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This Letter investigates and reports on a number of activity recognition methods for a wearable sensor system. The authors apply three methods
for data transmission, namely ‘stream-based’, ‘feature-based’ and ‘threshold-based’ scenarios to study the accuracy against energy efficiency
of transmission and processing power that affects the mote’s battery lifetime. They also report on the impact of variation of sampling frequency
and data transmission rate on energy consumption of motes for each method. This study leads us to propose a cross-layer optimisation of an
activity recognition system for provisioning acceptable levels of accuracy and energy efficiency.
1. Introduction: In recent years, we have witnessed a rapid surge
in assisted living technologies because of a rapidly ageing
society. The ageing population, the increasing cost of formal
healthcare, the caregiver burden and the importance that
individuals can continue living independently, all motivate the
development of a new ubiquitous health monitoring system.
One of the important services that can be offered by such a

system is remotely assessing the physical and cognitive well-being
of the people by monitoring the activities of daily living. These
activities can be used to characterise human behaviours, and with
continuous monitoring, anomalies such as falls can be detected
early and required actions can be taken quickly.
However, fall detection is a major challenge in the public health-

care domain, especially for the elderly, and reliable surveillance is a
necessity to mitigate the effects of falls. The technology and pro-
ducts related to fall detection have always been in high demand
within the security and the healthcare industries. An effective fall
detection system is required to provide urgent support and to signifi-
cantly reduce the medical care costs associated with falls.
A low-cost unobtrusive solution for an all-day and any-place activ-

ity monitoring system can be a wearable activity recognition system.
For a wearable activity recognition system, multiple wearable sensor
motes are used to form a self-managing wireless body area network
(WBAN). Sensed data is continuously transmitted to a base station
mote. This data is then used to recognise different activities through
various processing techniques ranging from simple rule-based
approaches to complex machine-learning-based approaches.
However, there are challenges that arise and need to be addressed
when developing mobile activity recognition systems. Among these
challenges, detection accuracy and network lifetime are the most im-
portant. Although any errors in an activity recognition, such as fall de-
tection, can cause delayed help and endanger the health of users. A
short network lifetime, which for wearable device should be at least
one week [1], can result in patient dissatisfaction and rejection of
systems. Activity recognition systems can be implemented using
ambient sensors or via wearable sensors. In the former case, human
activity recognition is achieved either by information collected
from a number of sensors attached to various objects (such as a
bed, door, stove or video/audio equipment) or by processing video
captures of the user’s living space. In the latter case, activity recogni-
tion can be fulfilled by inferring information that is gathered froma set
of wearable sensors that are attached to the human body. In this Letter
we conduct a series of real life tests to observe the feasibility of using
WBANs for monitoring various daily activity patterns based on
802.14.5 wireless standard.
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The bodyof thisLetter is organised as follows: Section 2 presents the
related work and technologies for activity recognition systems, Section
3 discusses themethods that were used for the evaluation and Section 4
demonstrates our results and reports the trade-off for the accuracy and
the energy consumption of three applied techniques. Finally, Section 5
concludes the Letter along with proposing amechanism to improve the
performance of the pattern recognition technique, which will be imple-
mented and investigated in our future work.

2. Related work: Incorporating ambient sensors, specifically video
cameras, for activity recognition has been extensively studied [2–5].
The downside of such techniques is that processing video data is
very costly and an external infrastructure is required, for example,
infrared cameras, which may be influenced, by environmental
conditions such as background light or heat. Moreover, such
techniques can give rise to privacy issues. The operation of these
systems is limited to use where the system is deployed and cannot be
used to monitor a user outside the operation site.

The aforementioned limitations motivate the use of wearable
sensors that can be employed to provide inexpensive and mobile ac-
tivity recognition systems. These systems can be trained to recog-
nise only specific predefined activities or movements to overcome
the privacy issue.

The wearable sensors can measure body movements using accel-
erometers or gyroscope, in addition to physiological signals such as
heart rate and glucose concentration, or environment variables such
as temperature, light and humidity.

Activity recognition systems cover a number of interesting appli-
cation areas such as sport assistance [6], entertainment [7] and in-
dustrial processes [8]. A notable example in these areas, which is
materialised in end-user products, is the Kinect game [9] console
developed by Microsoft. It relies on the recognition of gestures or
even full body movements to allow users to interact with the
game. In [10–14], the authors present systems for fall detection as
well as health threats by monitoring the physiological signals.

In the context of mobile activity recognition for healthcare appli-
cations, detection accuracy and wearable sensors’ lifetime are two
major and mutual goals. Extensive research has focused on these
two criteria separately in the context of wireless sensor networks
and wearable computing [15]. However, these two goals demand
for sensory processing and transmission energy consumption opti-
misation techniques that generally result in detection accuracy re-
duction [16]. Among research that targets trade-off between
detection accuracy and energy consumption, each study focused
on only one particular challenge. Yan et al. [17] proposed an
95
& The Institution of Engineering and Technology 2015

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


Table 1 Specifications of wireless technologies for wireless wearable sensors

Standard BW Power Stack Size Stronghold

Bluetooth 1 Mbps 40 mA TX,
standby 0.2 mA

∼100 + KB interoperability, cable replacement

Bluetooth 4.0 (LE) ∼300 kbps 10 mA TX,
standby 0.024 mA

250 KB low cost, ability to run for years on standard
coin-cell batteries

802.15.4 250 Kbps 30 mA TX,
standby 356 mA

34 KB/14 KB long battery life, low cost

802.15.6 75.9 Kbps (narrow band) up to
15.6 Mbps ultra wide band

0.1–1 mA TX N/A low cost, high reliability, ultra-low power, short-range
wireless communication in or around the human body

802.11ah 0.72–8.67 Mbps for 2 MHz
channel

5–10 mW TX N/A optimised for extended communication range, power
efficiency, scalable operation

Figure 1 Sun SPOT nodes’ placement
activity-based strategy for continuous activity recognition with
focus on both the sampling frequency and the classification features
that are adapted in real time. Their results shows that in an ideal con-
dition activity-based strategy can achieve an energy savings of 50%.

Zappi et al. [18] focused on selecting the minimum set of sensors
according to their contributions to classification accuracy. The pro-
posed dynamic sensor selection method showed the trade-off
between the classification accuracy and the battery lifetime by mini-
mising the number of motes necessary to obtain a given classifica-
tion accuracy for activity recognition. This method was tested by
recognising manipulative activities of assembly-line workers in a
car production environment.

French et al. [19] focused on the impact of sampling frequency.
They evaluated different selective sampling strategies. The strategies
they tested were a baseline uniform sampling strategy, one that
samples over the distribution of duration times of activities, and
one that samples based on the probability of a transition occurring.

In thisworkwe aim to investigate the impact of various parameters
in detection accuracy and wearable sensors lifetime. Parameters such
as transmission rate, sampling frequency and nodal processing can
impact significantly the overall system’s detection accuracy and
energy consumption in a selected wireless protocol.

Several wireless technologies are proposed for wearable sensor
network. Among these technologies, most of the currently existing
projects of mobile activity recognition systems employ IEEE
802.15.4 standard as the wireless communication technology. Hence
we also employ this technology in our investigation and set this stand-
ard for our proposed solution which can be also applied to other stan-
dards. We summarise the specification of the wireless technologies
applicable for wearable activity recognition systems, list and
compare them in Table 1 with respect to the performance parameters.

3. Evaluation methods: We apply three methods for data
transmission, namely, ‘stream-based’, ‘feature-based’ and
‘threshold-based mechanisms’ to study the accuracy against energy
efficiency of transmission and processing power which affects the
mote’s battery lifetime. We also investigate the impact of variation of
two parameters, that is, sampling frequency and data transmission
rate on energy consumption of motes for each of the three discussed
methods. For each experiment, a predetermined sequence of five
postures is given to four case studies to follow for 25 min. We run
the experiment for the three methods at four different sampling
frequency rates of1, 5, 10 and16 Hzasour usedhardware specprovide.

In ‘stream-based’ mechanism each free range mote senses accel-
erometer data and encapsulates the information in a packet with 48
bytes of payload size and sends it without any extra processing to
the base station mote. In ‘feature-based’ mechanism to evaluate
the impact of in-node processing on energy consumption, each
free range mote extracts a set of features over a predefined time
window and encapsulates them in a packet with 264 bytes of
payload size and sends it to the base station mote. In ‘threshold-
based’ mechanism, to evaluate the impact of communication on
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energy consumption, each free range mote sends the raw sensed
data to the sink node if its difference with the last transmitted
data is greater than a predefined threshold value. Similarly, each
mote encapsulates raw sensed data in a packet with 48 bytes of
payload size to send it to the base station mote.

In addition to the aforementioned data transmission methods, we
also employ the method proposed by Ghasemzadeh et al. [15] to
evaluate the impact of feature selection on detection accuracy and
mote energy consumption. In this work the authors investigated
the impact of eliminating irrelevant and redundant features on de-
tection accuracy and energy consumption. In the first step the rele-
vance of each feature and classification tasks, and also relevance
between each pair of features, are computed based on a symmetric
uncertainty parameter. Then, in the second step, features that have a
value below an acceptable threshold value (λR) to the classification
tasks, which is an application design parameter, are eliminated from
the features set. Then, in the third step and by analysis of remaining
features, among strongly correlated features which have a relevance
value greater than a redundancy threshold value (λD), features that
have higher computation energy are eliminated from the set fea-
tures. Hence, with a larger value of λD, fewer features are consid-
ered as strongly correlated and as a result the number of optimal
features will be increased.

In the following Section we will describe our experimental set-up
and discuss the result of employing these methods of data trans-
mission and feature selection.
4. Experimental analysis: In this Section, we present our testbed
set-up and the goal of our experiments. The WBAN-based
activity recognition monitoring scenarios are deployed in the
form of a testbed implementation in our laboratory by wireless
sensor motes. We conducted a series of tests to analyse the
impact of a number of parameters on the accuracy of pattern
recognition and evaluated the trade-off with the power
consumption rate in wireless wearable sensor motes.
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Figure 2 Sun SPOT node architecture model

Table 3 Features extracted from each mote data

Feature Description

Amp amplitude of signal segment
Med median of signal segment
Mean mean value of signal segment
Max maximum amplitude of signal segment
P2P peak to peak amplitude
Var variance of signal segment
Std standard deviation
Cov covariance of two signal
RMS root mean square power
S2E start to end value
4.1. WBAN testbed – hardware and software set-up: The
experiments in our WBAN laboratory were performed applying the
testbed implementation using Sun SPOT motes [21] (see Fig. 1)
manufactured by Oracle (formerly Sun Microsystems). We selected
the number of motes and their placement based on the suggested
configuration in [20] to investigate the impact of transmission rate,
sampling frequency and nodal processing.
The sun SPOT motes are categorised into two type of motes,

namely free range motes and base station motes. Each free range
mote contains a processor, radio, sensor board and a battery, and
the base station motes contain the processor and radio only. Each
mote uses a 32 bit ARM9 micro-processor running the Squawk
VM and an IEEE 802.15.4 compliant radio. While there are four
built-in sensing units available on free range motes, we only col-
lected the data sensed by the accelerometers as relevant information
for our experiment and switch off the other sensory motes to reduce
the energy consumption in our experiments. The architecture of a
mote that can play the roles of both free range and base station
motes is presented in Fig. 2. Each free range mote can be embedded
in the environment and perform sensing and communication tasks,
and each base station mote can communicate with free range motes
through wireless links. The base station mote can be connected to
an external server like a PDA, smartphone or laptop through a
USB interface for supporting the user interface. Hardware specifica-
tions of the motes are given in Table 2.
As can be inferred from this table, a full battery charge of the

motes, in best cases, can operate continuously for about 9 h in
active mode, about 31 h in shallow sleep mode and about two
and a half years in deep sleep mode. Although using deep sleep
mode is extremely desirable, switching from this mode to active
mode takes about 3.55 s and this downtime can hinder the recogni-
tion of activity significantly, which cannot be acceptable for
medical applications, hence we do not apply this mode in our
experiments. Using a combination of active mode and shallow
sleep mode, a full battery charge of the motes can last for about
7–14 h of experiments depending on the variable settings.
In our testbed, we placed two sensor motes on the body of the

person under study; one mote on his chest and the other one on
Table 2 Specification of Sun SPOT mote

Processor 180 MHz, 32 bit, ARM920T
Power usage deep sleep mode: 33 μA

shallow sleep: 24∼ 46 mA
active: 80∼ 104 mA

RF chip TI CC2420
RF power −25∼ 0 dBm
Power supply 3.7 V rechargeable 750 mAh lithium-ion battery
RF current
draw

receive mode: 18.8 mA
transmit mode: 8.5∼ 17.4 mA
sleep mode: 1.0 μA

Sensors accelerometer (MMA7455L chip), temperature, light,
humidity
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his right thigh, as illustrated in Fig 1. These motes communicate
with a base station mote within the free range motes’ transmission
range. This mimics a wearable sensor network. We selected this
set-up based on the suggested configuration in [20] to maintain a
certain level of accuracy. The wearable sensor network is used
for collecting accelerometer data for out-of-body and offline post-
processing. To have a minimum transmission power which is
more suitable for intra-WBAN communication and also to have a
signal strength greater than −80 dB over a distance of 5 m, our
motes radio transmission power is set based on the result of experi-
ments carried out in [22]. Hence, we set our motes radio transmit
power level at level 7 where the transmit radio power is equal to
−15 dBm and consumes 9.9 mA of the current.

In these experiments we attempt to identify five body postures,
namely, STAND, SIT, LIE DOWN, WALK and RUN, which rep-
resent both intensive and non-intensive activity scenarios. We
perform a set of controlled experiments in which a person under
study is given pre-determined sequences of the five aforementioned
postures to follow. Each of the five postures are detected using a set
of features that are listed in Table 3.

To evaluate the detection accuracy, we temporally correlate pos-
tures with the sequence provided to the person under study and
employ the J48 decision tree of Weka toolkit [23] as a classifier.

The free range application extends the Java ME MIDlet class and
runs on top of a number of libraries. These libraries provide an en-
vironment where a free range application can access a variety of
sensors and communication components. The host application is
a regular Java SE program which uses various SPOT libraries that
provide access to the SPOT device, basic I/O and the low-level
MAC radio protocol such as USB connection to a PC or socket con-
nections to other host applications.

4.2. Experimental analysis of accuracy against energy
consumption: As discussed before, in our experiments we focus
on two main challenges, that is, detection accuracy and power
consumption. For wearable WSN applications, the accuracy of
the state of the person under study is important. Furthermore, to
keep and increase the level of accuracy, more frequent sensory
information needs to be collected and processed which results in
higher power consumption. This in turn results in the need to
charge the batteries of the motes in a shorter period of time and
causes inconveniency for the system user.

To evaluate the impact of sleep mode, we use shallow sleep mode
in the implementation of all three mechanisms. We set motes to
shallow sleep mode in between any two consecutive sampling
times and after the required computations.

In the following Sections, first the impact of various parameters
on energy consumption is analysed. This is followed by the discus-
sion of the results of detection accuracy analysis for varying para-
meters. Finally, packet delivery ratio (PDR) for different packet
sizes and sampling frequencies and its impact on detection accuracy
are investigated.
97
& The Institution of Engineering and Technology 2015



Figure 3 Energy consumption of stream-based mechanism at different sam-
pling frequencies

Figure 5 Comparison of per bit energy consumption for different
mechanisms
4.2.1 Energy consumption: As the frequency of sampling increases
the accuracy of the activity recognition will increase. However, the
energy consumption tends to increase which will result in a shorter
lifetime of the motes.

In the first step of energy consumption analysis we experienced
the impact of sampling frequencies on the energy consumption
for the three aforementioned mechanisms. We select the ‘stream-
based’ mechanism to study this effect.

The energy consumption of ‘stream-based’ mechanism at differ-
ent sampling frequency rates meets the expectation, as shown in
Fig. 3. The difference between energy consumption at 16 and
1 Hz sampling frequency is significant by about 28% less on the
energy consumption by reducing the sampling frequency rate in
this mechanism. The amount of energy saving is about 31 and
32% for ‘feature-based’ and ‘threshold-based’ mechanisms,
respectively.

Although our observations show the impact of the sampling fre-
quency on the energy saving in the range of 30%, we further analyse
the discussed methods to improve the energy efficiency by looking
at the impact of in-node processing against the transmission rate.

We select a sampling rate of 16 Hzwhichyields themaximumpower
consumption inFig. 3 for our further evaluations. Fig. 4 shows the com-
parison of average energy consumption of different mechanismswith a
sampling frequency rate of 16 Hz. In this sampling frequency we
observe that the number of transmitted packets in the ‘threshold-based’
mechanism becomes about one-fourth of this number in the ‘stream-
based’ mechanism. However, to the contrary of our expectations
despite this reduction in data transmission, the overall energy consump-
tion of ‘threshold-based’ mechanism becomes 15% greater than
‘stream-based’mechanism.We can justify this to be because of the pro-
cessing energy consumption for comparison operations. Since in our
implementation the mote’s radio unit is always on, we cannot benefit
Figure 4 Energy consumption of experiment of the three mechanisms at
16 Hz sampling frequency
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from a lesser number of transmissions and the impact of the processing
energy is no longer negligible in this case.

The results also yield an energy consumption increase of about
15% in ‘feature-based’ mechanism in comparison with ‘stream-
based’ mechanism because of the energy consumption for the
feature set extraction. This result indicates that the nodal processing
has a greater impact on energy consumption in comparison with
transmission rate when motes are always on.

To look closer at the impact of nodal processing on energy con-
sumption, the per bit energy consumption of different mechanisms
is depicted in Fig. 5. As illustrated in this figure, operations of
‘threshold-based’ mechanism and feature set extraction of ‘feature-
based’ mechanism can result in an increase of about 4.5 and 3.5
times higher per bit energy consumption, respectively, at 16 Hz
sampling frequency rate in comparison with ‘stream-based’ mech-
anism. This also confirms our justification on the impact of the
nodal processing in comparison with the transmission rate.

Moreover, increasing the sampling frequency rate of motes will
result in a reduced energy consumption required for computation
and transmission of each bit of sensed data. This is because of
the fact that in our implementation radio interface is always on
and there is a slight difference between energy consumption in
active and shallow sleep modes of motes as shown in Table 1.
Besides, as shown in this figure, at best the energy consumption
is about 2000 times more than the Zigbee standard (119 nJ/bit);
hence this standard is not a suitable technology for activity recog-
nition where the required accuracy does not permit the nodes to
go into deep sleep mode.

4.2.2 Detection accuracy: To evaluate the detection accuracy against
varying parameters, such as sampling frequencies and number of
Figure 6 Comparison of detection accuracy for features extracted from in-
formation of a single mote and combined information of both motes
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Figure 7 Comparison of PDR between stream-based and feature-based
mechanisms Figure 9 Number of optimal features and accuracy against λD

Figure 10 Energy consumption for feature extraction for different sampling
frequency against λD
features, and its relation with energy consumption in this step, the
collected data from each mote are post-processed in offline mode
and a dataset of 30 features (10 features for accelerometer data in
each direction) is constructed. Fig. 6 illustrates the detection accur-
acy using information from a single mote or with combined informa-
tion from both motes for ‘stream-based’ mechanism.
As can be seen from Fig. 6 the mote which is placed on the right

thigh, because of its more appropriate location, gives a better accur-
acy than the mote which is placed on the chest. This mote also gives
a better accuracy than the combined features from both motes for 5
and 16 Hz sampling frequency rates. The results also show a trend
to better detection accuracy with increasing sampling frequency
except for 16 Hz sampling frequency rate. This is because of the
high data loss as a result of a larger packet size. While the variation
of the detection accuracy is less than 1% for different sampling fre-
quency rates, the impact is important for healthcare applications.

4.2.3 Packet delivery ratio (PDR): As shown in Fig. 7, in ‘feature-
based’ mechanism because of a larger packet size and limited set
number of retransmissions, the PDR decreases significantly in com-
parison with ‘stream-based’ mechanism. Moreover with increasing
sampling frequency and as a result of increasing data transmission
rate, the PDR decreases significantly so that, in the ‘stream-based’
mechanism with 16 Hz sampling frequency and with data transmis-
sion rate equal to 6 Kbit/s, the PDR becomes lower than 80% which
is inappropriate for healthcare applications.
The high packet loss especially for the chest mote which is about

24% at 16 Hz causes decreased detection accuracy.

4.2.4 Feature selection evaluation: To evaluate the impact of this
mechanism in our experiments, we use a dataset of combined fea-
tures from both motes in ‘stream-based’ mechanism at 16 Hz sam-
pling frequency as the initial dataset. Fig. 8 shows the number of
relevant features and detection accuracy as a function of the rele-
vance threshold (λR) for our experiment. Clearly, the number of
relevant features decreases as the λR increases. As illustrated in
this Figure, selecting a large number of features does not have an
effective relevance with classification tasks. Hence their elimination
Figure 8 Number of relevant features and accuracy against λR
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from classification features does not have a significant impact on
detection accuracy. For instance, by changing the λR from 0.1 to
0.2, the number of relevant features decreases from 50 to 25,
while the detection accuracy only varies slightly (about ± 0.06%).

To evaluate the impact of eliminating redundant features to detec-
tion accuracy and energy consumption we choose 30 relevant fea-
tures to make a dataset for our study. The number of optimal
features and related classification accuracy against λD for this
dataset are shown in Fig. 9.

As stated earlier, by increasing the λD, the number of optimal fea-
tures increases. For example, increasing the λD value from 0.15 to
0.3 leads to an increase in the number of optimal features from
about 3 to 8. An interesting observation in this Figure is that with
only five features we can have an accuracy of about 99.16%,
which differs slightly from the best possible detection accuracy
for a complete feature set (i.e. 99.18%).

Fig. 10 shows the energy that is needed for feature extraction
over the duration of the experiment (i.e. 25 min) at different sam-
pling frequency rates and over a time window that contains five
samples.

5. Conclusions and future works: In this Letter, we carried out a
series of experiments to study the impact of various parameters on
accuracy against energy efficiency of a wearable activity
recognition system. Results of these experiments indicate greater
impact for sampling frequency, nodal processing transmission
rate, in sequence.

Different applications of activity recognition systems may have
different requirements in terms of accuracy levels and tolerable
delay. Sampling frequency, transmission rate and the method of
nodal processing, can each significantly impact in satisfying these
requirements. Furthermore, for a given application accuracy level
and tolerable delay, detection of different activities can also be
done with different combinations of these parameters. For instance,
for a given accuracy level, detection of a running state may require
a higher sampling frequency and transmission rate and more
classification features in comparison with detecting a laying down
state.
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A solution for satisfying these application requirements in an
energy-efficient manner can be a cross-layer design, in which the
related parameters are being adaptively configured to meet the ap-
plication requirements. In future work, we plan to develop a
cross-layer-based activity recognition system and investigate the
performance of this solution to make a trade-off between applica-
tion requirements and energy efficiency.
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