 

Tat (18). Used in combination, Tat-MYC and Tat-Bcl2 are capable of expanding HSPCs 

long-term; however, these fusion proteins are degraded within 48 hours of exposure to 

culture medium. Therefore, there is no trace of these activities when the expanded HSPCs 

are transplanted into mice. Under these conditions, HSPCs proliferate stably in vitro (Fig. 

1b) while maintaining the HSC-associated abilities of self-renewal and differentiation into B 

and T cells in immunocompromised mice. After expansion in culture, we injected the 

HSPCs into sub-lethally irradiated NSG mice to generate XactMice. We verified the HSPC-

mediated bone marrow reconstitution by periodic flow cytometry of mouse peripheral blood 

for the presence of the hematopoietic cells expressing CD3 and CD45 human antigens (Fig. 

1c). We examined the peripheral blood of a cohort of XactMice over six months and found 

that this human CD3/45+ cell population remains stable (Fig. 1d). Additionally, after almost 

a year, we could still observe human T and B cells in the bone marrow and spleen 

(Supplemental Fig. 1a–b), indicating that the progenitor cells continue to proliferate after 

engraftment.

We have established a xenograft tumor bank, consisting of tumors from head and neck 

squamous cell carcinoma (HNSCC) patients undergoing surgical resection (19). Freshly 

resected tumor tissue is implanted heterotopically and then passaged in the flanks of nude 

mice. Although the passaged heterotopic tumors initially retain the histological features of 

the original tumor (also shown in (20, 21)), the human stroma is lost after 2–3 passages. We 

selected two cases from this tumor bank (CUHN004, passage 14; CUHN013, passage 5), 

and implanted them into cohorts of nude, NSG, and XactMice. We observed no significant 

differences in the tumor growth rate or gross histology between the different mouse strains, 

with the NSG and XactMice having identical growth rates (Fig. 1e–f; Supplemental Fig. 1c). 

To ensure reproducibility, experiments were repeated at least twice and all cohorts in this 

and subsequent experiments were composed of at least five randomly distributed male and 

female XactMice.

We also generated XactMice cohorts using expanded HSPCs from peripheral blood of adults 

treated with granulocyte colony-stimulating factor (G-CSF), which results in an increase in 

peripheral blood HSPCs and creates a window for their acquisition by a peripheral blood 

draw. We implanted tumor cells into the flanks of these XactMice, along with nude and NSG 

controls. Subsequent analysis revealed that the engrafted HSPCs were present in the bone 

marrow of these XactMice, and their progeny could be seen in the spleen, peripheral blood, 

and in the tumor (Supplemental Fig. 2, upper two panels). Lastly we generated cohorts of 
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XactMice from the HSPCs of HNSCC patients undergoing induction chemotherapy that 

received G-CSF to hasten bone marrow recovery (22). Analysis of the bone marrow, spleen, 

and blood of these mice showed that the HSPCs successfully engrafted. Since none of the 

patients from which these HSPCs were collected ultimately required surgery, no tissue 

existed to implant on these XactMice (Supplemental Fig. 2, lower panel). Although the 

ability to create XactMice from peripheral blood increases the utility of this model, the 

additional experiments shown below were conducted utilizing cord blood donors to 

minimize individual variations in the initial cohorts.

Human cells derived from humanized bone marrow are present in the stroma of XactMice 
tumors

The stroma that forms in a developing tumor has two primary cellular origins: (1) 

mesenchymal and immune cells originating from the bone marrow, and (2) fibroblasts and 

other cell types from local tissues (23). The cell surface antigen CD151 has been previously 

characterized as a mesenchymal cell marker and is found on many different human cell 

types (24, 25). Furthermore, CD45 is a human hematopoietic cell surface marker found on B 

and T cells, as well as on hematopoietic progenitors (26). Tumors grown in XactMice 

contain a unique and quantifiable population of cells displaying both human cell surface 

antigens CD45 and CD151, which is absent in the nude and NSG mice. Likewise, cells 

removed from XactMice bone marrow, spleen, and peripheral blood harbor similar double-

positive populations, while cells from nude and NSG mice lack these human markers (Fig. 

2). We observed that although the human cell population typically accounted for only 2–5% 

of the total bone marrow cells, this degree of engraftment was sufficient to produce immune 

cell infiltration into tumors and give rise to αSMA+ cells.

To show that the CD45/CD151+ cells originate within the XactMice humanized bone 

marrow we performed four different analyses using separate cohorts of XactMice. First, we 

employed short tandem repeat (STR) analysis, a well-documented forensic examination that 

compares highly variable DNA loci by PCR to establish the relationship between two or 

more DNA samples. We purified DNA from CD45/CD151+ cells sorted from CUHN004 

tumors grown on XactMice, and DNA from the originator CUHN004 patient sample (F0). 

We analyzed the DNA at two well-studied loci, TPOX and vWA, to identify STR 

polymorphisms (Fig. 3a). Our results show that the sorted cells are human and genetically 

distinct from tumor cells (27). Further, CD151 immunofluorescence analysis revealed the 

presence of individual human cells scattered throughout the otherwise unstained tumor 

stroma in the XactMice. These stromal cells were not present in the NSG mice (Fig. 3b,c). 

Next, we performed fluorescent in situ hybridization (FISH) analysis, using species-specific 

probes for highly repetitive Cot-1 DNA to clearly identify the species of each cell (28). We 

found that tumors in nude hosts were composed of human cells (red), encapsulated by and 

containing small islands of mouse stromal cells (green), as is typical of a xenograft tumor 

(Fig. 3d)(11). In contrast, tumors in the XactMice consisted of large bundles of human 

tumor cells (red), surrounded by bands of mouse stroma (green), in which human cells were 

interspersed (Fig. 3e). Finally, we derived XactMice using HSPCs from female cord blood, 

and implanted tumors from a male patient. FISH analysis for X and Y chromosomes 

revealed tightly packed XY epithelial tumor cells surrounded by stromal cells of mouse 
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origin in NSG mice (Fig. 3f) while in XactMice we observed individual XX cells scattered 

throughout the tumor stroma (Fig. 3g), in a pattern similar to that observed in the Cot-1 

FISH analysis. Taken together, these analyses show that the engrafted HSPC progeny 

migrate from the XactMice bone marrow and are incorporated into implanted tumors.

The stroma of XactMice tumors is infiltrated with human T and B cell populations

To determine the types of human stromal cells infiltrating XactMice tumors, we stained 

tumor sections from the CUHN004 and CUHN013 F0 patient tumors and corresponding 

NSG and XactMice xenografts with either human or human plus mouse pan-leukocyte 

CD45 antibodies (Fig. 4a–c). While the F0 tumors contained only human CD45+ cells (red) 

and the NSG tumors contained only mouse CD45+ cells (brown), the XactMice tumors 

contained both mouse and human CD45+ cells, indicating that HSC-generated cells are 

invading these tumors. We performed dual staining with human-specific antibodies to CD45 

and either CD3 (T cells), CD19 (B cells), or alpha smooth muscle actin (αSMA; fibrocytes) 

(Fig. 4d–f). The human T cell and B cell populations identified were distributed in similar 

patterns throughout the F0 and XactMice tumors (generally less abundantly in XactMice), 

and were absent in NSG or nude tumors from the same generation. The αSMA staining was 

not human-specific, as can be seen in the NSG tumors, but CD45/αSMA+ double-staining 

cells were identified in both the F0 and XactMice tumors, and they can be attributed to HSC 

differentiation. We also stained for human CD4+ cells. Their presence in XactMice tumors 

indicates that the HSPC-generated T cell progenitors can differentiate into T helper cells 

(Fig. 4g).

Humanization reverses genetic drift after passage in immune-compromised hosts

Since the XactMice model is designed to support xenograft tumor growth in a native 

environment, it is critical to demonstrate that it reduces genetic drift from the originator 

tumor compared to conventional models. To this end, we micro-dissected CUHN004 and 

CUHN013 tumor cells from flash-frozen tumors passaged in nude, NSG, and XactMice, as 

well as from the originator F0 patient tumors resected and flash frozen at the time of surgery. 

We isolated RNA and performed next generation sequencing to compare gene expression 

between tumors. A summary of the sequencing data (Table 1) shows that the CUHN013 

XactMice tumor transcriptome aligns more completely to the human genome than the nude 

or NSG-originated tumor transcriptomes. The tumor transcriptome from the CUHN004 

XactMice aligns slightly less completely to the human genome than that from the 

corresponding nude mouse, but its alignment is more complete than that of the NSG mouse. 

Likewise, while a dendrogram of the CUHN013 shows that the XactMice and the F0 patient 

tumors are most similar, the dendrogram comparing RNA expression between the 

CUHN004 tumors indicates that the XactMice transcriptome clusters separately from all 

others, indicating a fundamental difference in its gene expression (Fig. 5a). It is possible that 

these differences arise as a consequence of their different prior passages in nude mice.

To determine the pattern of gene drift upon XactMice implantation, we systematically 

analyzed the CUHN004 and CUHN013 sequencing data to identify differentially expressed 

genes, whose expression is similar in the F0 patient and XactMice tumors but different from 

their expression in the nude and NSG tumors (Supplemental Table 1). Although the 
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variability between the CUHN004 and CUHN013 tumors resulted in few overlapping genes, 

many of the genes identified were common to several general biological processes, including 

epithelial differentiation, peptidase inhibition, cell adhesion, and protein processing 

(Supplemental Table 2). We captured all Gene Ontology (GO) terms associated with the 

differentially expressed genes and used them to perform a gene set enrichment analysis 

(GSEA), calculating an enrichment score for each of these GO terms. Many of the most 

enriched GO terms are associated with the immune system, the extracellular matrix (ECM), 

or epithelial-mesenchymal transition (EMT). We created heatmaps for both tumors, 

comparing the expression of several core genes linked to these GO terms (Fig. 5b), and we 

generated a waterfall graph depicting the relative enrichment of all GO terms, highlighting 

those relevant to the above-indicated pathways (Fig. 5c). In CUHN004, thirteen of the top 

twenty most enriched GO terms are associated with the immune system, ECM, or EMT (p-

value<0.00001); for CUHN013, fifteen of the top twenty fall within these categories (p-

value<0.00001) (Fig. 5d). Conversely, of the GO terms that are enriched in the nude and 

NSG tumors, few play a role in these processes.

To clarify the relationship between differentially expressed genes and the enriched processes 

identified by their GO terms, we identified many genes expressed exclusively in the F0 

patient and XactMice tumors (Supplemental Table 3). Many of these genes play a role in the 

immune response or in EMT, or are components of the extracellular matrix, indicative of the 

HSPC-derived invasive cells playing an active role in stromal growth (Supplemental Table 

4). In support of this, several of the differentially expressed genes are related to stromal 

processes (29, 30).

Humanization modulates lymphangiogenesis and cytokine expression

Interestingly, our RNA sequencing data revealed increased expression of several pro-

lymphangiogenic factors including VEGF-C and IL8 in CUHN004; PDGF A and B, and 

endothelin-1 in CUHN013; and adrenomedullin, which was higher in both the CUHN004 

and CUHN013 XactMice xenografts compared to those from the NSG controls (Fig. 6a). 

Given that the lymphatic vasculature plays an essential role in immune surveillance, 

inflammation, and tumorigenesis (31, 32) and that bone marrow derived cells contribute to 

lymphangiogenesis (33), we assessed whether the expansion of the lymphatic vasculature 

occurs in the XactMice. We stained CUHN013 and CUHN004 tumors for lyve-1, a marker 

of lymphatic vasculature (34), and observed increased intra-tumor lymphatic vessel density 

(lyve-1+ cells/mm2) in XactMice tumors compared to tumors in NSG hosts (Fig. 6b).

Analysis of the RNA sequencing data also indicated that many cytokines and chemokines 

are among the differentially expressed genes. To identify additional cytokines uniquely 

present in the XactMice, we profiled XactMice and NSG blood plasma on human cytokine 

arrays (Fig. 6c & Supplemental Table 5). Although there is some antibody cross-reactivity 

between murine and human cytokines, we can still make several conclusions about the 

human cytokine signaling present in the XactMice. When no tumors were implanted, three 

cytokines were markedly elevated in the XactMice plasma: GM-CSF, CD54, and MIF. These 

cytokines are all known to modulate lymphoid or myeloid cell migration, and their elevated 

presence supports the role of functioning immune components in the XactMice. Conversely, 
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four cytokines - C5/C5α, CD40l, IL-13 and CXCL12 - were expressed more abundantly in 

the NSG plasma. This spurious binding prevents us from forming conclusions about 

possibly alterations in the XactMice plasma. However, even discounting these signals, the 

cytokine profiles of the NSG plasma from animals bearing either CUHN004 or CUHN013 

tumors look quite similar to that observed from NSG mice without tumors, although IL-1rα 

and MIF are also highly expressed in the CUHN004 plasma (as predicted from RNA 

sequencing of this tumor.) Conversely, increased concentrations of CD54, IL-1rα, IL-6, 

IL-8, and MIF are present in the plasma from XactMice bearing either CUHN004 or 

CUHN013 tumors. Additionally, plasma from the CUHN004 XactMice contains increased 

levels of GM-CSF, CCL1, IL-13, and PAI1, while that plasma from the CUHN013 

XactMice lacks GM-CSF expression, implying a complex interplay between the signals 

generated by the HSPCs in the bone marrow and the tumors.

XactMice tumors present a dynamic microenvironment

Since patient tumor growth responds to sudden changes in the local environment, we 

examined the effects of 3Gy ionizing radiation to CUHN013 tumors on NSG and XactMice. 

An IHC analysis of irradiated XactMice tumors reveals an influx of T cells, as would be 

expected from a functional immune system (Fig. 6d) (35). Lymph vessels, as visualized by 

lyve-1 staining, also rapidly expand and cluster with - and occasionally encompass - 

infiltrating immune cells, providing a potential avenue for their migration to and from the 

tumor stroma (Fig. 6e). Finally, expression of almost all cytokines falls sharply after 

irradiation, indicative of the dramatic changes produced by radiation within the tumor 

microenvironment (Fig 6c). Only, three cytokines (CD40l, GM-CSF, and IL-13) increased 

very modestly in the XactMice plasma. Since CD40l and IL-13 expression were also found 

to be elevated in NSG mice without tumors, it is possible that the presence of some of these 

cytokines after irradiation indicates spurious cross-reactivity.

DISCUSSION

A tumor can be envisioned as the result of the growth and interaction of cancer cells with the 

surrounding fibroblast scaffolding, infiltrating immune cells, and associated lymphatic 

vasculature. Without accounting for all of these components, a model system cannot hope to 

accurately recreate the conditions driving the original tumor’s growth. We propose that the 

XactMice system represents an important step toward recapitulating a patient’s tumor 

environment by creating an in vivo system in which a xenograft growth is at least partially 

regulated by a surrogate human immune system. Human blood cells originating in the 

engrafted bone marrow circulate throughout the tumor, altering cytokine expression, 

assisting in stromal deposition, and increasing lymphangiogenesis throughout the tumor 

microenvironment. Their presence also alters gene expression within the tumor cells, 

regulating expression of genes critical in maintaining a tumor microenvironment. The 

observation that XactMice tumor implantation reversed the initial genetic drift observed 

after tumor passage in immune-compromised hosts indicates that this model enables tumors 

to revert to their original state.
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We have also shown that the immune system engrafted into the XactMice is not only 

attendant, but capable of interacting with the grafted tumor. Since tumors are constantly 

engaged with their surrounding and supportive stromal tissues, it is important that the 

XactMice model replicate this facet of cancer behavior. The immune system in XactMice 

responds rapidly and appropriately to an environmental insult within the tumor. Changes in 

immune cell infiltration, cytokine expression, and lymphangiogenesis are fitting 

physiological responses to radiation and, again, are indicative of the value of the XactMice 

model.

Also of importance is that this model is self-sustaining: the engrafted HSPCs can be purified 

from the bone marrow of the XactMice and re-engrafted into another generation of 

XactMice with HSPCs derived from the original donor source. Bird et al (18) used the bone 

marrow cells obtained from an initial cohort of xenochimaeric NSG mice for serial 

transplantation studies. They transplanted 1×106 unfractionated bone marrow cells harvested 

from human HSPC xenochimaeric mice into a second cohort of irradiated NSG mice. The 

secondary cohort of xenotransplant recipient mice were euthanized 12 weeks post-

transplant, and their bone marrow cells were assessed for the presence of human CD34+ 

cells by flow cytometry. They observed human CD45+/CD38+/CD34+ cells in the bone 

marrow of the secondary cohort of xenochimaeric NSG mice, documenting the feasibility of 

generating additional cohorts of xenochimaeric mice. Therefore implanted patient xenografts 

could be continually propagated in an environment similar to that of the original tumor. As a 

first attempt to develop this model, the proof-of-concept studies presented in this report 

involved mice in which the human hematopoietic system and the tumor were derived from 

allogeneic sources. This allogeneic system did not significantly impact tumor growth. Future 

experiments will examine whether an allogeneic response could affect chemotherapy and 

radiotherapy in humanized mice. The long-term goal of these studies is to enable the 

generation of human xenochimaeric tumor bearing mice that harbor syngeneic tumor and 

hematopoietic cells. A syngeneic humanized mouse model could potentially recreate the 

patient tumor-immune microenvironment and serve as an invaluable platform in the 

investigation of the next generation of immunomodulatory chemotherapeutics.

Even though various types of humanized mice have been previously reported, they are 

typically produced by the injection of purified human CD34+ cells into sublethally 

irradiated mice (36) and have mainly been employed to study the immune system, allograft 

rejection, and blood cell differentiation (37). Rongvaux recently described the generation of 

MITRG and MISTRG mice which were engineered to express human cytokines that would 

support the development and function of monocytes, macrophages, and NK cells derived 

from the injection of human fetal liver or (17) and activity in these genetically engineered 

humanized mice, they implanted cell line-derived tumors and observed that human 

macrophages invaded these tumors in a VEGF-dependent manner. As presented, the 

Rongvaux model and the humanized mouse model previously described by Wege et al, (38) 

do not attempt to recreate the microenvironment of a patient’s tumor in a humanized mouse, 

but it nicely complements our observations concerning human immune cell invasion into cell 

line-derived tumors.
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Cancer research has benefitted significantly from our ability to customize therapy in 

response to mutated genetic pathways that drive an individual’s tumor growth (39). The 

host’s relevance in determining disease occurrence and outcome is now also increasingly 

evident and must be accounted for in developing tomorrow’s therapies (40). Stromal cells 

and immune cells are emerging as potent drivers of invasion and metastasis and the 

XactMice model faithfully recreates the native tumor environment absent in current animal 

models. We predict that this model will be a useful tool in the rapidly expanding field of 

stroma- and/or immune-directed drug development.

MATERIALS AND METHODS

HSPC isolation and XactMice generation

Donated, de-identified cord blood was obtained from the University of Colorado cord blood 

bank (http://www.clinimmune.com/cordbloodbank/). G-CSF-mobilized patient blood was 

collected in accordance with the protocols approved by the Colorado Multiple Institutional 

Review Board (COMIRB #08-0552 and #06-0720). HSPCs were expanded as previously 

reported (18). NOD/SCID/IL2rg−/− (NSG; Jackson Laboratories, Bar Harbor, ME) mice 

were prepared as previously described (18). After eight weeks, mice were bled via the tail 

vein to assess HSPC engraftment. The peripheral blood was analyzed by flow cytometry, 

using human CD3, CD45, and/or CD151 (Biolegend, San Diego, CA) antibodies. Tumor 

tissue was collected and implanted on all mice as described (19).

Mouse irradiation

CUHN013 xenograft-bearing mice were irradiated using an RS-2000 small animal irradiator 

(Rad Source Technologies, Suwanee, GA), calibrated to deliver 1.15Gy X-ray radiation per 

minute. Mice were anesthetized via IP injection with a ketamine (60mg/kg)/xylazine 

(8mg/kg) solution, then positioned beneath a lead/cadmium shield, designed to allow 

radiation to penetrate only the flank tumors. A 3Gy dose was administered to each tumor, 

and the mice were allowed to recover for 24 hours before tissue collection.

Flow cytometry/cell sorting

Excised tissues were prepared as previously described (41). Cell suspensions were blocked 

by the addition of Gamunex (Baxter, Deerfield, IL) for 30 minutes at RT, then washed in 

flow buffer (PBS + 2%FBS) and incubated at RT for 1 hour with the following antibodies (at 

a 1:10 final concentration): PerCP/Cy5.5-CD3, APC-CD34, PE-CD45, and/or APC-CD151 

(BioLegend). Flow analysis was conducted on a Beckman Coulter Cyan. Cell sorting was 

performed on the Beckman Coulter Moflo XDP 70. Data analysis was performed using 

Summit, V5.1 (Beckman Coulter, Brea, CA).

STR PCR analysis

Genomic DNA from tumor tissue was isolated using a QIAamp DNA Mini Kit (Qiagen, 

Germantown, MD). STR amplification was performed using Taq polymerase (Promega, 

Madison, WI) on a GenAmp 9700 machine (Applied Biosystems, Grand Island, NY) with 

the following primers (5′-3′): TPOX-For ACTGGCACAGAACAGGCACTTAGG, TPOX-

Rev GGAGGAACTGGGAACCCCACAGGTTA, vWA-For 

Morton et al. Page 9

Oncogene. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.clinimmune.com/cordbloodbank/


GGACAGATGATAAATACATAGGATGGATGG, and vWA-Rev 

GCCCTAGTGGATGATAAGAATAATCAGTATGTG. The resultant DNA was visualized 

using an Agilent Bioanalyzer 2100 with a DNA1000 chip (Agilent, Santa Clara, CA)

Immunofluorescence

Slides were de-paraffinized in xylene twice for five minutes and rehydrated in graded 

concentrations of ethanol. They were washed 3× in PBS and blocked with 15% goat serum 

in mouse IgG before the addition of CD151 (Novus Biologicals, Littleton, CO) at a 1:50 

concentration. Alexa Fluor© goat-α-rabbit 488 (Invitrogen, Grand Island, NY) was added 

for secondary staining, and the slides were incubated for 1 hour at RT, washed 3× in PBS, 

and covered with Fluoromount-G (SouthernBiotech, Birmingham, AL).

Histology/Immunohistochemistry

For single staining with the human CD45 antibody (Dako) or mouse lyve-1 (Abcam, San 

Fransisco, CA), the samples were incubated with antibody, then rinsed and a secondary 

reagent, AP-conjugated MACH2 Mouse Polymer (BioCare Medical, Concord, CA), RT for 

CD45 staining or EnVision + Dual Link- HRP Polymer (Dako) for lyve-1 staining was 

applied before development with Vulcan Fast Red Chromogen (BioCare Medical) or DAB+ 

(Dako). For dual staining of mouse and human CD45, anti-mouse CD45 antibody (BD 

Pharmingen, San Jose, CA) was applied, followed by a secondary rabbit anti-rat biotinylated 

antibody (Dako) and Streptavidin-HPR conjugated solution (Dako). The CD3, lyve-1 

(Abcam), and CD19 (MyBiosource, San Diego, CA) antibodies were applied at the 

appropriate dilution, followed by HRP-conjugated EnVision + Dual Link System (Dako). In 

all cases, primary staining was developed using DAB+ chromogen solution (Dako).

FISH analysis

The sections were subjected to a dual-color FISH assay using Vysis CEPX 

SpectrumOrange/Y SpectrumGreen probe (Abbott Molecular, Abbott Park, IL) following 

standard laboratory protocol. After post-hybridization washes, the slides were dehydrated in 

ethanol, and the chromatin was counterstained with DAPI (0.3μg/ml in Vectashield 

mounting medium, Vector Laboratories, Burlingame, CA).

Cytokine arrays

Human cytokine arrays (Panel A, R&D Systems, Minneapolis, MN) were processed 

according to the manufacturer’s instructions, using 150uL of the indicated NSG or XactMice 

plasma (from blood collected in 50U/mL heparin and centrifuged 10 min at 1800rcf to 

remove platelets). Digital copies of the developed film were quantified using ImageJ 

software.

Laser-capture microscopy

Eight micron frozen sections of tissue were cut using a cryostat, dehydrated through graded 

solutions of alcohols and xylene, and air-dried for 5 minutes before being put into an 

Arcturus XT Laser Capture Microdissection Instrument (Applied Biosystems).
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RNA extraction

Tissue was placed in 300 μL of QIAzol and homogenized using the MP Biomedicals Fast 

Prep 24. RNA was extracted from LCM-captured cells and tissue using the RNeasy Mini 

RNA purification protocol (Qiagen). Total RNA was quantified on a Nanodrop 1000 

(Thermo Scientific, Waltham, MA).

RNA sequencing

Libraries were constructed using 1μg total RNA, following the Illumina TruSeq RNA 

Sample Preparation v2 Guide. The products were amplified by PCR to create a cDNA 

library, which was then validated on the Agilent 2100 Bioanalyzer using DNA-1000 chip. 

Cluster generation was performed on the Illumina cBot, using a Single Read Flow Cell with 

a Single Read cBot reagent plate (TruSeq SR Cluster Kit). Sequencing of the clustered flow 

cell was performed on the Illumina HiSeq 2000, using TruSeq SBS v3 reagents (Illumina, 

San Diego, CA).

Bioinformatics

The RNA reads were mapped against the human genome using Tophat (version 2.0.5) (42), 

using the NCBI reference annotation as a guide. Cufflinks (version 2.0.2) (43) was used to 

assemble the transcripts. Differentially expressed genes between F0/XactMice and the NSG/

Nude were identified using CuffDiff and a fold-change threshold of at least two. Top 

pathways/gene ontologies were identified using DAVID (44, 45). Gene set enrichment 

analysis (GSEA, v. 2.07) was conducted on the collapsed data using the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway definitions obtained 

from the Molecular Signatures Database, v.3.1. Pathways with a nominal p-value ≤ 0.05 

were deemed significant. All analyses except GSEA were conducted in R/Bioconductor, v. 

3.0.1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview and characterization of XactMice
(a) Schematic describing the generation of XactMice from human HSPCs, whose progeny 

migrate into the xenograft and differentiate into stromal cells. The growth and composition 

of tumors can be compared in nude, NSG, and XactMice. (b) Flow cytometry measuring the 

expansion of HSPCs in vitro by the percentage of CD34/CD38+ cells. (c) Flow cytometry 

detecting human hematopoietic CD3/CD45+ cells in peripheral XactMice - but not NSG - 

blood, indicating that the HSPCs have successfully engrafted and are generating circulating 

lymphocytes. (d) The average percentage of human CD3/CD45+ cells in the peripheral 

blood of XactMice, as determined by flow cytometry, over the course of seven months after 

engraftment. (e, f) There were no significant differences in either CUHN004 or CUHN013 

tumor growth rates between nude, NSG, and XactMice. Tumor measurements (W × W × 

H)/2 were recorded from all mouse strains in three separate experiments. Although tumors 

seem to grow faster in the NSG and XactMice, no statistical difference was observed in 

growth between the three strains in these experiments. Average tumor volumes (mm3) with 

the standard errors were used to create the recorded growth curves.
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Figure 2. XactMice tumors and tissues harbor human immune cell populations
Upper panel: Flow cytometry showing that human CD45/151+ cells can be identified and 

quantified in tumors removed from XactMice, while no corresponding populations can be 

recovered from nude or NSG mice. Lower panels: A CD45/151+ cell population can also be 

identified and quantified in the bone marrow, spleen, and peripheral blood of XactMice, 

while no such cells are observed in nude and NSG controls. Bars represent standard errors.
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Figure 3. Documentation of human stroma on XactMice
Human cells only invade the tumors in XactMice. (a) Bioanalyzer gel of two well-defined 

STR loci, TPOX and vWA (27). Patient DNA from the originator tumor (F0, lanes 2 and 5). 

XactMice xenograft CD45/CD151+ DNA (X, lanes 3 and 6). (b,c) Human CD151 

immunofluorescence. Although the CD151 antibody binds the human tumor cells in both the 

NSG and XactMice tumors, in NSG tumors (b), the stroma remains unstained, while in 

XactMice (c) the unstained mouse stroma is punctuated with CD151+ human cells (pink 

arrows). Magnification is 20×. (d,e) FISH analysis of nude and XactMice tumors. Both 

xenografts are composed primarily of human (red) tumor cells surrounded by mouse (green) 

stromal cells. No human cells infiltrate the stroma within the nude xenograft (d). Human 

cells can be observed throughout the stroma within the XactMice xenograft (e; enlarged and 

highlighted with pink arrows). Magnification is 10× for the tumor sections and 20× for the 

enlarged portions. (f,g) FISH analysis images of tumor sections using fluorescently-labeled 

X (red) and Y (green) probes. In the NSG (f), all tumor cells are male. The mouse stromal 

cells do not bind to either of the probes. A dashed line has been added to demarcate the 

approximate tumor-stroma boundary. In XactMice (g), the tumor cells are male, and the 

stroma is composed largely of mouse cells, but also contains female human cells. Expanded 
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inserts were captured under increased magnification (100×). In all images, the scale bar 

equals 50 μm.
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Figure 4. Characterization of human stromal cells in control and XactMice tumors
A comparison of CUHN004 and CUHN013 patient (F0) tumors with their corresponding 

NSG and XactMice xenografts. Bar graphs represent the average number of stained cells 

calculated from three non-overlapping fields visualized in 0.2 mm2 tumor sections taken 

from four (CUHN004) or five (CUHN013) separate XactMice and compared to three non-

overlapping fields from F0 and NSG tumors (b–g). (a) H/E comparisons of the F0, NSG, and 

XactMice specimens. (b) Tumor IHC using the human pan-leukocyte CD45 antibody (red) 

indicates that human white blood cells are present in the F0 and XactMice tumors (albeit at 

difference frequency), but not the NSG tumor. (c) Tumor IHC with both human (red) and 

mouse (brown) CD45 antibodies indicates that mouse white blood cells are present in the 

NSG and XactMice tumors. (d) Dual human CD3 (brown) and CD45 (red) IHC indicates 

that T cells can be found in the F0 and XactMice tumors. (e) Dual human CD19 (brown) and 

CD45 (red) IHC indicates that B cells can be seen in both the F0 and XactMice tumors. (f) 

Dual human αSMA (brown) and CD45 (red) IHC. In F0 tumors, cells with either or both 

antigens are present. In NSGs, some stromal cells stain for the αSMA antigen, indicating 

that this antibody cross-reacts with mouse αSMA. XactMice tumor cells that stain for the 

presence of both antigens (indicated by red arrows) must be of human origin and exhibit 

some fibrocyte characteristics. (g) Human CD4 IHC indicates that T-helper cells can be 

found in both F0 and XactMice tumors. Magnification is 40× and the scale bar equals 50 

μm.
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Figure 5. Whole transcriptome analyses
(a) Dendrograms of the four RNA sequencing data sets for the CUHN004 and CUHN013 

tumors indicate that the XactMice environment alters gene expression from that observed in 

the NSG. (b) Heatmaps depicting the relative expression of paired sets of genes in both 

CUHN004 and CUHN013. The expression of genes known to play roles in these pathways 

was compared across F0 patient, XactMice, nude, and NSG samples. A red color indicates 

high RNA expression, while a blue shade signifies a low level of expression. (c) Waterfall 

graphs showing the relative enrichment of all GO terms associated with the differentially 

expressed genes identified in the F0 and XactMice tumors. Enrichment scores greater than 

1.3 indicate that the GO term is statistically enriched (P-value<0.05) among these genes. 

After this enrichment analysis, GO terms were color-coded according to their overarching 

biological process, the most frequently observed of which were 22 immune system (blue), 

extracellular matrix (ECM; pink), and epithelial mesenchymal transition (EMT; green.) A 

paired z-test for proportions (inset table) shows that the enrichment of the GO terms 

representing each of these processes is statistically significant in genes differentially 

expressed in the F0 patient and XactMice tumors. (d) An enlargement of the top twenty most 

enriched GO terms in the tumor waterfall graphs from above. Starred (*) GO terms are 

enriched in both tumors.
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Figure 6. Physiological consequences of differential XactMice gene expression
(a) A comparison of the FPKM values of several genes involved in lymphangiogenesis. (b) 

Graphical comparison of lymphatic vasculature in NSG and XactMice tumors. The average 

number of lyve-1 staining vessels per mm2 in the NSG tumors was used as a baseline against 

which XactMice tumors were compared. *P-value = 0.0393. (c) Cytokine arrays comparing 

plasma from NSG and XactMice. Relative cytokine concentrations were compared with 

ImageJ. (d) Dual CD45+ (red) and CD3+ (brown) IHC of XactMice CUHN013 tumors 

harvested after 0 and 3 Gy flank irradiation identifies infiltrating T cells (arrows). The 

associated graph shows that these cells are more abundant after irradiation. **P-value = 

0.0115. (e) Dual CD45+/lyve-1 IHC indicates little association between invading blood cells 

and lymph tissue in non-irradiated tumors, but after 3 Gy, the CD45+ cells cluster around, 

and are sometimes found within (arrows), the lymph vessels. The graph shows the increased 

association of human CD45+ cells with lyve-1 staining tissue after irradiation. ***P-value = 

0.001. To be included, CD45+ cells must be within 200 um of lyve-1+ cells. Magnification 

is 10× and the scale bar equals 50 μm.
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