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ABSTRACT

Modeling and simulation of drug disposition has emerged as an
important tool in drug development, clinical study design and
regulatory review, and the number of physiologically based phar-
macokinetic (PBPK) modeling related publications and regulatory
submissions have risen dramatically in recent years. However, the
extent of use of PBPK modeling by researchers, and the public
availability of models has not been systematically evaluated.
This review evaluates PBPK-related publications to 1) identify the
common applications of PBPK modeling; 2) determine ways in which
models are developed; 3) establish how model quality is assessed;
and 4) provide a list of publically available PBPK models for sensitive
P450 and transporter substrates as well as selective inhibitors and
inducers. PubMed searches were conducted using the terms
“PBPK” and “physiologically based pharmacokinetic model” to

collect published models. Only papers on PBPK modeling of
pharmaceutical agents in humans published in English between
2008 and May 2015 were reviewed. A total of 366 PBPK-related
articles met the search criteria, with the number of articles published
per year rising steadily. Published models were most commonly
used for drug-drug interaction predictions (28%), followed by in-
terindividual variability and general clinical pharmacokinetic pre-
dictions (23%), formulation or absorption modeling (12%), and
predicting age-related changes in pharmacokinetics and disposition
(10%). In total, 106 models of sensitive substrates, inhibitors, and
inducers were identified. An in-depth analysis of the model devel-
opment and verification revealed a lack of consistency in model
development and quality assessment practices, demonstrating
a need for development of best-practice guidelines.

Introduction

Prediction of disposition characteristics of new drug candidates can
identify pharmacokinetic (PK) liabilities such as poor bioavailability,
high clearance, potential for drug-drug interactions (DDIs), or the need
for dose adjustments in special populations (Obach et al., 1997; Jones
et al., 2009; Zhao et al., 2011; Chen et al., 2012; Di et al., 2013;
Shardlow et al., 2013). Such predictions can help decision making in
relation to development progression, dose selection, and clinical study
strategies (Obach et al., 1997; Jones et al., 2009, 2015; Rowland et al.,
2011; Zhao et al., 2011; Chen et al., 2012; Di et al., 2013; Shardlow
et al., 2013). Various allometric scaling, in vitro-to-in vivo extrapola-
tion (IVIVE), and in silico methods have been developed over the years
to enable predictions of human pharmacokinetics prior to first in human
dosing. More than 30 different methods exist to predict human vol-
ume of distribution (Di et al., 2013), including interspecies scaling
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(Lombardo et al., 2013a) and in silico methods. Generally, in vivo
animal data, log P values, plasma protein binding, and blood-to-plasma
ratios are used to predict the human steady-state volume of distribution
and tissue-to-plasma partitioning (Poulin and Theil, 2000, 2002; Poulin
et al., 2001; Berezhkovskiy, 2004; Rodgers et al., 2005; Rodgers and
Rowland, 2006). While interspecies scaling allows predictions of the
human volume of distribution, its utility in the prediction of human
clearance is limited due to species differences in the expression and
substrate specificity of drug metabolizing enzymes and transporters
(Obach et al., 1997; Di et al., 2013). Instead, IVIVE tools have been
developed to predict hepatic bioavailability and whole organ clearances
using in vitro intrinsic clearance, protein binding and permeability data
and in vivo blood flows (Houston, 1994; Iwatsubo et al., 1997; Obach
et al., 1997; Lombardo et al., 2013b; Cho et al., 2014). While further
efforts are needed to improve IVIVE, particularly for transporters and
non-P450 enzymes, IVIVE has become an important tool in the process
of predicting human exposures and effective dosages.

Quantitative methods to predict pharmacokinetics range in complex-
ity from static mechanistic predictions of specific PK parameters to
dynamic physiologically based PK (PBPK) models used to predict
plasma concentration-time curves. Static mechanistic methods typically

ABBREVIATIONS: AUC, Area under plasma concentration time curve; CDER, Center for Drug Evaluation and Research; CHMP, Committee for
Medicinal Products for Human Use; DDI, drug-drug interaction; EMA, European Medicines Agency; FDA, Food and Drug Administration; IVIVE, in
vitro-to-in vivo extrapolation; IQ, innovation and quality in pharmaceutical development; PBPK, physiologically based pharmacokinetic; PD,

Pharmacodynamics; PK, pharmacokinetic.
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use one or two in vitro parameters to predict specific human PK
parameters, and can therefore be easily adopted in screening programs
to prioritize and triage compounds based on undesirable pharmacoki-
netics. Static prediction methods have been used extensively to predict
human metabolic (Gillette, 1971; Rowland et al., 1973; Iwatsubo et al.,
1997; Obach et al., 1997) and transporter-mediated clearance (Liu and
Pang, 2005; Barton et al., 2013; Varma et al., 2013) and drug-drug
interactions (Mayhew et al., 2000; Wang et al., 2004; Obach et al.,
2007; Fahmi et al., 2008). However, while static models are very useful
for predictions of overall drug exposures in humans or the overall
magnitude of DDISs, they rely on steady-state assumptions and hence
cannot predict the overall shape of the plasma concentration-time curve,
time-varying changes in enzyme or transporter inhibition, or the dis-
tribution kinetics of new drugs. In contrast, PBPK models provide
simulated concentration versus time profiles of a drug and its metabolite
(s) in plasma or an organ of interest and simultaneously allow for
estimation of maximum plasma concentrations, absorption kinetics,
distribution kinetics, and drug elimination. While the simultaneous
modeling of drug disposition processes provides multiple advantages
(Rostami-Hodjegan and Tucker, 2007; Almond et al., 2009; Fahmi
et al., 2009; Jamei et al., 2009a; Rowland et al., 2011; Huang and
Rowland, 2012; Di et al., 2013; Shardlow et al., 2013; Galetin, 2014;
Tsamandouras et al., 2015; Varma et al., 2015b), it also makes PBPK
modeling labor intensive and requires considerably more parameter
estimates and more detailed physiologic and drug-specific data than
static predictions. The simulated concentration-time profiles can aid in
selection of optimal sampling times or dosing strategies in different
study populations, including vulnerable subjects (Rowland et al., 2011).
They can also aid in design of DDI studies in which the timing of the
dosing of the perpetrator drug and the victim drug is critical (Zhao et al.,
2009; Shardlow et al., 2013), or in situations where perpetrator con-
centrations fluctuate over the sampling and dosing interval (Almond
et al., 2009; Fahmi et al., 2009; Pang and Durk, 2010; Di et al.,
2013). Additionally, the simulated concentrations can be linked to
pharmacodynamic endpoints to allow for PK/PD (pharmacokinetic-
pharmacodynamic) simulations. Furthermore, because PBPK models
account for sequential metabolism and permeability limited processes,
they may provide advantages for predicting bioavailability when com-
pared with static models (Fan et al., 2010; Chow and Pang, 2013). This
can have important implications for first in human dose selection,
particularly for drugs with active or toxic metabolites. In some cases,
PBPK models incorporate interindividual variability, thus allowing
for the prospective simulation of the population variability in the
pharmacokinetics of a given drug. Population variability is not typically
accounted for in static models but can provide insight into variability in
exposure and drug response in a given population (Rostami-Hodjegan
and Tucker, 2007; Jamei et al., 2009a; Cubitt et al., 2011; Brown et al.,
2012). Finally, the separation of drug-specific and physiologic pa-
rameters within the model can allow a more mechanistic understanding
of the sources of interindividual variability than can be provided
by population and compartmental modeling techniques (Rostami-
Hodjegan and Tucker, 2007; Vinks, 2013; Tsamandouras et al.,
2015). However, detailed understanding of physiologic variables in the
population of interest is required but not always available, which can
hinder the use of PBPK modeling in special populations.

In recent years, the number of publications (Rowland et al., 2011;
Rostami-Hodjegan et al., 2012) and regulatory submissions (Zhao et al.,
2011; Huang et al., 2013; Sinha et al., 2014) referencing or including
PBPK modeling has increased substantially. The development of user-
friendly software tools such as Simcyp, GastroPlus, and PK-Sim have
made modeling more accessible to those without extensive modeling
and/or programming experience (Zhao et al., 2011; Chen et al., 2012;
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Huang et al., 2013). However, it is possible that many users are not
completely familiar with, or aware of, the assumptions made and
equations used during model building and implementation. As such, the
increased implementation of PBPK modeling has led to a need for
comprehensive software and modeling-focused education as well as the
need to confirm the sound knowledge of users in ADME principles and
fundamental physiology (Jones et al., 2015). A recommendation for the
presence of a modeling expert for advice and to review models has also
been made to ensure appropriate decision making and interpretation of
the modeling (Jones et al., 2015). Advancements in computer science
and physiologically based mathematical models have led to the
expansion of the potential applications of PBPK modeling. For
example, more complex absorption models such as advanced dissolu-
tion, absorption, and metabolism (ADAM) models (Jamei et al., 2009b)
and advanced compartmental absorption and transit (ACAT) models
(Agoram et al., 2001) have been developed that enable the use of PBPK
modeling for the simulation of food effects (Shono et al., 2009; Turner
et al., 2012; Heimbach et al., 2013; Xia et al., 2013b; Patel et al., 2014;
Zhang et al., 2014), the impact of drug properties on absorption kinet-
ics (Kambayashi et al., 2013; Parrott et al., 2014), and intestinal
interactions (Fenneteau et al., 2010). The development of sophisticated
models that allow for the simulation of multiple inhibitors or inducers,
relevant metabolites, and multiple mechanisms of interaction have
permitted the prediction of complex DDIs involving enzymes, trans-
porters, and multiple interaction mechanisms (Zhang et al., 2009; Reki¢
etal., 2011; Varma et al., 2012, 2013; Dhuria et al., 2013; Gertz et al.,
2013, 2014; Guo et al., 2013; Kudo et al., 2013; Siccardi et al., 2013;
Wang et al., 2013a; Sager et al., 2014; Chen et al., 2015; Shi et al.,
2015). Furthermore, the mechanistic understanding of ADME changes
that occur in different age groups or disease states has improved, and
consequently PBPK modeling has been used to simulate drug dis-
position in special populations including hepatic (Johnson et al., 2014)
and renal impairment populations (Li et al., 2012; Zhao et al., 2012a;
Lu et al., 2014; Sayama et al., 2014), children (Leong et al., 2012), and
pregnant women (Andrew et al., 2008; Gaohua et al., 2012; Horton
et al., 2012; Ke et al., 2012, 2013, 2014; Lu et al., 2012).

In the past 10 years, PBPK modeling has become increasingly
accepted by regulatory agencies as a means of informing clinical study
strategy, and it has become a useful tool in drug development (Leong
et al.,, 2012; Zhao et al., 2012b; Huang et al., 2013; Sinha et al.,
2014). PBPK approaches have been included in regulatory guidance
on hepatic impairment [Committee for Medicinal Products for Human
Use (CHMP), 2005], pediatrics [Center for Drug Evaluation and
Research (CDER), 2014], DDIs (CDER, 2012; CHMP, 2012; Ministry
of Health, Labor and Welfare Research Group, 2014), and pharmaco-
genetics (CHMP, 2011; CDER, 2013) as a means to guide clinical study
design and labeling decisions. Hence, in addition to being used to
inform internal development decisions (Jones et al., 2009, 2015; Chen
et al., 2012; Shardlow et al., 2013), PBPK modeling is increasingly
being used in investigating new drugs and new drug applications
(Huang et al., 2013; CHMP, 2014; Sinha et al., 2014). The U.S. Food
and Drug Administration (FDA) Office of Clinical Pharmacology has
been tracking the use of PBPK modeling in regulatory submissions
since 2008 (Huang et al., 2013; Pan et al., 2014). Based on 2013
submissions, the models included in regulatory filings were most
commonly used for DDI (60%), pediatric (21%), and absorption (6%)
predictions (Pan et al., 2014). PBPK models have been used during the
review process to inform dose selection and optimal design for clinical
studies (Leong et al., 2012), and in some cases to directly inform
labeling (Zhao et al., 2012b). For example, cabazitaxel is predicted to
cause in vivo CYP3A4 inhibition based on the ratio between its
concentration and inhibition constant, ([I]/K; ratio). However, modeling
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and simulation suggested minimal risk for DDI in vivo. As a result,
the label states that “a post-marketing requirement for the effect of
cabazitaxel on the pharmacokinetics of a sensitive CYP3A4 substrate is
therefore not necessary” (Huang and Rowland, 2012; Huang et al.,
2013; CDER, 2010). Additional examples of PBPK-informed labeling
between 2008 and 2014 are included in recent reviews (Zhao et al.,
2012b; Huang et al., 2013; Sinha et al., 2014; Jones et al., 2015).

Despite the increasing use of PBPK modeling, there are many
challenges that limit the utility of PBPK modeling and simulation. In
general, IVIVE using PBPK models requires considerably more
experimental and in silico data than static models. Due to the large
number of parameters required for PBPK modeling and the limited
availability of in vivo data to verify individual parameters, model
predictions can be confounded by lack of confidence in individual
parameters. For example, for drugs that have not been administered
intravenously to humans, distribution and absorption parameters cannot
be validated or verified experimentally, which introduces uncertainty
into model parameters and output. The application of PBPK modeling
to predict the pharmacokinetics in disease populations is hindered by
lack of in vivo data in patient populations, poor understanding of the
physiologic changes that occur in certain populations, and limited
knowledge of tissue-specific changes in enzyme and transporter
expression (Edginton and Joshi, 2011; Sjostedt et al., 2014; Jones
etal., 2015). Furthermore, absolute abundances of transporters and non-
P450 enzymes in the liver and other tissues are not well established,
resulting in poor IVIVE of the kinetics of non-P450 substrates and
permeability limited drugs (Edginton and Joshi, 2011; Jones et al.,
2012, 2015; Varma et al., 2012; Harwood et al., 2013). Additionally,
alack of selective substrates and inhibitors for some non-P450 enzymes
and transporters has prevented model validation against in vivo data
(Jones et al., 2015). While efforts are being made to characterize tissue-
specific transporter expression, current models of the disposition of
transporter substrates rely on the incorporation of empirical scaling
factors (Varma et al., 2015b). Although scaling factors have allowed for
predictions of the kinetics of a number of uptake transporter substrates
(Varma et al., 2012, 2014, 2015a; Kudo et al., 2013; Gertz et al., 2014,
Jamei et al., 2014), it is not possible to experimentally verify whether
unbound tissue exposures are adequately predicted (Chu et al., 2013;
Jones et al., 2015; Varma et al., 2015b). This could have important
implications for IVIVE of efflux clearance, metabolism-transporter
interplay, and predictions of pharmacological effects. The utility of
PBPK modeling in the prediction of therapeutic protein disposition is
still relatively limited, as was recently discussed (Jones et al., 2015).
While a number of PBPK models have been used to accurately predict
the kinetics of monoclonal antibodies (Baxter et al., 1995; Ferl et al.,
2005; Shah and Betts, 2012; Cao and Jusko, 2014; Elmeliegy et al.,
2014; Li et al., 2014a; Chetty et al., 2015; Zhao et al., 2015), model
structures are inconsistent (Chetty et al., 2012; Jones et al., 2015).
Limited data on target expression and changes in disease populations
result in the risk for overparameterization with PBPK models, and thus
there is an effort to move toward reduced PBPK models for therapeutic
proteins (Elmeliegy et al., 2014; Li et al., 2014a; Chetty et al., 2015;
Diao and Meibohm, 2015).

Another current challenge in the PBPK modeling field is determining
how to assess model quality. To date, neither the FDA nor the European
Medicines Agency (EMA) have issued a formal guidance regarding
model quality assessment during regulatory review. However, the FDA
has acknowledged the use of the best-practice methods proposed by the
World Health Organization International Program for Chemical Safety
(International Programme on Chemical Harmonization Project, 2010;
Zhao et al., 2012b). These practices include ensuring the physiologic
plausibility of the input parameters, demonstrating the ability of the
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model to predict the pharmacokinetics in an independent data set, and
confirming that sensitivity and uncertainty analysis support model
quality. The recommendation to establish guidelines for reporting and
qualification of PBPK models was made at the Ministerial Industry
Strategy Group (2014) New Technologies Forum on Physiologically
Based Modeling and Simulation, and the EMA released a concept paper
on the reporting and quality assessment of PBPK models with the goal
of publishing a draft guidance in 2015 (CHMP, 2014). However, while
some basic guidelines for assessing model quality prior to regulatory
review are accepted or in development, no standards exist for how
model quality should be evaluated in peer-reviewed publications.
Additionally, no formal analysis of the literature has previously been
performed to evaluate what quality assessment methods, if any, are
typically used in peer-reviewed publications.

Despite the growth of the PBPK modeling field and the well-
established use of PBPK models in regulatory submissions, the overall
public availability of PBPK models is unclear and the breath of use of
PBPK modeling by the research community has not been systematically
evaluated. The PBPK models used in regulatory submissions are not
publicly available to the outside research community, which prevents
the broad use of models that have been accepted by regulatory agencies.
Furthermore, the applications of the models in regulatory submissions
may be driven primarily by the needs of drug developers and may not
reflect how PBPK modeling is used in the larger research community.
Identifying and compiling a list of the publicly available models could
be beneficial to future research efforts since published models could be
used either unchanged or as a starting point in future modeling efforts.
Furthermore, determining the common applications of the published
PBPK models will provide insight into current modeling interests as
well as highlight under-represented applications. This review evaluates
recent PBPK publications and identifies the common applications of
PBPK modeling, how models are typically developed, and ways in
which model quality is assessed, and provides a list of publicly available
PBPK models, with a focus on enzyme probes, marker substrates and
important perpetrators of DDIs.

Literature Search Strategy

PubMed searches were conducted using the search terms “PBPK”
and “physiologically based pharmacokinetic model” within the abstract
or title of the manuscript. Papers were selected for review if they were
published in English between 2008 and May 20, 2015, and focused on
PBPK modeling of pharmaceutical agents in humans. The number of
papers referenced is likely an under-representation of the overall body
of literature on PBPK modeling due to the strict search criteria and the
search terms used. Publications were categorized as a review, com-
mentary, letter to the editor, or an original data paper containing one or
more PBPK models. Papers that focused on the development of new
modeling software or a modeling strategy were classified as prediction
method papers. Original data papers were further categorized by the
primary application of the models.

Models for FDA and EMA recommended probe substrates, inhib-
itors, and inducers (CDER, 2012; CHMP, 2012) were identified within
the original data papers. Complete lists of the compounds recognized by
the regulatory agencies are shown in Supplemental Tables 1 and 2.
Models for these compounds were included in our analysis if 1) they
were original published models; 2) enough information was provided to
allow for replication of the model in an appropriate software program;
and 3) the simulation results were compared with observed in vivo data.
A number of models were excluded because they were default library
files in a simulation software package, the model input parameters were
not reported, or the simulation results were not compared with in vivo
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data. Compound models were categorized as substrates, inhibitors, and/
or inducers based on their classification in the FDA or EMA DDI
guidance (CDER, 2012; CHMP, 2012) if the model was built with the
clearance pathways or interaction parameters that permitted it to be used
for the specified purpose. Models for FDA substrates, inhibitors, and
inducers that lacked the appropriate clearance pathways or inhibition/
induction parameters to allow them to be used according to their FDA or
EMA classification were placed into a category of their own. For each
FDA and EMA recommended substrate, inhibitor, or inducer that met
the search criteria, information regarding the simulated formulation,
genotype, and software used was extracted. Furthermore, the source
of the clearance input parameter (in vitro or in vivo), the type of in-
dependent quality assessment data set used, and the a priori model
acceptance criteria were collected. Finally, the type of model (full or
minimal PBPK) was determined. PBPK models were considered to be
minimal if the model included no more than five compartments, including
the gastrointestinal tract, blood, and liver, and up to two additional com-
partments. More complex models were considered to be full PBPK.

PBPK Modeling Articles by Year and Application

A total of 366 PBPK-related articles meeting our search criteria were
published since 2008. While it is unlikely that the literature search
identified all of the papers presenting PBPK modeling in the literature,
the search likely provides adequate and representative coverage of the
existing models and practices. The number of articles published per
year rose steadily with time from nine articles in 2008 to 94 articles
published in 2014 (Fig. 1A). Of the papers identified, 74% were original
data papers that included one or more PBPK models, while 26% were
reviews, commentaries, letters to the editor, or prediction methods
papers. The original data papers were analyzed to identify the common
applications of PBPK models. The distribution of the model applica-
tions is shown in Fig. 1B. The published PBPK models were most
commonly used for DDI predictions (28%). The majority of the DDI
prediction models were used to simulate P450-mediated DDIs (81%),
while the remainder of the models focused on transport DDIs (10%) or
a combination of P450 and transporter-mediated interactions (10%).
Additionally, models were commonly used to predict interindividual
variability and general clinical pharmacokinetics (23%), absorption
kinetics (12%), and age-related changes in pharmacokinetics (10%).
This distribution of model applications is distinctly different from what
has been reported for regulatory submissions to the FDA. The models
included in FDA regulatory filings were primarily used for DDI
predictions (60%), followed by pediatrics (21%) and absorption (6%)
predictions (Pan et al., 2014). Based on this analysis the use of PBPK
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modeling to evaluate interindividual variability and overall drug
disposition characteristics is far more common in the broader research
community than in regulatory review. This difference reflects the fact
that both the FDA guidance on pediatrics (CDER, 2014) and DDIs
(CDER, 2012) includes PBPK modeling as a potentially useful tool for
guiding clinical study design; however, PBPK modeling is currently not
included in FDA guidance on bioequivalence or first in human studies.

Published Models of FDA and EMA Recommended Substrates,
Inhibitors, and Inducers

Each of the 271 original data papers identified included at least one
PBPK model of a pharmaceutical agent. The majority of the papers
included models of approved drugs, and only 21 papers (8%) used
PBPK modeling to simulate the pharmacokinetics of drugs in devel-
opment. The published PBPK models included default models from
software libraries as well as original models. Of the published original
models, the models for the FDA and EMA recommended sensitive
substrates, inhibitors, and inducers were further evaluated. While these
models only represent a fraction of the published PBPK models, these
compounds represent a group of drugs for which PBPK models are
particularly useful since the models can be used in DDI predictions or to
validate altered expression levels or activity of transporters and
enzymes in new physiologic models. Fifty-six papers were found that
included models for FDA and EMA listed sensitive substrates,
inhibitors, and inducers. In these papers, 107 original models represent-
ing 61 different compounds were identified. These models were
analyzed to gain insight into how peer-reviewed models are commonly
developed and how authors assess overall model quality. For each
model, information about model development was collected, includ-
ing the software used, the complexity of the model (full or minimal
PBPK), the source of the clearance input value, and the type of dosing
simulated. Additionally, information regarding model quality and
quality assessment was recorded, including whether the simulated
population matched the observed population, if an independent dataset
was used to verify model quality, and the type of criteria authors used to
determine if a model performance was acceptable. The compounds
modeled, the model development methods, and the quality assessment
criteria are provided in Tables 1-6, along with references to the original
publications.

How Were the Models Developed? PBPK models can vary in
complexity from full PBPK models, where all of the distribution organs
and tissues are represented as separate perfused compartments, to more
simplified, minimal PBPK models in which tissues with similar kinetics
are lumped (Nestorov et al., 1998; Leahy, 2003; Parrott et al., 2005;

Pregnancy 2%

Multiple 2%
Obesity <0.1%

-HIRI 2%

Pharmacogenetics 4%
Other 4%

Biologics 4%
Transport 4%

Allometry 6%

Clinical PK
23%

Absorption 12%

Fig. 1. Summary of the PBPK literature analyzed. The number of articles per year that contain one or more PBPK models of pharmaceutical agents in humans is shown in
(A). The distribution of the PBPK model applications in the original data papers is shown in (B).
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TABLE 1
Summary of PBPK models published for P450 Sensitive Substrates

Minimal

Simulated

g}a;;mcelearance Compound Application ;;3 ];111(11 (C))rralilv Clearance” f;::i?l'ggq ﬁ;l::éizgf Verification® ércii:gt;lnce Software Citation
CYP1A2 Caffeine Allometry Full Oral SF No N.S ADD 1 PK Sim (Thiel et al., 2014)
CYP2B6 Efavirenz DDI Minimal Oral In vitro Yes N.S A E 1 Simcyp (Siccardi et al., 2013)
Efavirenz DDI Full Oral In vitro Yes Sex D.E 1 Simcyp (Rekic et al., 2011)
Efavirenz Absorption  Full Oral In vitro No N.S B 5 Matlab (Rajoli et al., 2014)
CYP2C8 Repaglinide Diabetes Full Oral In vitro No N.S. B,.D 3 WinNonlin (Li et al., 2014b)
Repaglinide RI Full Oral BC Yes N.S. D 1 Simcyp (Zhao et al., 2012a)
Repaglinide DDI Minimal Oral PE No N.S B.E 1 Napp (Kudo et al., 2013)
Repaglinide DDI Full Oral BC No N.S C.E 1 Simcyp (Varma et al., 2013)
CYP2C19  Clobazam Pediatrics Full Oral In vitro No N.S. B,D.E 1 Matlab (Ogungbenro and
Aarons, 2015)
Omeprazole Clinical PK  Minimal Both BC Yes N.S. B.E 1 Simcyp (Wu et al., 2014)
CYP2D6 Metoprolol Pregnancy  Full Oral In vitro, SF Yes Sex, PGX D, E 2 Simcyp, (Ke et al., 2013b)
Matlab
Dextromethorphan Pregnancy  Full Oral PE No Sex, PGX D, E 2 Simcyp, (Ke et al., 2013b)
Matlab
Dextromethorphan ~ Allometry Full Oral SF No N.S AD 1 PK Sim (Thiel et al., 2014)
CYP3A4 Alfentanil DDI Full Oral BC No N.S. C, E 5 Gastroplus  (Baneyx et al., 2014)
Alfentanil DDI Full Oral In vitro No N.S. E 5 WinNonlin (Guo et al., 2013)
Buspirone DDI Full Oral In vitro No N.S. E 5 WinNonlin (Guo et al., 2013)
Indinavir Pregnancy  Full Both In vitro, SA No Sex C,D,E 2 Simcyp, (Ke et al., 2012)
Matlab
Maraviroc DDI Minimal Oral In vitro No N.S. AE 1 Simcyp (Hyland et al., 2008)
Midazolam Pregnancy  Full Oral In vitro No Sex A, D 2 Simcyp, (Ke et al., 2012)
Matlab
Midazolam DDI Full Oral BC No N.S C, D 5 Gastroplus  (Baneyx et al., 2014)
Midazolam DDI Full Oral PE No N.S A 4 Berkeley (Brantley et al., 2014)
Madonna
Midazolam Pregnancy  Full Oral In vivo No Sex B.D 3 Gastroplus  (Xia et al., 2013b)
Midazolam DDI Minimal Oral In vitro No N.S. E 5 WinNonlin (Wang et al., 2013a)
Midazolam DDI Full Oral In vitro No N.S. E 5 WinNonlin (Guo et al., 2013)
Midazolam Allometry Full Oral SF No N.S A,D 1 PK Sim (Thiel et al., 2014)
Quetiapine Pediatrics Both Oral BC No Age, Sex D, E 1 Simcyp (Johnson et al., 2014)
Sildenafil RI Full Oral BC Yes N.S. D 2 Simcyp (Zhao et al., 2012a)
Simvastain DDI Full Oral In vitro No N.S. E 5 WinNonlin (Guo et al., 2013)
Simvastatin DDI Minimal Oral In vitro No N.S. A E 5 WinNonlin (Wang et al., 2013a)
Triazolam DDI Full Oral In vitro No N.S. E 5 WinNonlin (Guo et al., 2013)
Triazolam DDI Full Oral BC No N.S. C,E 5 Gastroplus  (Baneyx et al., 2014)

“BC = back-calculated from in vivo data, PE = parameter estimate, SA = sensitivity analysis, SF = scaling factor from mice.

YPGX = genotype, N.S. = not specified.

“Data sets used in model verification included: (A) Single dose PK, (B) alternative dosing regimen, (C) alternative formulation, (D) alternative population, (E) DDL
"Acceptance criteria fell into 5 categories: (1) Not specified, (2) Ratio of PK parameter(s) must be within 30% of observed ratio, (3) Ratio of PK parameter(s) must be within 2 fold of observed ratio,
(4) PK parameters must be within 30% of observed parameters, (5) PK parameters must be within 2 fold of observed parameters.

Bois et al., 2010; Pilari and Huisinga, 2010; Cao and Jusko, 2012;
Tsamandouras et al., 2015). The majority of the models for the FDA and
EMA substrates, inhibitors, and inducers listed in Tables 1-6 were full
PBPK models (72%) as opposed to minimal PBPK models (27%). Full
PBPK models will typically fit the experimental data better than
minimal models due to the larger number of parameters used, which
increases the degrees of freedom. However, confidence in any individ-
ual parameter is decreased when moving from a minimal to a full PBPK
model. Minimal PBPK models can be used to reduce model complexity
while still allowing for mechanistic simulations in only the compart-
ments of interest (Nestorov et al., 1998; Pilari and Huisinga, 2010; Cao
and Jusko, 2012; Tsamandouras et al., 2015). One advantage of full
PBPK modeling is the ability to simulate the exposure of a drug or
its metabolites in specific tissues that are not accessible to clinical
sampling. This can be particularly important if the pharmacological or
toxicological effects are driven by the concentrations in that tissue
(Tsamandouras et al., 2015). However, none of the models listed in
Tables 1-6 and only 13 of the 271 original data papers used simulated
tissue concentrations to address pharmacology and toxicology ques-
tions (Table 7). Instead, full PBPK models were generally used to
enable the systematic prediction of distribution kinetics in order to
simulate plasma concentration-time profiles. All of the models that

were used to simulate kinetics in special populations in which distri-
bution kinetics can be highly altered, such as pediatrics and pregnancy,
incorporated full PBPK models. Full PBPK modeling was also used in
all but two of the models for transporter substrates and inhibitors due to
the need to capture permeability rate—limited processes.

PBPK models are comprised of system- and drug-specific parame-
ters. System-specific parameters include blood flow, organ volumes,
enzyme and transporter expression, and plasma protein concentrations
(Jamei et al., 2009a; Rowland et al., 2011; Galetin, 2014). Drug-specific
parameters include intrinsic clearances, volume of distribution, solu-
bility and physicochemical parameters, tissue partitioning, plasma
protein binding affinity, and membrane permeability. As a result,
drug-dependent parameters are independent of the system parameters,
allowing for mechanistic extrapolation of human pharmacokinetics
from in vitro and in silico data in a bottom-up approach (Jamei et al.,
2009a; Rowland et al., 2011; Rostami-Hodjegan et al., 2012; Galetin,
2014; Tsamandouras et al., 2015). While bottom-up approaches are
generally considered to be more mechanistic, in many cases sufficient
in vitro data and characterization of all drug elimination pathways
are not available to allow bottom-up predictions, or existing in vitro
data do not predict in vivo disposition well enough. Similarly, in many
cases, the knowledge of the biologic system is too limited to allow for
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TABLE 2

Summary of PBPK models published for narrow therapeutic index substrates

Main Simulated

Clearance Compound Application Dﬁ;gzl I(\)/r.:’lr Clearance” gen(l)tlype‘ iiﬁz}i&:ﬂ Verification® A(Cjcr?[l:r?gfe Software Citation
Enzyme specified?
CYP1A2 Theophylline Pregnancy  Full Oral BC No Sex B,D 2 Simcyp, Matlab (Ke et al., 2013b)
Theophylline DDI Minimal Both In vitro No N.S. B,E 1 Matlab (Pan et al., 2011)
CYP2C9 Phenytoin Clinical PK Minimal Oral In vitro Yes Age, Sex, B 1 Simcyp (Polasek et al., 2009)
PGX
Warfarin DDI Full Oral PE No Age, Sex, A 4 Berkeley Madonna (Brantley et al., 2014)
PGX
CYP3A4 Cyclosporine Pediatrics Full v In vivo, SF No Age C 1 Adaptll (Gérard et al., 2010)
Cyclosporine DDI Full Oral In vitro No N.S. E 5 WinNonlin (Guo et al., 2013)
Cyclosporine DDI Full Both PE No N.S. C E 5 Matlab (Gertz et al., 2013)
Cyclosporine  Allometry  Full Oral SF No N.S A, D 1 PK Sim (Thiel et al., 2014)
Quinidine DDI Full Oral In vitro No N.S. E 5 WinNonlin (Guo et al., 2013)
Sirolimus Clinical PK  Full Oral In vitro, PE No Age, Sex B,D,E 1 Simcyp (Emoto et al., 2013)
Tacrolimus DDI Full Oral In vitro No N.S. E 5 WinNonlin (Guo et al., 2013)
Tacrolimus Clinical PK Minimal Oral BC Yes Age, Sex, D,E 1 PKquest (Gérard et al., 2014)
PGX

“BC = back-calculated from in vivo data, PE = parameter estimate, SF = scaling factor.
’PGX = genotype, N.S. = not specified.

“Data sets used in model verification included: (A) Single dose PK, (B) alternative dosing regimen, (C) alternative formulation, (D) alternative population, (E) DDI.
‘/Acceptance criteria fell into 5 categories: (1) Not specified, (2) Ratio of PK parameter(s) must be within 30% of observed ratio, (3) Ratio of PK parameter(s) must be within 2 fold of observed ratio,
(4) PK parameters must be within 30% of observed parameters, (5) PK parameters must be within 2 fold of observed parameters.

bottom-up predictions of disposition kinetics in the population of
interest. The bottom-up approach is usually not the method of choice in
situations where PBPK models are built to specifically evaluate the
disposition characteristics of a drug that has been administered to
humans or to a special population. In these situations, the model is built
to fit the data rather than for predictive IVIVE purposes and a com-
bination of top-down and bottom-up approaches is often used. Several
reviews have provided excellent discussions of the utility and setbacks
of these combination or middle-out approaches to model development
(Jamei et al., 2009a; Li et al., 2014b; Tsamandouras et al., 2015). In
general, when using middle-out approaches, in vitro intrinsic clearances
are back-calculated from in vivo clearance by assigning the fractions of
the in vivo clearance associated with each clearance pathway, or scaling
factors are assigned to the in vitro or in vivo clearance value(s) to
accurately predict the observed data. Parameter estimation methods and
sensitivity analysis can also be used in instances where in vitro data are
unavailable and in vivo f;,, values are not known.

For the models shown in Tables 1-6, in vitro clearance values
(bottom-up approach) were used for clearance parameters in 35% of the
cases. The most common alternative to IVIVE was back-calculating in
vitro intrinsic clearance data from in vivo clearance (21%). Because this
approach incorporates the fractional contribution of individual enzymes
into the model, models developed using this technique can potentially
be used to simulate pharmacokinetics in situations where enzyme
expression levels or activity are altered. However, the reliability of the
back-calculations to capture the true intrinsic clearances requires
knowledge of the fractional contribution of each enzyme to in vivo
clearance and an understanding of the true systemic clearance and
bioavailability, which may not be available. In 18% of the models, in
vivo clearance was used as an input parameter. While this can be
a reliable way to ensure that the total body clearance is captured, no
specific elimination pathways are accounted for, and thus the model is
not useful for predicting the effects of an inhibitor or inducer or the
consequences of changes in enzyme or transporter expression levels. In
17% of the models, a scaling factor was applied to the in vitro or in vivo
clearance value(s) to accurately predict the observed data. Scaling
factors were particularly common for transporter substrates, likely due
to the current limitations in IVIVE of transporter-mediated clearance
(Harwood et al., 2013; Li et al., 2014b). Finally, parameter estimation

methods and sensitivity analysis were performed to determine the in
vitro clearance values required to capture the true in vivo clearance
for 9% of the models. While these approaches can permit extrapola-
tion to observed in vivo clearance, caution should be exercised when
estimating input parameters. In cases where in vitro parameter values
and their variability are well understood, low prediction success could
indicate that the model is lacking a critical PK process (Jones et al.,
2015; Tsamandouras et al., 2015).

What Makes a Good Model and How Is Model Quality
Assessed? Best practices for model assessment have been proposed
by the World Health Organization (International Programme on
Chemical Harmonization Project, 2010) and have been discussed in
the context of regulatory review (Caldwell et al., 2012; Zhao et al.,
2012b; CHMP, 2014; Ministerial Industry Strategy Group, 2014). How-
ever, no requirements or guidelines exist regarding how to determine
the quality of a PBPK model in general research applications and prior
to publication. In regulatory guidance the criteria for assessing model
validity are often presented in the context of whether the model meets
the performance requirements for its specific purpose. However, in the
research literature the specific goal or purpose for the model is often not
specified, and PBPK modeling is frequently used to explain observed
clinical findings or to support a particular mechanistic hypothesis rather
than to predict drug disposition in a specific population or clinical
situation. To establish the scope of current practices in the PBPK
models that have been published for various purposes and applications,
an evaluation of the current state of model development and quality
assessment was conducted. The compound models listed in Tables 1-6
were assessed 1) to identify the criteria that were typically used to
determine if a model was adequate and 2) to determine if models were
tested against multiple in vivo data sets.

It is considered good practice to assess the quality of a model against
in vivo data that were not used in the model development process and in
situations where one of the parameters is altered, such as in a DDI or an
alternative genotype population (International Programme on Chemical
Harmonization Project, 2010; McLanahan et al., 2012; Zhao et al.,
2012b; Sinha et al., 2014; Jones et al., 2015). Our analysis revealed
that the PK simulations of 97% of the models were compared with
pharmacokinetics in independent study populations. When an in-
dependent data set was used to test a model, the data set typically



1829

Review of the Use of PBPK Modeling

‘s1o1oweed PAAIdSqO Jo PIoj g uryim oq Isnw siaeuwered 3d (S) ‘sioowered
PAAIDSQO JO 950¢ UIGIM oq Jsnu siajourered S[d (1) ‘ONeI PAIOSqo JO Plo) ¢ Ui oq Isnu (s)ioleurered Sd Jo oney () ‘Onel paAIdSqo Jo (¢ UM oq Isnur (s)rojowered 3d Jo oney (g) ‘payroads 10N (I) :SOLOFaIED ¢ oI [[0f BLAILD 9oueIdoddy,
‘1dd (") ‘vonendod saneuIale ((]) ‘Uone[NULIO) dANRWIANE (D) ‘Udwidal Sursop aaneudlfe (g) “Md 2S0p 9[3uIS (V) :pAPN[OUl UOHEBILIdA [JPOW Ul Pasn s}as Ble(],

‘payroads jou = *g'N ‘2d£iouas = X0d,

“BJEP OAIA UI WOIJ PAIB[NO[EI-YOeq = ) “BIEp OAIA UI WOy uonewnsd rojouwered = 44,

(€107 “Te 10 09X) dAoung I q°d ‘SN SOX — OAIA U] 210 [ewIury aa widoyjouta], 8DTdAD
SIOJQIUUY YEIA
(6007 “Te 12 nX) dAourg € q°d XOd Xe§ 98y ON — OAIA UJ ®I0 [ewIury aa [rederop
(BE10T “[¢ 10 JJoynoN) dAoung I v Xag ‘a8y ON — od 210 [ 1aa [iuedesop
141dLVO
(Bg10T “v 10 Suep) UI[UONUIA S 404V SN ON 8DTdAD onIA uf ®I0 [ewrury 1aa [ruredero A
(6002 “Te 10 nX) dAoung ¢ q°d XDd ‘XS 98y ON 8DTdAD OAIA Uf [L26) [ewiury aa uofwonpArg
(1107 “Te 10 uewWpaLL) dAoung I q Xag ‘a8y ON 9aTdAD OAIA U] 210 [eWIUIA 1aa wozen[iq
(600 “Ie 10 Sueyy) UI[UONUIA I q4°d°V SN ON — onIA uf [®I0 [ewIury aa wazen[iq
(6007 “Te 12 nX) dAowg € q°d XOd Xe§ @8y ON — OAIA UJ ®I0 [ewIury aa wazen(iq YVEAAD
(b10T “Ie 32 M) dAoung I q°d‘d XDd SOK — od pog [ewury 3d [eoruI) sjozeidowy 610TdAD
$VEdAD
(S10T “I® 10 uayD) dAoung I i1V SN ON 9dTdAD od pog [ILE aa Quoreporury 6JTdAD
SI03IqIyuy IJeIIPOJA
SVEdAD
(T10T “[¢ 10 BILIA) dAoung I 44V SN ON d3-q od ®I0 [ILE 1aa uAwoIpIR],
(eZ10T “Te 10 OrYZ) dKourg I 1°‘d 'S'N SOX d3-q ol [e10 g I uAwonpIR[,
UTIAD
9aTdAD
(¥10T “e 10 vxadsey)) dAoung I a SN LN SVEdAD onIA uf ®I0 [ewIury 3d [eor) JIARUOIY
9aTdAD
(€10T “Te 10 1pILdIIS) dAoung I q°V ‘SN LN 60TdAD OnIA uf 210 [eWIUIA aa TIARUOIY
(€10T “Te 10 opny)) dden I 44V SN ON — ad [L26) [ewrury 1aa S[ozeuodeny
(6002 “Te 12 nX) dAoug € q°d XOd Xe§ 98y ON — OAIA UJ ®I0 [ewIury aa uroAwonpue)
(010T ‘Suep) dAoung ¢ 44V XDd XS 98y SOX — OAIA U] [e10 [eWIUIA 1aa urAwoIyLIER[) YVEdAD
610TdAD
6DTdAD
(€10T “I¢ 10 1pILdIIS) dAoung I q ‘SN SOK TVIdAD onIA uf ®I0 [ewury aa sunaxon{
(QE10T T8 10 93)) qupeA ‘dlowng T q°‘d XDd ‘XS LN $VEdAD OnIA Uf 210 [ Kdueugorg sunaxored 9dTdAD
(€10 “Te 10 opny)) dden I q4°d‘V SN ON $VEdAD dd [Li6) [ewiury aa [1Z01qIjWaD 8DTdAD
saojqryuy w:o.—am
. ( pang1oads s1ojoweRIRd Sdgd
JELIAIID) qopeyrew ¢ INEY panqryuy
uone) remijos 5 u~ reidaony LUOTIBOIJLIDA _» onemndog adfjouad uonIqryuy ,AOURIRID [£I0 g 1o uoneorddy punoduo) owkzug
pawenuig [euonippy [ewrury

SIONQIYUI ()GHd POZIUS0031 10] S[TeIop [opow pue s[opowt Jdd

€ 419VL



1830

Sager et al.

TABLE 4
PBPK models published for P450 inducers

Simulated

ind?;]g Compound Application I\g;nllzxt?ﬁﬂ I(\;r:lr Clearance” genotype iﬁﬂ 31::(1](;2 Verification® Aécril?r?:f ¢ Software Citation
specified?

CYP2B6 and Efavirenz DDI Minimal Oral In vitro Yes N.S AE 1 Simcyp (Siccardi et al., 2013)

CYP3A4 Efavirenz Absorption  Full Oral  In vitro No N.S. B 5 Matlab (Rajoli et al., 2014)
Efavirenz DDI Full Oral In vitro Yes Sex D,E 1 Simcyp (Rekic et al., 2011)

CYP3A4 Carbamazepine DDI Full Oral In vitro No N.S. B,E 5 WinNonlin (Guo et al., 2013)
Etravirine Absorption  Full Oral  In vitro No N.S. B 5 Matlab (Rajoli et al., 2014)
Rifampin DDI Full Oral BC No N.S. E 5 Gastroplus ~ (Baneyx et al., 2014)
Rifampin DDI Full Oral In vivo No N.S. B, E 5 WinNonlin (Guo et al., 2013)
Rifampin DDI Full Oral BC No Age, sex, A 1 Simcyp (Neuhoff et al., 2013b)

PGX

“BC = back calculated from in vivo data.
YPGX = genotype, N.S. = not specified.

“Data sets used in model verification included: (A) Single dose PK, (B) alternative dosing regimen, (C) alternative formulation, (D) alternative population, (E) DDIL
"Acceptance criteria fell into 5 categories: (1) Not specified, (2) Ratio of PK parameter(s) must be within 30% of observed ratio, (3) Ratio of PK parameter(s) must be within 2 fold of observed ratio,
(4) PK parameters must be within 30% of observed parameters, (5) PK parameters must be within 2 fold of observed parameters.

described the pharmacokinetics after a single dose or DDI, or for an
alternative population, formulation, or dosing regimen. The distribution
of the types of in vivo data sets used to assess the quality of the models
is shown in Fig. 2A. Most of the models were assessed using multiple
types of data sets (57%), DDI data (15%), or PK data from alternative
populations (9%). Only 3% of the models were not compared with an
independent data set. However, despite the fact that most models
were assessed against data that were not used in model development,
the simulated populations were rarely matched with the population
demographics of the clinical study subjects, or the population de-
mographics used in the simulations were not reported (Tables 1-6). The
simulated age, gender, and genotypes were reported to match the
observed population for only 32% of the models. Additionally, the
simulated genotypes were only specified for 21% of the models. It is
possible that the demographics of the clinical study and the simulated
population were matched in many of the papers but were not reported.
However, reporting the strategy for how the simulated populations were
made to reflect the observed would provide greater confidence for the
reader that the simulated population was reasonably representative of
the true observed population. The population-specific parameters used
in PBPK models (such as enzyme and transporter abundance, organ
volume, blood flow, plasma protein binding, and glomerular filtration
rate) are dependent on the population demographics (such as age,
gender, genotype, and disease state). Similarly, the interindividual
variability in the physiologic parameters is dependent on the population
demographics. Thus, ensuring that the demographics of the simulated
population match those of the observed population may improve the
accuracy of both the mean PK parameters (Steere et al., 2015) and the
predicted population variability. More careful reporting of the simu-
lated and observed study populations would also be critically impor-
tant when model performance is assessed. As has been highlighted
in the literature (Abduljalil et al., 2014), PBPK simulations are often
compared to clinical studies with small study populations, and the true
inter- and intraindividual variability of the observed PK parameters of
the compound of interest are not known. This can lead to a situation in
which one clinical study does not accurately predict the PK parameters
observed in another study with the same compound (Abduljalil et al.,
2014). In such situations, a PBPK model cannot simultaneously meet
the common acceptance criteria for both studies. However, the
simulated population variability was rarely compared with the observed
variability in the literature evaluated, and we found no papers in our
analysis in which a priori model acceptance criteria were driven by
knowledge of the variability in the PK parameters of the drug of interest
in the target population. However, the 90% confidence interval is

generally shown in simulated plasma concentration-time curves (Jones
et al., 2015), and several studies used the simulated 90% confidence
interval of the plasma concentration curves as a criterion for model
acceptance (Sager et al., 2014; Bui et al., 2015; Chetty et al., 2015).
Determination of model performance was inconsistent and largely
subjective in a majority of the papers. In 56% of the published models in
Tables 1-6, the authors did not specify a priori a criterion by which they
would decide if their model was successful or not (Fig. 2B). A recent
publication from the International Consortium for Innovation & Quality
in Pharmaceutical Development (1Q) IQ PBPK working group suggests
that criteria should be predefined regarding whether a model fits the
purpose (Jones et al., 2015). However, there is no consensus on what
criteria should be applied for different modeling purposes. The IQ
working group suggested that for drugs with a broad therapeutic
window, common 2-fold criteria for the model would be acceptable, but
for drugs with a narrow therapeutic index more stringent criteria would
be appropriate (Jones et al., 2015). On the other hand, for PBPK mod-
els used for risk assessment the IQ proposed that acceptance criteria
should reflect the effect of accuracy on dose selection. However, these
recommendations are not consistent with the methods used to evaluate
model performance in the literature. Overall, in the papers (Tables 1-6)
in which the acceptance criteria were specified a priori, four standard
choices were employed for model acceptance. For 22% of the models,
the authors specified that predicted ADME characteristics [i.e., the area
under the plasma concentration-time curve (AUC), the steady state
average or the maximum concentration in plasma (Cs ayg, and Ciax)] in
a given population must be within 2-fold of the observed value in order
for the model to be considered acceptable. In 7% of the cases, predicted
mean PK parameters were required to be within 25%-30% of the
observed mean. In addition, for 10% of the models, the predicted fold
change in the AUC or C,,,x between different simulated populations or
study conditions had to be within 2-fold of the observed fold change in
order for the model to be acceptable. Finally, for 4% of the models, the
authors specified that the predicted fold change in the AUC and Cy,x
needed to be within 30% of the observed fold change. When the
acceptance criteria were analyzed according to the types of applications,
a more striking discrepancy with the proposed guidance was observed
(Fig. 2C). For models built for narrow therapeutic index drugs only
17% (two papers) used a 30% difference as the standard for model
acceptance; 50% (six papers) of the papers had no criteria; and 33%
(four papers) considered a 2-fold difference to be an acceptable criterion
for these drugs. Similarly, for P450-sensitive substrates, which are
expected to clinically report less than 2-fold changes in clearance, only
3% (one paper) used <30% difference in fold change as an acceptance
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TABLE 6
Summary of the PBPK models published for compounds that are FDA probe substrates, inhibitors, or inducers but the models were developed for a different purpose than the
FDA category.
Lo Oral Simulated a e b Population Acceptance .
Compound Application Type or IV izrl?:]ye%e? Clearance’ Verification matched? Criteria Software Citation
Alprazolam DDI Full Oral No In vitro E N.S. 5 Winnonlin  (Guo et al., 2013)
Clopidogrel DDI Minimal Oral Yes  In vitro B,E Sex 1 Simcyp (Tornio et al., 2014)
Clopidogrel Genetics Full Oral Yes In vitro B,D,E NS. 1 Simcyp (Djebli et al., 2015)
Lansoprazole Absorption Minimal Oral No In vivo C N.S. 1 Gastroplus  (Wu et al., 2013)
Metformin Other (diabetes) Full Oral No in vivo D N.S. 3 Winnonlin (Li et al., 2015)
Metformin Pregnancy Full Oral No In vivo D Sex 5 Gastroplus  (Xia et al., 2013a)
Methadone Pregnancy Full Oral No BC B, D Sex 4 Simcyp, (Ke et al., 2013a)
Matlab
Nisoldipine Other (diabetes) Full Oral No In vivo D N.S. 3 Winnonlin  (Li et al., 2015)
Oseltamivir Pediatrics Full Both No In vitro, SF C,D,E N.S. 1 Gastroplus  (Parrott et al., 2011)
Oseltamivir Clinical PK Full Oral Yes In vitro D N.S. 1 PK-Sim (Hu et al., 2014)
Oseltamivir RI Full Oral No In vivo B N.S. 1 Simcyp (Hsu et al., 2014)
Phenobarbital DDI Full Oral No In vivo B.E N.S 5 WinNonlin (Guo et al., 2013)
Pravastatin Clinical PK Full v No In vitro, SF C N.S 1 Berkeley (Jones et al., 2012)
Madonna
Propranolol Formulation Full Oral No In vivo B, C N.S. 1 Gastroplus  (Wang et al., 2013b)
Rosuvastatin Clinical PK Full v No In vitro, SF C N.S 1 Berkeley (Jones et al., 2012)
Madonna
Sertraline DDI Minimal Oral Yes  In vitro E N.S. 1 Simcyp (Siccardi et al., 2013)
Theophylline DDI Minimal Oral No In vivo B.E Age, Sex, PGX 3 Simcyp (Xu et al., 2009)
Valsartan Clinical PK Full v No In vitro, SF C N.S. 1 Berkeley (Jones et al., 2012)
Madonna
Verapamil DDI Full Oral No In vitro E N.S. 3 Winnonlin  (Guo et al., 2013)
Voriconazole Pediatrics Full Both No In vitro, SF C, D N.S. 1 Simcyp (Zane and Thakker, 2014)
Voriconazole DDI Minimal Oral Yes In vitro E Sex, PGX 1 Simcyp (Damle et al., 2011)

“BC = back calculated from in vivo data, SF = scaling factor.

Data sets used in model verification included: (A) Single dose PK, (B) alternative dosing regimen, (C) alternative formulation, (D) alternative population, (E) DDI.

‘PGX = genotype, N.S. = not specified.

"Acceptance criteria fell into 5 categories: (1) Not specified, (2) Ratio of PK parameter(s) must be within 30% of observed ratio, (3) Ratio of PK parameter(s) must be within 2 fold of observed ratio,
(4) PK parameters must be within 30% of observed parameters, (5) PK parameters must be within 2 fold of observed parameters.

criterion for the PBPK models, and 42% (13 papers) considered less
than 2-fold difference between predicted and observed values or in fold
changes acceptable. Only 16% of the papers (five papers) used the
<30% difference observed and predicted values as acceptance criteria
for P450-sensitive substrates. For P450 inducers, there were no models
that required a <30% difference in PK parameters, and for transporter
substrates, inhibitors, and inducers nearly all papers (84%) had no
specified acceptance criteria. Taken together, these data suggest that
there is a lack of consistency in model quality assessment, which does
not reflect the different purposes for which the models are developed.
The data also suggest that there is a need for more rigorous evaluation of
model quality assessment during peer review. The issue of the lack of
strict peer-review requirements for published models has been dis-
cussed previously in the literature (McLanahan et al., 2012) but it has
not been formally addressed by the larger research community.

Based on the analysis of the PBPK models used to simulate drug
absorption, more stringent criteria of model assessment were used in
this field, likely adapted from bioequivalence standards. For some
absorption models, model performance was determine to be high if
error was <25%, medium if error was 25%-50%, low if error was
50%-100%, and inaccurate if error was greater than 2-fold (Sjogren
etal., 2013). Importantly, many of the absorption models systematically
evaluated model performance in terms of the plasma concentration-time
curves rather than specific PK parameters using a similarity factor (f; or
f>) to calculate the percent difference between the simulated and
measured plasma concentrations at each measured time point (Shono
et al., 2009; Wagner et al., 2012; Fei et al., 2013; Kambayashi et al.,
2013; Wang et al., 2013a). In addition, many absorption models were
evaluated using statistical criteria such as linear regression between
observed and predicted parameters or concentrations and method of

residuals (Shono et al., 2009; Turner et al., 2012; Kambayashi et al.,
2013). In some studies evaluating PBPK models of biologics (Kletting
et al., 2010; Cao et al., 2013) model performances and discrimination
between different models was achieved using statistical criteria that
account for the added degrees of freedom in the model. The Akaike
information criterion and correlation analyses were used to specifically
differentiate between developed PBPK models and to identify the
model that best fit the observed data (Kletting et al., 2010; Cao et al.,
2013). Adaptation of some of these methods and criteria into PBPK
modeling in other research areas may provide good standardization of
model acceptance criteria.

Conclusions

PBPK modeling is increasingly being used in peer-reviewed
publications to provide mechanistic predictions of pharmacokinetics
and disposition in diverse populations and dosing regimens. Since
2008, 106 models of sensitive substrates, inhibitors, and inducers have
been published, with applications ranging from DDIs to pregnancy.
However, there is a relative lack of consistency in how models are
developed and how model quality is assessed. Published models use
bottom-up, top-down, and middle-out approaches to estimate clearance
input values, and they vary in complexity. While model performance
was found to be tested against model-independent data sets 97% of the
time, model acceptance criteria and the extent to which the simulated
populations reflect the observed population were not always specified.
Thorough and consistent reporting of model development techniques
and quality assessment could increase reader confidence and result in
more widespread acceptance of published models. Thus, the develop-
ment of best-practice guidelines for peer-review submissions might be
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List of compounds for which Full PBPK models were used to address pharmacological and toxicological questions

Compound Model purpose A priori criteria? Model Quality Assessment Conclusions Citation
Acetaminophen Assessing various calibration No Qualitative discussion of Predicted liver toxicity in (Péry et al., 2013)
strategies for linking PBPK the agreement between agreement with observed
models to toxicodynamic simulated and observed
models of hepatotoxicity Chax, and metabolite
ratios
Cyclosporine Simulation of receptor No Mann-Whitney test to A greater therapeutic index (Gérard et al., 2010)
occupancy in accute graft- compare means, chi- was predicted following
versus-host organs and square test to compare continuous infusion
kidneys after intermittent or proportions, bias and
continuous infusion precision, number of
simulations within 2-fold
of the observed,
weighted residuals
Cyclosporine Establish a connection between No Student’s t-test to compare  Blood cyclosporine levels  (Gérard et al., 2011)
the likelihood and severity of means, chi-square test to can be used as an
graft-versus-host disease and compare proportions, indicator of therapeutic
cyclosporine exposures in Akaike information efficacy
circulation, graft-versus-host criterion for model
target organs and lymphoid selection
tissues
Efalizumab Develop a PD linked PBPK Yes Observed data within the The model predicted the (Chetty et al., 2015)
model to predict efficacy of predicted 5™ and 95" efficacy of efalizumab in
efalizamab centile treatment of psoriasis
Formamide Evaluate the relationship No — 40mg/day dose was (Yan et al., 2012)
between dose and hepatic proposed bases on
exposure a safety index
Levofloxacin Exploratory study to predict the Yes Fold error in PK parameters Levofloxacin penetrated (Zhu et al., 2015a)
extent of tissue exposure of less than 2 well into tissues,
levofloxacin in humans as including the liver
a basis for future PK/PD kidneys and spleen
work.
Moxifloxacin Simulate tissue concentrations Yes Fold error in PK parameters Concentrations in intra- (Zhu et al., 2015b)
versus time in patients with less than 2 abdominal tissues were
intra-abdominal infections predicted to be higher
than the minimum
inhibitory concentration
for common pathogens
Moxifoxacin Evaluate the effect of No Simulated concentration Macrophage concentrations  (Edginton et al., 2009)
macrophages on tissue versus time profiles were are predicted to effect
concentrations of evaluated for bias and tissue concentration of
moxifloxacin to enhance precision moxifloxacin
understanding of the effects
of disease on PK/PD
Nicotine Develop a PBPK model to No Qualitative discussion of PK/PD modeling allowed (Teeguarden et al., 2013)
describe nicotine exposure the agreement of the for prediction of nicotine
and receptor binding in the predicted and observed receptor occupancy in
brain data the brain
“S1” Predicting brain extracellular No — Unclear whether the PBPK  (Ball et al., 2014)
fluid concentrations as model would accurately
a starting point for PK-PD predict PD
modeling
Temozolomide PD linked PBPK model for No — Predictions were in close (Ballesta et al., 2014)
simulating the brain agreement with observed
concentration of data and parameter
temozolomide and the levels estimates had low
DNA brain adducts coefficients of variation
Zidovudine Model intra-cellular No PK features are well 100mg 4 times daily is (von Kleist and
concentrations of zidovudine represented by the predicted to be the safest Huisinga, 2009)
in peripheral blood predictions and most efficacious
mononuclear cells and dosing scheme
establish efficacy and
toxicity following various
dosing regimens
Theoretical Compounds Proof of concept study to No This approach can be used  (Poulin, 2015)

evaluate mechanisms for
differences in unbound
plasma and tissue
concentrations

to predict free tissue
concentrations of various
classes of drugs




1834

>

None

Multiple

DDI

Alternative population
Alternative formulation

Alternative dosing regimen

Types of Verfication Data Sets

Single Dose

0 10 20 30 40 50 o0
Percent of Models

0% 20% 40% 60%

Percent of Models

80% 100%

O No criteria

I < 30% differencein fold change

M < 2-fold difference in fold change

3 < 30%difference in PK parameter
[ < 2-fold difference in PK parameters

Cc

P450 Sensitive Substrates

Narrow Therapeutic Index
Substrates

P450 Inhibitors

P450 Inducers

Transport Substrates, Inhibitors,
Inducers

0 10 20 30
Number of Models

Fig. 2. Summary of the verification criteria and alternative datasets used for the
PBPK models in the literature evaluated. The types of in vivo datasets used to verify
the quality of the models are shown in (A). The distribution of the acceptance criteria
used in PBPK models of FDA probe substrates and inhibitors is shown in (B). The
distribution of the model acceptance criteria used specifically for each compound
class is shown in (C).

beneficial. Table 8 includes suggestions for the information that should
be included in peer-reviewed publications containing PBPK models.
These suggestions are consistent with best-practice guidelines for reg-
ulatory review (International Programme on Chemical Harmonization
Project, 2010; Zhao et al., 2012b; CHMP, 2014; Ministerial Industry
Strategy Group, 2014) but also acknowledge that guidelines for peer-
reviewed models may not require the same degree of reporting detail as
has been proposed for regulatory submissions.

Sager et al.

TABLE 8
List of relevant details to report for publication of PBPK models.

Modeling workflow Suggested information

Objectives
Model acceptance criteria

‘What is the purpose of the model?

What criteria are being used to determine if
a model is fit-for-purpose?

What is the clinical relevance of these criteria?

‘What independent data sets are used for model
testing?

Was the model built using a PBPK software
package? If not, information regarding the
model structure, the source of parameters, and
their physiologic context should be reported.

‘What input parameters were used? For
recommended parameters to include, see Zhao
et al., 2012b

‘What parameters, if any, were estimated when
using parameter estimation or sensitivity
analysis?

Are the estimated parameters physiologically
plausible?

Are the parameters within the range of previously
reported values (if applicable)?

Population demographics (Do the simulated and
observed populations and study sizes match?)

Comparison of the predicted and observed PK

Do the predictions meet the predetermined model
specification criteria?

Was sensitivity analysis performed to assess
whether model output parameters are sensitive
to specific input parameters? (Yes/No)

‘What are the verified applications of the model?

What is the level of uncertainty in the model
components?

Model development

Model outcomes

Model performance

Authorship Contributions
Participated in
Isoherranen.
Performed data analysis: Sager.
Wrote or contributed to the writing of this manuscript: Sager, Yu,
Ragueneau-Majlessi, Isoherranen.

research design: Sager, Yu, Ragueneau-Majlessi,
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