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Figuring out what is wrong in Fanconi anemia (FA) patient
cells is critical to understanding the contributions of the FA
pathway to DNA repair and tumor suppression. Although FA
patients exhibit a wide range of disease manifestation as well
as severity (asymptomatic to congenital abnormalities, bone
marrow failure, and cancer), cells from FA patients share
underlying defects in their ability to process DNA lesions that
interfere with DNA replication. In particular, FA cells are very
sensitive to agents that induce DNA interstrand crosslinks
(ICLs). The cause of this pronounced ICL sensitivity is not fully
understood, but has been linked to the aberrant activation of
DNA damage repair proteins, checkpoints and pathways.
Thus, regulation of these responses through coordination of
repair processing at stalled replication forks is an essential
function of the FA pathway. Here, we briefly summarize some
of the aberrant DNA damage responses contributing to
defects in FA cells, and detail the newly-identified relationship
between FA and the mismatch repair protein, MSH2.
Understanding the contribution of MSH2 and/or other
proteins to the replication problem in FA cells will be key to
assessing therapeutic options to improve the health of FA
patients. Moreover, loss of these factors, if linked to improved
replication, could be a key event in the progression of FA cells
to cancer cells. Likewise, loss of these factors could synergize
to enhance tumorigenesis or confer chemoresistance in
tumors defective in FA-BRCA pathway proteins and provide a
basis for biomarkers for disease progression and response.

It remains a mystery why Fanconi anemia (FA) patient cells
are exquisitely sensitive to agents that induce DNA interstrand
crosslinks (ICLs). This sensitivity is common to cells from the 16
known FA complementation groups (FANCA through FANCQ)
of which patients suffer a range of maladies including congenital
abnormalities, developmental defects, anemia, and cancer
(recently reviewed in1,2). Even in the absence of exogenous geno-
toxic stress, FA hematopoetic stem cells exhibit elevated DNA
damage and abnormal checkpoint responses, explaining the
increased prevalence for bone marrow failure in FA patients.3

Thus, FA cells have an underlying deficiency in repairing not
only ICLs but also endogenous DNA damage.4 A basic under-
standing of the underlying replication problem and the resulting
increased sensitivity to ICLs could therefore provide an opportu-
nity for therapeutic intervention, not only for bone marrow fail-
ure but also for treatment of malignancy that develops in FA

patients. In a larger context, this understanding could provide
insight into how the FA pathway modulates the response of
tumors to a broad range of crosslinking chemotherapy agents,
such as platinum salts and alkylating agents.

To protect the genome from replication stress and potentially
throughout the cell cycle, the FA-BRCA pathway functions with
a diverse set of proteins including: structure-specific endonu-
cleases which bind and incise DNA structures; error tolerating
translesion DNA synthesis (TLS) polymerases, which bypass cer-
tain DNA lesions; and DNA recombinases. In the most basic
model, the pathway is triggered when a DNA replication fork
collides with a DNA lesion, such as an ICL.5 An upstream core
complex functions to mono-ubiquitinate FANCD2 and FANCI
(“ID” complex), thereby triggering changes in the FA complex
that facilitates the coordination of the FAN endonuclease with
other nucleases (XPF-ERCC1, MUS81-EME1, SLX1-SLX4,
SNM1A, and SNM1B) implicated in ICL repair that incise and
unhook DNA crosslinks to generate a double-stranded DNA
break (DSB). The unhooked ICL is bypassed by TLS polymer-
ases and the replication fork is restored via recombination events
mediated in part by downstream FA proteins such as FANCJ/
BACH1, FANCD1/BRCA2, and FANCN/PalB2. Elegant stud-
ies continue to reveal many new details of FA pathway function
in ICL repair,5 including the recent finding that FANCM can
traverse an ICL and therefore separate repair from replication.6

Moreover, additional functions of the FA pathway continue to
emerge2,7 as well as a greater understanding of modifiers of FA
phenotypes. In particular, an endogenous source of DNA cross-
links that disrupts replication in FA cells comes from aldehydes.8

Correspondingly, loss of aldehyde dehydrogenases, such as
ALDH2 in an FA mouse, exacerbates many features of FA,
including bone marrow failure.9-11 Here, we review other factors
that contribute to defects in FA cells that could provide insight
toward therapeutic intervention, balancing out defects to sup-
press bone marrow failure or targeting pathways in FA cancer
progression to limit tumorigenesis.

Overactive Nonhomologous End-Joining Pathway

Clues to understanding the defects in FA cells have come from
the identification of proteins or pathways whose inactivation
improves the fitness of FA cells. One of the first pathways identi-
fied to contribute to both genomic instability and ICL hypersen-
sitivity in FA cells is the nonhomologous end-joining (NHEJ)
pathway. Aside from its role in rearranging immunoglobulin,
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NHEJ fixes broken DNA ends and is important for genome sta-
bility. In FA cells, several groups report that NHEJ is overactive
in S phase and interferes with the preservation of replication
forks. Thus, inhibition of NHEJ can improve FA cells in many
respects. For example, loss of NHEJ factor, Ku in cells mutant
for FA pathway protein, FANCC enhanced ICL resistance and
reduced genomic instability.12 Similarly, inhibition of the NHEJ
factor, DNA-PKcs, enhanced ICL resistance in cells deficient for
FA pathway proteins FANCD2, FANCA or FANCC.13 One of
the best examples of rescue by elimination of NHEJ comes from
studies in BRCA1-deficient cells, which share common defects
with FA cells. Most notably, loss of 53BP1, a DNA repair protein
functioning in part with the NHEJ pathway, restores homolo-
gous recombination (HR) and rescues the lethality in Brca1 defi-
cient mice.14-17 These promising findings suggest that
elimination of NHEJ could restore fitness in FA/BRCA path-
way-deficient cells by reinstating DNA repair, albeit with the cost
of impaired NHEJ. However, in some FA/BRCA pathway-defi-
cient cells, elimination of NHEJ failed to completely suppress
crosslink sensitivity. In particular, Brca1 deficient mouse cells
that have 53BP1 loss remain sensitive to ICL-inducing agents.
Combined loss of 53BP1 and Ku was able to enhance resistance,
but not to the level observed in cells with wild-type BRCA1.18

Likewise loss of NHEJ did not enhance ICL resistance in worms
or human FA-J patient cells that are deficient for the BRCA1-
interacting helicase FANCJ (BACH1/BRIP1).13,19 The relation-
ship between FA and NHEJ pathways appears to be species-spe-
cific given that in contrast to the rescue in human cells,13

inactivation of NHEJ exacerbated ICL sensitivity in Fancd2-¡/¡

mouse cells and double knockout mice had more severe develop-
mental defects.18,20 Thus, BRCA-FA proteins likely have several
functions in the repair of ICLs that extend beyond balancing HR
and NHEJ pathways.

Aberrant DNA Damage Responses and
Opportunistic DNA Nucleases

In addition to NHEJ, several other factors have been sug-
gested to contribute to the proliferative impairment of FA cells.
First, the p53-p21 axis has been linked to the elevated DNA
damage response (DDR) in FA cells. Consistent with this inter-
pretation, depletion of p53 suppresses haematopoietic stem and
progenitor cell (HSPC) defects observed in Fancd2¡/¡ mice.3

Again, rescue appears to fall short of a panacea for FA cells as
elimination of the p53-p21 axis did not suppress the underlying
replication stress and genomic instability that accumulates in FA
cells.3 Second, nucleases have been linked with an overactive
DDR and genomic instability in FA cells. The nuclease-helicase
DNA2 over-resects ICLs in FANCD2-deficient cells and deple-
tion of DNA2 suppresses cisplatin sensitivity.21 Moreover, the
MRE11 nuclease aberrantly degrades replication forks and con-
tributes to genomic instability in BRCA2/FANCD1-, BRCA1-,
and FANCA-deficient cells.22,23 In fact, in FA cells, inhibition of
the MRE11 nuclease can preserve fork integrity similar to overex-
pression of a mutant Rad51 that binds and coats stalled forks.22

However, given that HR is not also restored, preserving stalled
forks alone may not improve ICL repair. Thus, it may be critical
to both protect replication forks from nucleases and also enhance
recombination to comprehensively improve the fitness of FA
cells. Accordingly, overexpression of wild-type Rad51 improved
recombination and resistance to DNA damaging agents in
BRCA2 mutant cells.24,25 Moreover, depletion of the anti-
recombinase PARI reduced chromosomal aberrations and sensi-
tivity of FA cells to PARP inhibitors.26

MSH2 and Defects in Cells Lacking FANCJ-MLH1
Interaction

More recently, enhanced replication stress and an overactive
DDR in FA cells have been linked to proteins of the mismatch
repair (MMR) pathway. The link to MMR came from studies
designed to understand why ICL resistance requires the direct
interaction between FANCJ and the MMR protein, MLH1.27-29

We found that the MMR protein, MSH2 underlies the ICL
processing defects resulting from loss of the FANCJ-MLH1
interaction.19 Consistent with this finding, depletion of MSH2
suppresses defects found in cells deficient for the FANCJ-MLH1
interaction, including ICL-induced sensitivity, chromosomal
aberrations, abnormal G2/M accumulation, and as well as an
over-active NHEJ pathway. Depletion of MSH2 did not appear
to alter recombination. Instead, the restored ICL resistance was
dependent on Rad18-dependent pathway and the Rev1 bypass
polymerase suggesting MSH2 depletion enhanced TLS.19 These
outcomes are not unprecedented. In fact, MSH2 deficiency
reverses proliferation defects due to short telomeres by a mecha-
nism independent of recombination.30 Moreover, deficiency in
MMR is associated with fewer DSBs at stalled forks and
enhanced bypass.31-35 Furthermore, loss of MMR is linked to
enhanced ICL resistance.36 While the function of MMR proteins
in ICL processing is not entirely clear, they bind ICL lesions and
other DNA structures that form at stalled replication forks
through either the heterodimer, MutSb (composed of MSH2
and MSH3), or MutSa (composed of MSH2 and MSH6),
which subsequently recruit the MutLa complex (composed of
MLH1 and PMS2).34,37-40 Our data indicate that at stalled repli-
cation forks, MSH2 interferes with replication restart in cells
lacking the FANCJ-MLH1 interaction.19 Therefore, the interac-
tion between FANCJ and MLH1 could serve to coordinate the
DDR and to prevent unproductive MMR processing that
impedes the recovery of cells following replication stress.

A conceptual model predicts that FANCJ might serve to cata-
lytically displace the MSH2 protein complex bound to damaged
or alternatively structured DNA to facilitate ICL repair (Fig. 1).
This scenario is supported by recent biochemical data showing
that FANCJ partners with the single-stranded DNA binding pro-
tein Replication Protein A (RPA) to efficiently disrupt high affin-
ity interactions of proteins bound to duplex DNA driven by
FANCJ’s motor ATPase.41 The co-localization of FANCJ with
RPA after replication stress also suggests that FANCJ is well situ-
ated at forks to help them resume DNA synthesis potentially in
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an RPA-stimulated manner.42 Conceiv-
ably, FANCJ contributes to replication
restart similar to other RPA-interacting
factors that have DNA metabolizing
functions such as the SMARCAL1 trans-
locase or RecQ helicases BLM, WRN,
and the Fanconi Anemia FANCM/
FAAP24 complex.43-50 Understanding
the molecular mechanism whereby
FANCJ promotes ICL repair and the
restart of stalled replication forks, medi-
ated by its interaction with MLH1 in a
pathway suppressed by MSH2, should
provide valuable insight to how FANCJ
operates with other downstream factors
to enable appropriate processing of ICLs
or stalled forks so that HR can proceed
to preserve genomic stability.

Linking MMR and FA-BRCA Pathways for
Mutual Regulation

In addition to the FANCJ-MLH1 interaction, FA and MMR
pathways are linked at several nodes, suggesting this crosstalk has
functional importance. These interactions include BRCA1-
MSH2, FANCD2-MLH1/MSH2, SLX4/FANCP-MSH2, and
FANCD2-associated nuclease, FAN1-MLH1,27,51-61 but the
functional importance of these interactions has not been fully
addressed. A simplified FA pathway in yeast reveals an interaction
between the FANCM-like helicase, Mph1, and MutSa functions
to repair ICL-induced breaks through the recruitment of Rad51.
Notably, this Mph1-MutSa ICL repair pathway involves Chl1, a
putative FANCJ helicase.61 In human cells, it was demonstrated
that MSH2 promotes FA pathway function including the chro-
matin localization of FA core components, the monoubiquitina-
tion of FANCD2,1,51,52 and the localization of FANCJ to sites
of DNA crosslinks.62,63 Given the relationship between the
FANCJ-MLH1 interaction and MSH2, a central question is
whether other components of the FA pathway also function to
balance the activity of MSH2 or other MMR proteins. Support-
ing this idea, MSH2 loss also suppresses defects in cells deficient
for BRCA1 or FANCD2, and this rescue was confirmed in
Msh2¡/¡ Fancd2¡/¡ mouse cells. Rescue included not only
enhanced ICL resistance, but also suppression of an aberrant
DDR including the NHEJ factor, DNA-PKcs.19 The mechanism
linked to suppression of these FA defects was not fully explored,
but it is worth considering that similar to the rescue in cells lack-
ing the FANCJ-MLH1 interaction, MSH2 depletion enhances
restart pathways.19 Alternatively, MSH2 loss could reduce fork
collapse by enabling FANCM to traverse ICLs and ensure repli-
cation forks are uncoupled from ICL repair.6 This model could
explain why MSH2 depletion did not suppress ICL sensitivity in
FANCM-null chicken cells.52 Likewise, MSH2 depletion did
not suppress ICL sensitivity in FANCA deficient cells.19 Since
neither FANCM nor FANCA have known MMR interactions,

MSH2 depletion may only rescue FA cells that have defects in
FA-MMR interactions but otherwise have intact ICL processing
enzymes. Collectively, these findings suggest that cross talk
between the MMR and FA pathways enables not only the FA
pathway to modulate the MMR pathway, but also for the MMR
pathway to modulate the FA pathway and generates a full-regula-
tory circuit.

Modulators of FA Cell Fitness and Clinical Potential

Ideally the health of FA patients will also be improved by the
inactivation or suppression of proteins or pathways that reduce
the fitness of FA cells. In particular, it will be important to con-
sider strategies that reduce sources of endogenous DNA damage.
Incubation of FA cells under low oxygen conditions can enhance
proliferation,64 and treatment with antioxidants delays carcino-
genesis in FA mice.65 Moreover, enhancing aldehyde catabolism
through agonists or balancing their loss with free radical quench-
ers are promising future directions.66 In addition, the expression
and activity levels of factors that promote replication stress in FA
cells could provide biomarkers for disease onset and progression.
For example, in FA patients, MSH2 loss could signify that bone
marrow failure is improbable but that leukemia is developing.
Indeed, MMR-deficient mice are predisposed to hematologic
malignancy67,68 and MMR loss is implicated in acute myeloid
leukemia in humans.69-71 Not only does loss of MMR protein
expression and function contribute to cancer susceptibility, it
also contributes to chemoresistance.36,72 Given that the FA-
BRCA pathway is essential for tumor suppression in a range of
tumors, including breast and ovarian cancer,73 MMR loss could
contribute to a diverse set of cancers and affect patient response.
Significantly, if cancers evolve or develop chemoresistance
through loss of MSH2 function, several therapeutic options can
be considered.74 In particular, methotrexate induces oxidative
DNA damage and is selectively lethal to cancer cells with defects
in MSH275 and may prove efficacious on FA-associated cancers
in which free radicals already reduce fitness. Developing novel

Figure 1. FANCJ-MLH1 interaction suppresses MSH2 to restart stalled replication forks. The timely
localization of FANCJ to a fork blocking lesion is mediated by its MLH1 interaction, which places
FANCJ in position to subsequently dismantle MSH2 or the DNA structures bound by MSH2 at stalled
replication forks. This MSH2 displacement activity is dependent on FANCJ ATPase activity and is facili-
tated by FANCJ binding to RPA. Failure to displace MSH2 disrupts replication restart and underlies the
“problem” in FA cells that lack FA and MMR pathway connections.
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and directed cancer therapies is of high priority, especially since
FA patients are exquisitely sensitive to the DNA damage induced
by traditional therapies. Ideally, if we are able to right what is
wrong in FA patient cells, there will be hope to mitigate bone
marrow failure and the development of cancer in patients.
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