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Cellular senescence happens in 2
steps: cell cycle arrest followed, or

sometimes preceded, by gerogenic con-
version (geroconversion). Geroconves-
rion is a form of growth, a futile growth
during cell cycle arrest. It converts revers-
ible arrest to irreversible senescence. Ger-
oconversion is driven by growth-
promoting, mitogen-/nutrient-sensing
pathways such as mTOR. Geroconver-
sion leads to hyper-secretory, hypertro-
phic and pro-inflammatory cellular
phenotypes, hyperfunctions and mal-
functions. On organismal level, gerocon-
version leads to age-related diseases and
death. Rapamycin, a gerosuppressant,
extends life span in diverse species from
yeast to mammals. Stress–and oncogene-
induced accelerated senescence, replica-
tive senescence in vitro and life-long cel-
lular aging in vivo all can be described by
2-step model.

Introduction

Defined as irreversible cell cycle arrest,
cellular senescence is difficult to link to
age-related diseases, which terminate our
life span. If anything, cell cycle arrest per
se should protect against atherosclerosis,
hypertension, organ fibrosis, visceral adi-
posity, benign tumors and cancer. And
why calorie restriction and rapamycin,
which inhibit proliferation, extend life
span. Something is missing. Indeed, aging
is not just cell cycle arrest.1-18 In analogy,
although cell cycle progression is impor-
tant in carcinogenesis, we do not define
cancer as cell cycle progression. For one,
intestinal and bone marrow progenitor
cells proliferate faster than tumor cells.
And the cancer cell cycle can be easily
arrested by p21, which is not even a tumor
suppressor. A cell can be proliferating but

not cancerous. Similarly, a cell can be
arrested but not senescent. Even perma-
nently-arrested cells (such as neurons) are
not necessarily senescent. Here we will
define the essence of senescence, as it had
been done for cancer.

The essence of cancer is oncogenic
transformation, driven by oncogenes and
antagonized by tumor suppressors.19-31

Similarly, the essence of senescence is
gerogenic conversion driven by gerogenes
and antagonized by gerosuppressors.
(There is an overlap between oncogenes
and gerogenes18,32). But let us start from
the beginning.

Two-types of Cell Cycle Arrest

Growth factors, hormones, cytokines
and nutrients activate Ras/Raf/MEK/ERK
and PI3K/Akt/mTOR signaling path-
ways.33-36 In cancer cells, these pathways
are constitutively activated. These path-
ways (MAPK/mTOR, for brevity) stimu-
late cellular mass growth coupled with cell
cycle progression (Fig. 1A).

1. Quiescence: Without GF, the MAPK/
mTOR network is deactivated
(Fig. 1B). Cell cycle comes to a halt.
The quiescent cell neither grows nor
cycles. Yet the cell retains the prolifer-
ative potential: re-addition of GF
causes activation of MAPK/mTOR,
cell mass growth, cell cycle progres-
sion, mitosis and cell proliferation. In
quiescent cells, mTOR is deactivated,
levels of pS6, cyclin D1, p21 and p16
are all low.37 “Everything is off." Con-
tact inhibition also causes quiescence-
like arrest. Contact inhibition in con-
fluent culture inhibits mTOR and
MAPK pathways.38,39 Cells neither
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grow in size, nor cycle and can restart
proliferation after splitting.

2. Hyper-mitogenic type of arrest
(Fig. 1C). Cell cycle can be arrested by
CDK inhibitors such as p21 and p16.
In this case, the cell cycle is blocked
but mTOR and MAPK are still active
(Fig. 1C). In futile attempt to over-
come the block, growth-promoting
pathways push a cell to become hyper-
trophic, hyper-active, hyper-functional
and secondary signal-resistant and
b-Gal-positive.40 Cyclin D1 goes
above the roof. It is like pushing the
brakes and the gas simultaneously. (In
contrast, in quiescence the motor is
off: normal parking).40 Activation of
mTOR, when the cell cycle is blocked,
leads to senescent morphology, includ-
ing loss of the ability to re-start prolif-
eration.41 This mTOR-driven process
is gerogenic conversion.18

Depending on whether a cell is prolif-
erating or arrested, mTOR drives either
growth or geroconversion. Geroconver-
sion is a form of growth, when actual
growth is restricted.42 It leads to cellular
hyperfunctions, hypertrophy and compen-
satory signal-resistance and lysosomal
hyperfunction (b-Gal-positivity). Rapa-
mycin slows down geroconversion.43

p21- and p16 -Induced
Senescence

To test 2-step hypothesis experimen-
tally, we first employed the simplest
model of senescence: p21- or p16-
induced senescence. In HT-p21 and HT-
p16 cells, expressing IPTG-inducible
p21 and p16, respectively, cell cycle and
mTOR can be manipulated sepa-
rately.41,43,44. Arrest can be caused by
p21 or p16. During 2 days, cells are
arrested but still can resume prolifera-
tion, when p21 (or p16) is switched off.
After 3–4 days, p21/p16-arrested cells
lose proliferative potential. If (after 3–
4 days) p21 is switched off, cells cannot
divide.45 The proliferative/mitotic poten-
tial is lost. What drives this conversion
from initial arrest to irreversible state?

In proliferating HT-p21/p16 cells,
mTOR is activated. When p21 (or p16) is
induced, the cell cycle is arrested but
mTOR is still active (Fig. 2A). It drives
cellular mass growth (growth in size) lead-
ing to a large and flattened morphology.
This hypertrophy is counterbalanced by
increased lysosomal activity (lysosomal
hyperfunction), manifested by b-Gal-
staining. Loss of mitotic competence
is one of manifestations of senescent
phenotype.45

Rapamycin suppresses geroconversion
(Fig. 2B), so the arrested cells retain the
proliferative potential. They can re-start
proliferation, if cell-cycle arrest is abro-
gated. Importantly, rapamycin does not
abrogate p21-or p16-induced arrest. Cells
are still arrested but when p21 or p16 is
switched off, they can restart prolifera-
tion.43-45

Rapamycin by itself slows down cell
cycle. It slows growth (in proliferating
cells) and geroconversion (in arrested cells).
Literally, rapamycin slows down time.
Geroconversion takes 3 times longer.43

Not only rapamycin but also any con-
dition that deactivates mTOR in turn
suppresses geroconversion.38,46-48 In par-
ticular, hypoxia, starvation and contact
inhibition all suppress geroconver-
sion.38,47-49 As we will discuss, this can
explain how quiescent cells remain quies-
cent in the organism for so long.

Gerogenes and Gerosuppressors

Conditions that activate mTOR accel-
erate geroconversion. Therefore, we can
predict genes that are gerogenes and gero-
suppressors. Gerogenes activate the
growth-promoting mTOR path-
way.32,50,51 They include growth factor
receptors (IGF-1, insulin, EGF, ErbB),
Ras, Raf, Mek, PI-3K, Akt and other
growth-promoting oncogenes. Gerosup-
pressors antagonize mTOR pathway and
include PTEN, TSC1/2, AMPK, and
other tumor-suppressors. This was dis-
cussed in detail.32,50-52 Gerogenes are
oncogenes that promote cellular mass
growth in cancer and senescence. One of
surprising predictions is that p53, a
tumor-suppressor that inhibits mTOR,
will suppress geroconversion.50

p53-Induced Senescence

Like many tumor-suppressors such as
PTEN, p53 can suppress cancer in part
by inhibiting mTOR.50,53,54 p53 induces
senescence because p53 is an extremely
potent inducer of cell cycle arrest.55,56

When the cell cycle is arrested by p53,
mTOR drives geroconversion,47,57,58

(Fig. 3, green arrow). But in some cell

Figure 1. Proliferation versus arrest. (A) Proliferation: Growth factors (GF) activate MAPK and mTOR
pathways, driving cell growth (in size) and cell cycle. Cellular growth is balanced by cell division. (B)
Quiescence: In the absence of GF, cell growth and cycle are at rest. (C) Pro-senescent cycle arrest:
When the cycle cycle is blocked by p21 or p16, the growth promoting pathway (MAPK/mTOR)
causes growth in size (hypertrophy).
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types, at high levels p53 also inhibits
mTOR and cellular mass growth (Fig. 3,
yellow arrow). When p53 is capable to
inhibit mTOR, it induces reversible
arrest (quiescence), instead of senes-
cence.47,57-60 For example, when cell
cycle is arrested by ectopic p21, then
induction of p53 can inhibit geroconver-
sion in p21-arrested cells.47 In some
types, while p21 and p16 caused senes-
cence, their combination with p53
caused quiescence.47 In MEFs, p53 does
not inhibit mTOR,57 so it does not pre-
vent geroconversion during replicative
senescence. As a powerful inducer of
arrest, p53 is involved in stress-induced,
oncogene-induced and replicative senes-
cence.6,9,55,56,61-63 p53 “induces” senes-
cence by causing cell cycle arrest, while
failing to inhibit mTOR.57,58 Notewor-
thy, rapamycin may partially substitute
for p53 in mice.64-67

Stress-induced Senescence

In most cases, stress-induced senescence
is p53-dependent (Fig. 3). Stresses such as
acute DNA damage induce p53-dependent
arrest, while mTOR drives geroconversion
from arrest to senescence (Fig. 4A). Rapa-
mycin and serum withdrawal decelerate
geroconversion, (Fig. 4B) during stress-
induced senescence.68

Oncogene-induced Senescence

Oncogene-induced senescence is
caused by oncogenes (Ras, Raf, MEK,
AKT) that activate MAPK/mTOR path-
ways and also induce p53, p21 or p1669-74

These oncogenes are gerogenes, which
cause 2 processes: cell cycle arrest and ger-
oconversion. For example, Ras promotes
growth, leading to hypertrophy (pro-gero-
genic conversion,Fig. 4C). This pro-gero-
genic conversion induces p53-dependent
arrest.69,70,71,75 During cell cycle arrest,
Ras-activated mTOR pathway completes
geroconversion to senescence (Fig. 4C).
Rapamycin suppresses Ras-induced
growth and geroconverion.76 In contrast,
loss of p53 prevents cell cycle arrest, with-
out affecting geroconversion. Geroconver-
sion without cell cycle arrest is cancer.

Replicative Senescence in Human
Cells

In replicative senescence, telomere
shortening culminates in DNA damage
response in human cells. Noteworthy,
there is a correlation with longevity

in vivo77-79 Replicative senescence of
human cells is a variant of stress-induced
senescence (Fig. 4D). The main peculiar-
ity is that stress (telomere crisis) occurs
after many rounds of cell divisions. After a
definite number of divisions (Hayflick
limit), the process can be described by

Figure 2. Senescence vs. quiescence.

Figure 3. The dual role of p53 in senescence. P53 causes Arrest that is followed by geroconversion
(green arrow). Yet, at very high levels, p53 can inhibit mTOR, suppressing geroconversion (yellow
arrow) and leading to quiescence.
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2-step model: arrest followed by geroconve-
sion (Fig. 4D). Rapamycin suppress replica-
tive senescence in human fibroblasts.76

Replicative Senescence in Rodent
Cells

This type of senescence reminds pro-
tracted “oncogene-induced” senescence
(Fig. 4E), because it is telomere-indepen-
dent.80 Primary rodent cells are overstimu-
lated by serum, high glucose (DMEM
contains 5 fold excess of glucose) and other
nutrients and non-physiological oxygen
levels. Under such overstimulation of
mTOR, cells gradually undergo gerocon-
version. Pro-geroconversion triggers
p53-dependent arrest. Continous gerocon-
version makes the process irreversible.
Rapamycin prevents replicative senes-
cence.81,82 Similarly, lowmitogenic-condi-
tions delay replicatiove senescence.83 In
hypoxia, MEFs do not undergo senes-
cence84 Not co-incidentally, hypoxia
inhibits mTOR.

Yeast Replicative Senescence

Yeast and rodent replicative aging are
comparable (Fig. 5E). Yeast mother cell

becomes progressively hypertrophic before
ceasing proliferation. Geroconversion trig-
gers the arrest. “CR” and genetic TOR
inhibition extend replicative lifespan.85

Chronologic yeast aging is a different
phenomenon.86,87 It has no analogy to
traditional senescence in mammals.
Instead, it is identical to metabolic self-
destruction of cancer cells88,89 Both yeast
and mammalian “chronological aging” is
inhibited by rapamycin.90 The reason is
that the same pathways that drive gero-
conversion and organismal aging also
increase glycolisis production.88,91

Emerging Summary

1. In cell culture, a senescent program
includes 2 events: cell cycle arrest and
geroconversion. Cell cycle arrest is ulti-
mately caused by CDK inhibitors such
as p21 and p16. Geroconversion is
driven by growth-signaling pathways
such as mTOR.

2. When the cell cycle is blocked, growth-
promoting pathways drive geroconver-
sion. Geroconversion can be viewed as
a continuation of growth, a quasi-pro-
gram of growth. Like cellular growth,
gerconversion is slowed down by rapa-
mycin. Geroconversion leads to

hypertrophy, hyper-differentiation and
hyperfunctions such as SASP.

3. The action of growth-promoting path-
ways causes the opposite reaction. For
example, a cell cannot grow in size
infinitively. Re-activation of lysosomes
and autophagy counteracts protein
synthesis and growth. Signal resistance
counteracts cellular overstimulation.
Hyperfunctions may eventually lead to
malfunctions, hypertrophy to atrophy.

From Cell Culture to the
Organism

Arrest and geroconversion are obliga-
tory steps of cellular senescence, including
stress-induced, oncogene-induced and rep-
licative senescence (Fig. 4). In cell culture,
geroconversion is a rapid step because in
cell culture mTOR is overactivated, espe-
cially in cancer cells. When arrested for sev-
eral days, cells become senescent due to
rapid geroconversion. If mTOR is not
inhibited by contact inhibition or by star-
vation, then geroconversion is automatic
in arrested cells. Therefore, arrest is a key
event in most models of senescence in vitro
(if arrest occurs, then geroconversion fol-
lows). Not surprisingly, it is arrest that
attracted all attention, so that senescence
was defined as “permanent arrest."

In long-lived organisms, it is gerocon-
version that is the limiting event. A cell
can be quiescent for years without becom-
ing senescent. In the organism, the
mTOR activity is low and a cell can be
arrested (quiescent and contact inhibited)
without undergoing geroconversion. Ger-
oconversion can either follow or precede
arrest (or both). For example, geroconver-
sion of stem cells may initially increase
their proliferation followed by delayed
arrest (stem cell exhaustion).15,92-97 Simi-
lar geroconversion exhausts oocytes,98,99

leading to menopause.100

Permanent cell cycle arrest is not a cru-
cial marker of senescence in the organism.
Senescent cell can re-enter cell cycle: in
some situations with devastating conse-
quences for the organism. (One example
is death of neurons upon S-phase re-entry
in Alzheimer’s disease. Another example is
cancer.)

Figure 4. Arrest-Geroconversion model. Schematic representation of types of senescence (Arrest-
red stop sign. Geroconversion – green arrow). (A) Typical arrest-induced senescence. DNA damage-
induced senescence. CDK (p21 and 16)–induced senescence. (B) In the presence of rapamycin: ger-
oconversion is slowed down and extended. (C) Oncogene-induced senescence. Oncogenes such as
Ras empower growth, cause arrest and then empower geroconversion. (D) Replicative senescence
of human cells in culture. Telomere shortening during cell proliferation eventually causes Arrest.
Then geroconversion ensures senescence. (E) Replicative senescence of rodent cells in culture.
Ovestumulation of mTOR by mitogen/nutrient/oxygen rich medium causes cellular hypertrophy.
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Cell cycle arrest per se cannot be
linked to age-related diseases. For one,
organismal aging is associated with
tumors, atherosclerosis, fibrosis and
other hyperplastic and hypertrophic
(obesity) conditions, rather than with
cessation of cellular proliferation. It is
geroconversion that leads to diseases.101

Overstimulation of mTOR in post-
development makes cells hyperfunc-
tional and signal resistant (e.g., insulin
resistant). Examples of hyperfunctions
include oxidative burst by neutrophils
or contraction by SMC. Macrophages
are converted to foam cells, smooth
muscle cells (SMC) become hypertro-
phic and calcificated, hepatocytes pro-
duce lipoproteins and pro-inflammatory
factors, adipocytes are hyperactive.
mTOR dependent geroconversion ren-
ders cells “ pathogenic, thus leading to
atherosclerosis, for instance. Atheroscle-
rosis, hypertension, hyper-aggregation
of blood cells and hyper-coagulation
can culminate in stroke and infarction
(for instance) and organismal death.

Geroconversion creates pathogenic or
gerogenic cells, leading to diseases and
organismal aging. Gerogenic and patho-
genic abilities are tightly linked. In fact,
organismal aging is an increase of the
probability of death. It is the sum of
age-related diseases and disease-like con-
ditions102-105 Inhibition of mTOR by
calorie restriction or rapamycin deceler-
ates geroconversion, and increases
health–and life span. In other words
deceleration of cellular geroconversion
slows down organismal aging. The link
between geroconversion and organismal
aging (via diseases) I will discuss in
forthcoming paper “Geroconversion:
irresistible path to organismal aging”

From Gerontology to Medicine

Geroconversion renders cells gerogenic
(the ability to cause organismal aging) and
pathogenic (the ability to cause diseases)
in the organism. In rare cases, (stress-
induced and oncogene-induced senes-
cence), geroconversion renders cells
“typically senescent," resembling senes-
cence in vitro.5,106-111 A striking example
is oncogene-induced senescent nevi.112

Gerontologists are focused on these
“typically” senescent cells.113Yet, these
senescent cells are only a tip of the iceberg.
Characterized by increased cellular func-
tions (hyperfunctions), gerogenic cells are
not necessarily resemble “in vitro senes-
cent fibroblasts."

By feedback loops, cells from differ-
ent organs/tissues over-stimulate each
other.100,114 Paracrine geroconversion
also takes place.115,116 Gradually gero-
conversion involves most cells in diverse
tissues. The extend of geroconversion
can range from slightly gerogenic to
typically senescent cells. In general, het-
erogeneity is one of hallmarks of
aging.117 We know the contribution of
all gerogenic cells together. Gerogenic
cells are pathogenic by causing hyperli-
pedemia, pro-inflammation, hyperten-
sion, cardiac and so on. Foam cells (in
atherosclerotic plaques), tumor cells,
hypertrophic adipocytes and calcificated
SMC are pathogenic. In medicine, the
effect of all gerogenic cells together is
determined by alterations in blood bio-
chemistry, cardiac and renal functions and
other laboratory and functional tests. Yet,
medical science misses geroconversion as
the universal process, which initiates age-
related pathology and alters laboratory
tests. Medicine concerns with thousands
genetic and external factors of human dis-
eases such as genetic predisposition,
smoking and wrong diet. Although smok-
ing and fat food can accelerate pathology,
this pathology is developed anyway with-
out any hazards (such as smoking or fat
food) because. There is an universal pro-
cess – geroconversion. And geroconver-
sion is a continuation of developmental
growth.

Senescence in cell culture does not
model all the complexity of organismal
aging. Still as we discussed here, these
in vitro models reveal the process of
mTOR-dependent geroconversion. Ger-
oconversion is applicable to the organ-
ism, explaining why we develop age-
related pathology (and cosmetic prob-
lems) and eventually die.
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