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Aurora A kinase plays an important role in several aspects of cell division, including centrosome maturation and
separation, a crucial step for the correct organization of the bipolar spindle. Although it has long been showed that this
kinase accumulates at the centrosome throughout mitosis its precise contribution to centriole biogenesis and structure
has until now not been reported. It is not surprising that so little is known, due to the small size of somatic centrioles,
where only dramatic structural changes may be identified by careful electron microscopy analysis. Conversely,
centrioles of Drosophila primary spermatocytes increase tenfold in length during the first prophase, thus making any
change easily detectable. Therefore, we examined the consequence of the pharmacological inhibition of Aurora A by
MLN8054 on centriole biogenesis during early Drosophila gametogenesis. Here, we show that depletion of this kinase
results in longer centrioles, mainly during transition from prophase to prometaphase of the first meiosis. We also found
abnormal ciliogenesis characterized by irregularly growing axonemal doublets. Our results represent the first
documentation of a potential requirement of Aurora A in centriole integrity and elongation.

Introduction

The proper separation of sister chromosomes during cell divi-
sion and their faithful segregation at the opposite poles of the
daughter cells require the correct organization of the meiotic and
mitotic spindles. The assembly of these microtubule-based struc-
tures requires both centrosomal and acentrosomal routes.
Although in some systems the centrosome function is redundant
when the centrosomes are present they influence the shape and
the orientation of the microtubule network. Moreover, besides
its role in the organization of the microtubule network, the cen-
trosome also represents an important coordination center of the
cell because it contains cell-cycle regulatory, checkpoint and sig-
naling proteins.1,2 Control of the centrosome number is essential
during the cell life, since numerical alterations represent hall-
marks of cell transformation and may contribute to genetic insta-
bility.3-5

Two orthogonally arranged centrioles, small cylindrical organ-
elles with a beautiful and highly conserved 9 symmetry, are found
at the heart of each centrosome.6 Because the centrioles mark the
sites where the centrosomal material is recruited, the centrosome
dynamics is closely correlated to the centriole duplication cycle.7

Therefore, the centriole duplication has to be accurately regulated
so that centrioles and thus the centrosomes duplicate once and
only once in even cell cycle, in concert with DNA replication, to

avoid the formation of multiple centrosomes and thus multipolar
spindles.8-10

Centrioles have a double life and also act as templates for cilia
and flagella. During interphase or in quiescent cells the centriole
pair migrates to the periphery and the mother one docks to the
cell membrane and converts in a basal body that nucleate the cili-
ary axoneme. Since the primary cilium is implicated in sensing
environmental cues and signal transduction pathway, it repre-
sents an essential organelle required for animal development and
adult homeostasis. Although centrioles and basal bodies represent
different functional aspects of the same structure, the basal bodies
cannot assemble primary cilia and organize the centrosomal
material at the same time. The presence of a primary cilium
seems, indeed, to prevent cell division, 11-14 although some
exceptions have been described.15,16 Thus, the reenter in mitosis
of vertebrate cells needs an additional control, namely the disas-
sembly of the ciliary axoneme. This process releases the basal
body from the plasma membrane that migrates inwards and
allows the centriole to organize the functional centrosomes that
manage the assembly of the bipolar spindle. Some cell cycle regu-
latory proteins, and among them the serin-threonine kinase
Aurora A, have been implicated in the process of ciliary resorp-
tion in proliferating cells.17,18

Aurora A was firstly described in Drosophila where the loss of
function of this kinase leads to failure of centrosome separation

*Correspondence to: Giuliano Callaini; Email: callaini@unisi.it
Submitted: 11/25/2014; Revised: 02/19/2015; Accepted: 02/28/2015
http://dx.doi.org/10.1080/15384101.2015.1026488

2844 Volume 14 Issue 17Cell Cycle

Cell Cycle 14:17, 2844--2852; September 1, 2015; © 2015 Taylor & Francis Group, LLC

REPORT



and the formation of spindles with abnormally organized poles,
including characteristic monopolar spindles.19 This characteristic
phenotype has led to the widely accepted role of Aurora A in cen-
trosome separation, even though the analysis of different model
systems reported a range of apparent contradictory defects in the
absence of Aurora A.20,21 Aurora A activity is also required to
control centrosome maturation, mitotic entry, bipolar spindle
assembly, chromosome congression, midzone formation at ana-
phase and cytokinesis.18,22 These pleiotropic functions of Aurora
A depend on the interaction with different proteins that may
modulate its activity.23,24

CALK, a distant Aurora A horthologue, has been reported to
control the disassembly of the flagellar axoneme in Chlamydomo-
nas after ionic stress, 25 suggesting that phosphorylation-based
signaling may play a key role in the mechanism of axoneme
microtubule depolymerisation. In mammalian cells, the resorp-
tion of the primary cilium depends by the interaction of Aurora
A with HEF1, 26 Pitchfork, 27 and calmodulin, 28 to activate the
histone deacetylase-6 (HDAC-6) and determine the depolymer-
isation of the axonemal microtubules. Aurora A also negatively
regulates primary cilia assembly during mitosis by interacting
with the keratin intermediate filament protein trichoplein that is
localized in the subapical region of the centriole.29

Based on the importance of Aurora A in ciliary disassembly we
ask whether the inhibition of this kinase activity could also lead
to structural defects of the centriole that nucleate the ciliary axo-
nemes. Although, Aurora A has been found at the centrosome in
a variety of cells, 30,31 including Drosophila embryos, 32 no rela-
tionships with the centriole biogenesis and organization have
been reported.

Since centrioles in somatic cells are very short, eventual defects
in their organization may escape to conventional immunofluores-
cence observations and may be only detectable under careful EM
analysis. To circumvent this issue we focused on the structure
and dynamics of centrioles/CLRs complexes during Drosophila
male gametogenesis. The centrioles of Drosophila mature primary
spermatocytes are 10 times longer than somatic ones thus repre-
senting a good model to investigate structural modifications and
length variations. In this study, we sought to examine the effects
of Aurora A depletion on centriole/CLRs complexes during Dro-
sophila spermatogenesis upon incubation in MLN8054, a small
inhibitory molecule for this kinase.33 MLN8054 is a particularly
useful biochemical tool in this context, as it has been demon-
strated that the Aurora A inhibition occurs rapidly and is more
than 150-fold selective for Aurora A over the family member
Aurora B in cultured cells.33

Our data suggest that the Aurora A kinase may be involved in
the control of centriole length during Drosophila male meiosis.

Results

Previous studies of aurora mutations in Drosophila have been
restricted to the effects on the early mitoses in syncytial embryos
obtained by homozygous females and in the neuroblasts divisions
in third-instar larval brains. These studies revealed defects in

centrosome separation leading to the formation of typical
monopolar spindles.19 In the attempt to clarify the role of the
aurora kinase during the meiotic divisions we analyzed male
gametogenesis in the heterozygous aur209/aur287 pupae. How-
ever, we were unable to find a distinct phenotype except a slightly
asynchrony of the germ cell divisions within the same cysts that
did not affect the normal progression through meiosis. The ultra-
structural analysis also failed to reveal specific abnormalities.
Since the aurora mutants are weak hypomorphic alleles it is possi-
ble that a reduced amount of the protein could be sufficient to
allow the proper meiotic progression. Thus, we decided to over-
come this limitation by studying the pharmacological inhibition
of the aurora kinase during male gametogenesis.

Germ cell line development in Drosophila males starts at the
tip of the testis with the asymmetric division of the germ line
stem cells that produce the primary spermatogonia. Spermatogo-
nia undergo 4 round of mitosis to originate cysts of 16 primary
spermatocytes that after 2 successive meiotic divisions form 64
round spermatids. Spermatids then differentiate in elongated
sperm cells. Both cell division types rely on the proper organiza-
tion of a spindle apparatus that supports the correct segregation
of the sister chromosomes. Spermatogonia centrioles duplicate
once during each cell cycle in concert with DNA replication, like
centrioles of somatic tissues. Thus the early spermatocytes inherit
at the end of fourth spermatogonial mitosis one centrosome with
2 orthogonally arranged centrioles that duplicate as the germ cells
switch from the cell division program to the extended prophase.
Each young primary spermatocyte has, therefore, at the begin-
ning of prophase, 2 pairs of short centrioles that moved to the
cell periphery to nucleate an axoneme that pushed against the
plasma membrane to form a cilium-like region (CLR).

The product of the uncoordinated (unc) gene, previously iden-
tified as a protein involved in the process of centriole/basal body
conversion, 34 represents a good marker for the centriole/CLR
complex.16 Therefore, we examined the spermatogenesis in flies
expressing an Unc-GFP fusion protein to look at the consequen-
ces on centriole and CLR organization upon treatment with
MLN8054.

According to previous reports Unc-GFP labeling was not
detected in asymmetric dividing germ line stem cells, during the
spermatogonial mitoses and in early spermatocytes, but first
appeared as 2 pairs of small close spots in apolar spermatocytes
(Fig. 1A). As prophase progressed the centriole/CLR complexes
elongated (Fig. 1B) and reached their full length in mature sper-
matocytes (Fig. 1C). The Unc labeling was localized in 3 distinct
domains: the mid-apical region of the centriole, the CLR and an
intermediate dot-like region (Fig. 1B). This distribution
remained unchanged during transition from prometaphase
(Fig. 1D) to metaphase (Fig. 1E) and persisted through the
whole meiotic process.16

Therefore, the spermatocytes contain 4 ciliary processes, sug-
gesting that all centrioles within the male germ cells have the
same potential. Thus, the insect spermatocytes have 4 virtually
mature centrioles that nucleate the ciliary axoneme. This is a
remarkable condition since it is generally assumed that only the
mother centriole is able to nucleate a ciliary axoneme. Vertebrate
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cells contain, indeed, one mature centriole, the mother centriole
that is able to nucleate a cilium, and an immature centriole, the
daughter one that will take full maturation 1.5 cell cycle
later.35,36

The distribution of Unc-GFP on centrioles and CLRs of
treated spermatocytes did not show significant differences
(Fig. 1B–E). However, higher magnification revealed that the
centrioles scored from late prophase to meiotic divisions

Figure 1. For figure legend, see page 2847.
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appeared slightly elongated after incubation in MLN8054 (com-
pare insets on left and right panels of Fig.1B-E; Fig. 1F).

The centriole/CLRs complexes were found in control prome-
taphase cells at the focus of large asters that will organize the
forthcoming metaphase spindle. By contrast, distinct meiotic
spindles never were found upon MLN8054 incubation and the
cytoplasmic microtubules were loosely organized around the
nuclear region. However, the chromatin condensed in 2–3 dis-
crete masses as found in control prometaphase cells and com-
pacted further in a single cluster, like that observed in metaphase
or later control meiotic stages.

At the onset of the meiotic divisions the centriole/CLRs com-
plexes retracted within a membrane pocket to become the poles
of the meiotic spindles, 16,37,38 whereas in treated cells they
remained at the cell periphery far from the nuclear region, sug-
gesting a delay in their inward movement. The length of the
CLRs slightly decreased in untreated cells during metaphase,
whereas this reduction was usually less evident after incubation in
MLN8054 (Fig. 1E).

Since, 1 mM concentration of MNL8054 also slightly affects
Aurora B in vertebrate cells, 33 we cannot exclude off target activ-
ities of the drug against Aurora B. Therefore, the interpretation
of the results involving Aurora A inhibition by MLN8054 may
be complicated by low levels of Aurora B inhibition. However,
the same phenotypes were also found upon incubation in
0.5 mM of MLN8054, a concentration that does not inhibit
Aurora B activity.

The tripartite distribution of Unc-GFP was usually found in
both control and treated cells. However, a low but significant
amount of spermatocytes showed a changed pattern of Unc-GFP
upon MLN8054 treatment. 8% of the centriole/CLR complexes
examined (46, n D 576) displayed abnormally short CLRs
(Fig. 1G) and maintained the intermediate dot-like Unc-GFP
labeling. 10% of the centriole/CLR complexes (58, n D 576) lost
a distinct CLR and the Unc-GFP was localized on the centriole
only, lacking the typical intermediate dot (Fig. 1H).

Since the intermediate Unc-GFP has been correlated with the
transition region between the centriole and the ciliary axoneme,
39 we would ascertain whether the abnormal CLRs observed with
conventional immunofluorescence upon Aurora A depletion
might reflect ultrastructural defects of the centriole/CLRs.

Both control and treated spermatogonia had one pair of short
centrioles composed of 9 triplet microtubules and a central cart-
wheel (not shown). During spermatocyte grow the centriole pairs

moved to the cell periphery and docked to the plasma membrane.
The A-and B-tubules then elongate at the distal end of the centri-
ole and pushed against the plasma membrane to form the ciliary
axoneme.

As prophase proceeded both centrioles and CLRs elongated
and during mid prophase the CLRs of untreated spermatocytes
reached about half length of the centrioles (Fig. 2A). The basal
region of the centriole still contained the cartwheel (Fig. 2A1),
whereas the distal lumen was empty (Fig. 2A2). The hallmark of
the axoneme formation in Drosophila primary spermatocytes was
the reduction at the distal end of the centriole of the C-tubules to
hook-like projections that represent cross-sectioned curved longi-
tudinal blades (Fig. 2A3). This region was also marked by the
emergence from the B-tubule of thin radial projections that per-
sisted for all the ciliary length (Fig. 2A4–6). Distinct links usually
connected the A and B tubules of adjacent doublets (Fig. 2A4–6),
reminiscent of the nexin links found in motile cilia.

79% (n D 56) of the growing primary spermatocytes scored
by electron microscopy (n D 71) showed the typical organization
of the CLRs seen in controls and characterized by 9 microtubule
doublets, lateral C-blades and radial links. However, in some
cases (21%; n D 15) we found spermatocytes in which the cen-
trioles reached a length comparable to controls but the CLRs
appeared abnormal. The CLRs may be, indeed, present but
highly disorganized with doublets incomplete (Fig. 2B) or absent
(Fig. 2C). These features were consistent with the observations in
immufluorescence of short (Fig. 1G, inset Fig. 2B) or lacking
(Fig. 1H, inset Fig. 2C) CLRs.

The organization of the ciliary axoneme usually reflects the
architecture of the centriole. However, while the ciliary axoneme
was disrupted, the architecture of the centriole was unchanged in
treated cells and a distinct cartwheel was always present (Fig.
B1,2; Fig. C1,2). Thus, we asked whether the conversion of the
centriole triplets to the axonemal doublets that occurs in the tran-
sition region might present eventual defects in Aurora A depleted
spermatocytes.

Cross sections thought the transition regions of the abnormal
centriole/CLRs complexes showed that these structures had an
apparently normal organization compared to untreated controls
and also consist of 9 doublets. The reduction of the C-tubules in
hook-like projections was only found, however, when the ciliary
axoneme was present (Fig. 2B3). Conversely, the hook-like pro-
jections lack (Fig. 2C3) when the transition region did not con-
tinue with the ciliary structures (Fig. 2C4). Only the few

Figure 1. (See previous page). Aurora-A dependent centriole elongation. Control (left panel) and treated (right panel) primary spermatocytes expressing
Unc-GFP were counterstained for acetylated tubulin (red) and DNA (blue). The microtubule cytoskeleton does not show significant differences in control
and treated primary prophase spermatocytes (A–C). By contrast, the organization of the cytoplasmic microtubules substantially diverges during prome-
taphase (D) and metaphase (E) in control and treated spermatocytes: the formers display large asters and bipolar spindles, whereas the others lack both
these structures. Magnifications of the centriole/CLR complexes as recognized by Unc-GFP are shown in insets. During early prophase (A) Unc-GFP recog-
nizes small spots in both control and treated spermatocytes. As prophase progressed (B, C) Unc-GFP shows 3 distinct localization: the centriole (arrows,
B), the transition region (asterisks, B), the CLR (arrowheads, B). Although the centrioles and the CLRs concurrently elongate during prophase, the cen-
trioles appear slightly longer in late prophase (C), prometaphase (D) and metaphase (E) treated spermatocytes. (F) Quantification of centriole length at
different stages of spermatogenesis following 24 hr DMSO (control) or MLN8054 (MLN8054) incubation. Error bars represent SEM. p value from Student’s
t-test, ***P < 0.0001. Details of abnormally short CLRs (arrowhead, G) or centrioles lacking CLRs (arrows, H); note that the intermediate Unc-GFP dot
(asterisk) is only present when the centriole nucleates the ciliary axoneme. Scale bars: (A–E) D 2.5 mm; (A–E) insets, (G, H) D 1 mm.
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doublets that extended within the abnormal CLRs maintained,
indeed, the remnants of the C-tubules in form of longitudinal
blades (Fig. 2B4–6). The links between adjacent doublets were
barely detectable only in the proximal region of the short axo-
neme (Fig. 2B4).

Centrioles and CLRs of both control and treated spermato-
cytes elongated further and reached their full size in late prophase
(Fig. 3A). According to Unc-GFP localization (insets in Fig. 3A,
B), EM analysis of late prophase (Fig. 3A) and prometaphase
(Fig. 3B) spermatocytes confirmed that the centrioles were more
elongated in treated than in control cells.

Discussion

Our findings reveal that the inhibition of the Aurora A activity
by the small molecule MNL8054 in Drosophila primary

spermatocytes results in more elongated centrioles and, to minor
extent, in abnormal CLRs. Therefore, the Aurora A kinase might
play a novel role in regulating the centriole biogenesis. However,
we find that male gametogenesis is normal in heterozygous
aurora209/aurora287 pupae, whereas the brains of third-instar
mutant larvae showed monopolar spindles focused on unsepa-
rated centrosomes. The normal meiotic phenotype contrasts with
the defects of centrosome separations described in syncytial
embryos obtained from homozygous females and in larval neuro-
blasts.19 Why should be easier to observe defects in centrosome
dynamics during mitotic divisions? One possible explanation
could be that there are different requirements upon aurora func-
tion in mitosis and meiosis. One hypothesis could be that a
smaller amount of the kinase aurora is need for progression
through male gametogenesis. This may be accentuated by the
hypomorphic nature of the aurora mutations in which residual
function may be sufficient to allow the correct meiotic divisions

Figure 2. Defects in CLR organization upon MLN8054 incubation. Longitudinal and cross sections of centriole/CLR complexes in control (A) and treated
(B, C) mid prophase primary spermatocytes; insets represent Unc-GFP localization. Control spermatocytes display distinct CLRs evidenced by Unc-GFP
(inset A, arrowheads) that protrude from the cell surface (A, arrow). Occasionally, treated spermatocytes display abnormal CLRs (inset B, arrowhead) with
tubules of different length (arrow, B) or elongated centrioles that contact the plasma membrane (C), without nucleating the ciliary microtubules (inset C,
arrow). The centrioles associated with normal (A1,2) and abnormal (B1,2, C1,2) CLRs display the same architecture; as usual the cartwheel is present in the
basal region only. The transition regions display distinct C-blades (A3, B3, arrowheads) when normal (A4–6) or reduced (B4–6) axonemes are present; C-
blades are missing (C3) when the axoneme is lacking (C4). Scale bars: (A–C) insets D 1 mm; (A–C) D 250 nm; A1–6, B1–6, C1–4 D 100 nm.
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of the male germ cells. Treatment with MLN8054 might reduce
the residual dose of the protein revealing a meiotic phenotype.
However, we cannot appreciate feeble variations in centriole
length during the early syncytial mitoses or in larval brains due to
the reduced dimensions of the centrioles themselves.

A non-mitotic role of Aurora A kinase in controlling the
dynamics of the primary cilia has been recently reported in mam-
malian cells. Aurora A promotes, indeed, the destabilization of
the axonemal microtubules and the resorption of the primary cil-
ium. Depletion of this kinase leads to the inactivation of the
tubulin deacetylase HDAC6 resulting in stable primary cilia.26–
28 However, the centriole/CLRs phenotype observed in Drosoph-
ila spermatocytes seems to be incompatible with this function.
The MLN8054 treatment leaves unchanged the length of the
CLRs during prophase-prometaphase, as it also occurs in control
spermatocytes in which the Aurora A kinase activity is present.
Rather, we observed abnormally reduced CLRs. This inconsis-
tency is likely to stem from the fact that vertebrate primary cilia
and Drosophila CLRs are similar but not homologous structures.
Drosophila spermatocyte CLRs diverge, indeed, from

conventional primary cilia by several structural aspects.40,41

Moreover, the CLRs persisted during the meiotic divisions until
the onset of spermiogenesis when they give origin to the sperm
axonemes.16,40 By contrast, true primary cilia disassemble when
G0 growth-arrested vertebrate cells re-enter the cell cycle.42,43

This is a critical process needed to enter cell division.12,18,44–47

During cilia disassembly, indeed, the centrioles detach from the
plasma membrane to organize the centrosomes that will make
the mitotic spindle poles.11

How we can explain that the inhibition of Aurora A in the
Drosophila primary spermatocytes results in more elongated cen-
trioles? The axoneme of the mammalian primary cilia is nucleate
by a basal body which does not change in length through cilio-
genesis, when the ciliary microtubules elongate at their distal plus
end by an IFT-mediated process. By contrast, both the centrioles
and the associate CLRs grow in length concurrently in Drosophila
primary spermatocytes in the absence of IFT. This raises the
question of how the centrioles can elongate while at the same
time they templates the assembly of the ciliary axoneme and
points to novel dynamics at the distal end of these centrioles. The
elongation of the A and B tubules and the conversion of the C-
tubules in C-blades in the apical region of the centriole could
build the proximal part of the growing axoneme. Since, the cen-
trioles do not elongate in Unc mutant spermatocytes in which
the aberrant CLRs lack distinct C-blades, 40 we speculate that the
reverse transformation of the C-blades in complete C-tubules
may lead to the elongation of the centriole. Such transformation
would require a dynamic exchange between microtubule poly-
merization and depolymerisation. Alteration of this balance by
microtubule stabilization may lead to longer centrioles. The
CLRs of Drosophila spermatocyte are, indeed, directly affected by
drugs that target microtubule polymerization. In the presence of
nocodazole, a microtubule destabilizer, the axonemes of CLRs
failed to assemble, whereas Taxol, a stabilizer, leads to unusually
long centrioles and axonemes.48 These findings implicate the
requirement of factors that control the dynamics of the transition
from centriolar triplet microtubules to the axonemal doublets of
the CLRs.

Given that Aurora A accumulates at the centrosomes in most
of organisms, 21,40–53 including Drosophila, 54 it is tempting to
speculate that this kinase might also regulate the dynamics of the
centriole microtubules. Suppression of Aurora-A by small inter-
fering RNA causes an incorrect separation of the centriole pairs
in cultured cells, indicating that Aurora-A is essential for the
proper execution of this process.55 This mechanism might
require the phosphorylation of microtubule-related proteins
including some involved in microtubule stabilization/depolymer-
isation.56–57 Most known Aurora A substrates are associated with
centrosomes, 30 and the Aurora A depletion results in disconnec-
tion of centrosomes from mitotic spindle poles in Drosophila.59

Moreover, the Aurora A kinase activity is required to target fac-
tors involved in microtubule stabilization at the centrosome.60

Aurora A has been reported to play a main function in protecting
centrosomal microtubules against depolymerisation by its inter-
action with TACC complexes in both vertebrate, 61 and

Figure 3. MLN8054 promotes centriole elongation at the onset of meio-
sis. Longitudinal sections of the centriole/CLR complexes in control (left
panel) and treated (right panel) primary spermatocytes during late pro-
phase (A) and prometaphase (B). Insets represent centriole/CLR com-
plexes as recognized by Unc-GFP. Note that centrioles are longer in
treated spermatocytes that in controls. Scale bars: insets D 1 mm; A-B D
250 nm.
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Drosophila cells.32 Aurora A negatively regulates the mitotic cen-
tromere-associated kinesin (MCAK), 62 and supports the assem-
bly of the central spindle at anaphase by promoting microtubule
stabilization.63 Aurora A also regulates the Kinesin-13 microtu-
bule depolymerase Kif2A at the spindle poles of mammalian cells
during prometaphase.64

Several members of the microtubule-depolymerising kinesin-
13 family have been shown to regulate the length of cilia in mam-
malian cells, 65 and flagella in protozoans.66–68 However, the
only kinesin-13 demonstrated until now to play a role in centri-
ole elongation is the Drosophila Klp10A.69 Drosophila mutant
spermatocytes for Klp10A had elongated centrioles that organize
irregular CLRs.40 Since the centriole phenotypes found in
MLN8054 treated cells is strikingly similar to that seen in
Klp10A mutant spermatocytes, it is conceivable that Klp10A may
represent a logical target of the Aurora kinase to regulate the tran-
sition of centriolar triplet microtubules to doublets during the
formation of the ciliary axoneme.

However, Aurora A promotes microtubule stabilization in
mammalian cells by negatively regulating the activity of the
microtubule depolymerases.20,57,62,70 Thus we should found
shorter centrioles in Drosophila spermatocytes when the Klp10A
activity is up-regulated in the absence of Aurora A, whereas we
observed centrioles longer than usual. This discrepancy may be
explained with a different function of Aurora A that during Dro-
sophila spermatogenesis may activate rather than inhibit the Kine-
sin-13 microtubule depolymerase Klp10A. Alternatively, since
many functions attributed to Aurora A are considered to be in
part regulated by the interaction with multiple partner proteins,
23,52,71,72 additional actors may be work together to Aurora A in
regulating the Klp10A activity at the transition between the cen-
triole and the axoneme. This possibility may be consistent with
the observation that some centrioles of treated spermatocytes lack
the intermediate Unc-GFP labeling and are unable to nucleate
axonemal microtubules. The dot-like Unc-GFP has been corre-
lated, indeed, with the transition region. Mutations in chibby and
dilatory that disrupt this region lead to defects in the organization
of the ciliary axoneme.39,73

Further studies are, therefore, required to identify key sub-
strates that may interact with Aurora A kinase to control and reg-
ulate the centriole dynamics during male meiosis of Drosophila.

Materials and Methods

Drosophila strains
The stock containing the Unc-GFP transgene was described

previously.34 The aure209 and aur287 alleles were reported in
Glover et al.19 Flies were raised on standard Drosophila medium
at 24�C.

Antibodies and reagents
Mouse anti-acetylated tubulin (1:100) was from Sigma–

Aldrich. Alexa Fluor 555 secondary antibody (1:800) was pur-
chased from Invitrogen. The chemical inhibitor to Aurora A
(MLN8054) was purchased by Selleck. Dimethyl sulfoxide

(DMSO) and Sang M3 Insect Medium were purchased from
Sigma-Aldrich. MLN8054 was dissolved in DMSO at stock con-
centration of 1000 mM and stored frozen at 20�C. The stock
solution was diluted to the desired concentration in culture
medium prior to incubation with testes.

Culture and drug treatment experiments
Testes were dissected from pupae between 5–7 d in M3

medium. To inhibit Aurora A, testes were incubated 24 hours in
M3 medium containing 0.5 mM or 1 mM MLN8054 for
24 hours into a 24-well plate at 24�C.

Incubation of testes in M3 medium containing DMSO but
lacking MLN8054 had no effect on the structure of the
centrioles.

Indirect immunofluorescence staining
After incubation, the testes were washed in M3 medium for

10 minutes and then in phosphate buffered saline (PBS) for 5
minutes. Then testes were fixed as previously reported.41 To visu-
alize microtubules testes were incubated with anti-acetylated
tubulin antibody for 4–5 h at room temperature. After washing
in PBS–BSA the samples were incubated for 1 h at room temper-
ature with the appropriate secondary antibodies. DNA was visu-
alized with incubation of 3–4 min in Hoechst. Samples mounted
in small drops of 90% glycerol in PBS were observed by using an
Axio Imager Z1 (Carl Zeiss) microscope equipped with an Axio-
Cam HR cooled charge-coupled camera (Carl Zeiss). Grayscale
digital images were collected separately and then pseudocolored
and merged using Adobe Photoshop 7.0 software (Adobe
Systems).

Transmission electron microscopy
Both drug-treated and control testes were carefully rinsed first

in M3 medium and then in phosphate-buffered saline (PBS) for
5 minutes. Samples were pre-fixed in 2.5% glutaraldehyde in
PBS overnight at 4�C. After washing in PBS, the testes were
post-fixed in 1% osmium tetroxide in PBS for 1h at 4�C. Subse-
quently the material was rinsed again in PBS, dehydrated
through a graded series of Ethanol, and embedded in a mixture
of Epon-Araldite resin. Serial ultrathin sections (65–75 nm)
were prepared with a Reichert ultramicrotome equipped with a
diamond knife, collected with formvar-coated copper grids, and
routinely stained with uranyl acetate and lead citrate. TEM
observations were performed with a FEI Tecnai G2 Spirit trans-
mission electron microscope operating at an accelerating voltage
of 100 kV and equipped with a Morada CCD camera
(Olympus).

Statistics
Centrioles from individual cysts of both control and treated

spermatocytes were scored based on the Unc-GFP labeling. Only
the longitudinal centrioles were measured. Centrioles scored
were: control prophase (n D 103), control prometaphase (n D
85), control meiotic divisions (n D 84); treated prophase (n D
202); treated prometaphase (n D 138), treated meiotic divisions
(n D 235). The error was measured as standard error of the
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means (SEM). Significance was measured using the Student’s t
test. For significance ranking values ***P < 0.0001.
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