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Sea lice threaten the welfare of farmed Atlantic salmon and the sustainability

of fish farming across the world. Chemical treatments are the major method

of control but drug resistance means that alternatives are urgently needed.

Selective breeding can be a cheap and effective alternative. Here, we com-

bine experimental trials and diagnostics to provide a practical protocol for

quantifying resistance to sea lice. We then combined quantitative genetics

with epidemiological modelling to make the first prediction of the response

to selection, quantified in terms of reduced need for chemical treatments. We

infected over 1400 young fish with Lepeophtheirus salmonis, the most impor-

tant species in the Northern Hemisphere. Mechanisms of resistance were

expressed early in infection. Consequently, the number of lice per fish and

the ranking of families were very similar at 7 and 17 days post infection,

providing a stable window for assessing susceptibility to infection. The

heritability of lice numbers within this time window was moderately high

at 0.3, confirming that selective breeding is viable. We combined an epide-

miological model of sea lice infection and control on a salmon farm with

genetic variation in susceptibility among individuals. We simulated 10 gen-

erations of selective breeding and examined the frequency of treatments

needed to control infection. Our model predicted that substantially fewer

chemical treatments are needed to control lice outbreaks in selected popu-

lations and chemical treatment could be unnecessary after 10 generations

of selection. Selective breeding for sea lice resistance should reduce

the impact of sea lice on fish health and thus substantially improve the

sustainability of Atlantic salmon production.
1. Introduction
Infection of Atlantic salmon by the salmon louse, Lepeophtheirus salmonis, is

a major threat to fish welfare and the profitability of salmon production.

L. salmonis can cause skin lesions, osmotic imbalance, and increased suscepti-

bility to bacterial and viral infections through suppression of host immune

responses and damage to the host skin [1]. Salmon farms combat sea lice

with chemical treatments. Treatment costs vary among countries but amounted

to losses of $480 M per annum worldwide in 2006 [2]. However, this figure does

not include indirect losses due to fish stress and reduced growth, the potential

role of lice as vectors in the transmission of fish pathogens such as infectious

salmon anaemia virus [3], the importance of louse infections in increasing sus-

ceptibility to other diseases, the environmental impact of chemical treatments

[4–7] and the potential impacts on wild salmon stocks [8–13].

Chemical treatments are currently the major control method but increasing

concern about the development of resistance by sea lice [14–16] means alternative

controls are needed [17,18] and the importance of integrated pest management

plans is being recognized [19,20]. Breeding for resistance is now recognized as
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Figure 1. A simplified diagram of the life cycle of sea lice. Following hatch-
ing, the sea louse has eight stages to its life cycle [28]. There are three
planktonic stages, nauplius I and II that moult into the infective copepodid
stage which attaches to the fish. The copepodid stage moults to the sessile
stages of the life cycle, chalimus I and II, before becoming the pre-adult or
mobile stage that can move around on the surface of the fish and also swim
in the water column. The pre-adult stage is followed by the final moult to
the fully mature adult stage.
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a key element in the management of disease in intensive animal

production [21–23]. There are examples of successful breeding

programmes for disease resistance in the salmon aquaculture

industry (e.g. those targeting infectious pancreatic necrosis),

but, despite estimates of heritabilities for sea lice infection

[24–26], programmes to develop commercial stocks showing

resistance to sea lice have lacked two key elements. First, they

lack reliable, practical protocols for estimating breeding

values—the contribution to the lice count from inherited gen-

etic variation. Second, they lack predictions of the response

to selection. For production traits, such as growth or milk

yield, the response to selective breeding is a straightforward

calculation [27]. For infectious disease traits, however, selective

breeding alters transmission dynamics and therefore alters an

individual’s environment as well as its genetic susceptibility.

In this case, predicting the response to selection requires quan-

titative genetics to be integrated into epidemiological models.

In this study, we established a standardized challenge for

measuring salmon resistance to sea lice infection, estimated

the heritability of resistance to sea lice in young fish and devel-

oped a mathematical model to predict the response to selection

for increased resistance to sea lice. Specifically, we estimated

the heritability of abundance of lice during the early and late

stages of initial infection. These estimates enabled us to identify

the time window during the infection process that maximizes

differences between families, while minimizing fish stress.

We also compared whole-body counts with individual side

counts to help design accurate yet practical industry protocols.

Our mathematical model of parasite transmission dynamics

accounted for genetic variation in fish resistance and allowed

us to compare the effect of selection under alternative manage-

ment scenarios. The model predicts the expected parasite loads

in both selected and unselected individuals and estimates the

potential for reduction in the frequency of chemical treatments

in selected populations.
2. Material and methods
2.1. Experimental infection trials
Sea lice have a direct life cycle comprising eight stages separated

by moults [28]. The key infectious stage is the free-swimming

copepodid that establishes contact with the host following a

short planktonic phase (figure 1).

The infection trial was carried out at the Marine Environ-

mental Research Laboratory at Machrihanish. Salmon smolts, at

1 year after hatching, were purchased from Landcatch Natural

Selection Ltd (N ¼ 1479). The salmon came from 31 sire families

with an average of 45 fish per family. Salmon were challenged in

a single tank with a moderate dose of copepodid larvae (96 per

fish) and monitored daily until the majority of parasites had

moulted into chalimus I (figure 1). Seven days post infection

(dpi) approximately half of the fish (N ¼ 725) were sampled

over a 10 h period following euthanasia with benzocaine. Each

fish was identified using a passive integrated transponder (PIT)

tag, weighed, measured and fixed in 10% neutral buffered forma-

lin, with a fin clip separately archived in ethanol. The remainder

of the fish was monitored until most of the lice had reached the

chalimus II stage (17 dpi) and was sampled as above. All lice for

each fish were counted using a stereo-microscope (Olympus

SZ-40). Days 7 and 17 were chosen to cover the developmental

stages of the parasite. These timings will vary with water temp-

erature. Day 7 is close to the start of infection but allows lice to be

seen and counted more easily. Day 17 is just before moulting into

motile pre-adults. Although pre-adults and adults are easier to
count than developmental stages their ability to move between

hosts means these counts would not reflect the resistance status

of the host.

The experiment was designed to allow the estimation of the

heritability of susceptibility to sea lice infection. Heritability is

defined as the proportion of the total variation that is due to

inherited genetic variation [29] and is estimated from the resem-

blance among relatives [30]. Statistical analysis of louse counts

was carried out using SAS v. 9.3 (SAS Institute Cary, NC,

USA), and R v. 3.2.0 [31]. Generalized linear mixed modelling

with a negative binomial error structure and dpi as a fixed

effect as well as sire and dam as random effects was used to com-

pare counts at 7 and 17 dpi. Pedigree information and louse

counts were analysed using the ASReml program [32] to generate

heritability values in an animal model [30,33]. Lice counts were

log transformed for the heritability analysis.
2.2. Epidemiological model with selective breeding and
sea lice control

The epidemiological model of sea lice infection and control was

based on a previously published model which described the epide-

miological dynamics of sea lice infection in salmon farms in

Scotland over the 2 year production cycle and simulated the

effect of treatment with hydrogen peroxide and cypermethrin

[34]. This model did not account for heterogeneity in susceptibility

between individual fish.

Adopting the notation of Revie et al. [34], the rate of arrival of

infective stages per fish at time t is given by

R1 ¼ pðtÞ þ q
N

XN

j¼1

n j4ðt� tEÞ, ð2:1Þ

where p(t) is the background infection pressure, q is the number

of eggs per female per day, N is the number of fish, nj4 is the

number of gravid females on fish j and tE is the time taken for

an egg to develop to the chalimus stage. The background

infection pressure takes the form of a Heaviside function

pðtÞ ¼ aHðt� tExtÞ, ð2:2Þ
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Figure 2. Frequency distribution of number of lice counted from right side of
salmon only (blue bars) with corresponding lognormal distribution overlaid
(line). The distribution of lice counts is right skewed. Most fish have relatively
low counts but a small number of fish have high counts. A total of 1405 fish
were examined.

Table 1. Parameters for the epidemiological component of the sea lice
model taken from Revie et al. [34]. The parameters b, SC, SC, a and q are
specific to farms treating with cypermethrin.

parameter value description

t1 15 days spent in stage 1

t2 20 days spent in stage 2

t3 10 days spent in stage 3

t4 12 days spent in stage 4

tE 20 egg to chalimus development

time (days)

tExt 154 external infection arrival day

q 8.745 viable eggs per female per day

a 1.025 background chalimus per day

b 0.95 treatment efficacy

SC 0.642 survival fraction to next stage

SM 0.973 survival fraction to next stage

b1 ¼ 2ln(SC)/t1 0.030 mortality rate of stage 1

b2 ¼ 2ln(SM)/t2 0.0014 mortality rate of stage 2

b3 ¼ 2ln(SM)/t3 0.0027 mortality rate of stage 3

b4 ¼ 2ln(2)/t4 0.058 mortality rate of stage 4
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where a is the background level of infection and tExt is the time at

which external infection occurs. The dynamics of the sea lice

stages on the fish are given by the delay differential equations

dn j1ðtÞ
dt

¼ sjR1ðtÞ � sjR1ðt� t1Þe�b1t1 � b1n j1ðtÞ, ð2:3Þ

dnj2ðtÞ
dt

¼ sjhR1ðt� t1Þe�b1t1 � sjhR1ðt� t1 � t2Þe�b1t1�b2t2

� b2nj2ðtÞ, ð2:4Þ
dn j3ðtÞ

dt
¼ sjhR1ðt� t1 � t2Þe�b1t1�b2t2h� sjhR1ðt� t1 � t2

� t3Þe�b1t1�b2t2�b3t3 � b3n j3ðtÞ ð2:5Þ

and

dn j4ðtÞ
dt

¼ sjhR1ðt� t1 � t2 � t3Þe�b1t1�b2t2�b3t3 � b4n j4ðtÞ, ð2:6Þ

where nj1 is the number of chalimus on fish j and nj2, nj3 and nj4 are,

respectively, the number of pre-adult, adult and gravid females on

fish j. The parameter h gives the proportion of chalimus develop-

ing into females (i.e. h ¼ 0.5), and the parameter sj is the relative

susceptibility of fish j to sea lice infection. This parameter

distinguishes our model from the original model of Revie et al.
[34], which modelled a single fish or equivalently a population

of identical fish, i.e. sj ¼ 1 for all fish. By assigning individual sus-

ceptibilities sj to each fish, we extend the original model to capture

individual variation, both genetic and non-genetic, in resistance to

infection. See the next section for a discussion of the genetic theory

incorporated into the modelling.

The parameters b1,b2,b3 and b4 are, respectively, the death

rates in the chalimus, pre-adult, adult and gravid stages, and

the parameters t1,t2,t3,t4, are the expected number of days

spent in the respective stages.

Following Revie et al. [34], the effect of treatment was simu-

lated by assuming a reduction in the population on each fish and

the chalimus source term, given by

n ji ! ð1� bÞn ji, ð2:7Þ

The parameters taken from Revie et al. [34] are given in

table 1.

2.3. Genetic variation in the epidemiological model
The distribution of susceptibilities sj and the heritability was, h2,

based on our lice count data from our experimental trials. Specifi-

cally, the pooled distributions of lice counts (log transformed)

were used to define the variation in susceptibility to infection,

and the pooled heritability estimate used to specify the extent

of inherited variation in susceptibility.

As the lice counts were lognormally distributed (figure 2), we

assumed susceptibility to follow the equivalent lognormal distri-

bution rescaled to a mean of 1.0. As standard quantitative genetic

theory [27] applies to normally distributed traits, this underlying

normal distribution (the log of susceptibility) was assumed to be

the trait subject to selection.

Specifically, prior to selection the trait was assumed to follow

a normal distribution with density function f((x 2 m)/s)/s,

with mean, m, standard deviation, s, where f(x) is the standard

normal distribution density function given by

fðxÞ ¼ e�x2=2ffiffiffiffiffiffi
2p
p : ð2:8Þ

We simulated 10 generations of selection, assuming trunca-

ted selection, which assumes a proportion, p, of the population

is selected for breeding, corresponding here to selection of

individuals below a threshold value for the trait, T.

The response to selection, R, is the difference in mean pheno-

typic value between the parental generation and the offspring,
and depends on the heritability, h2, of the trait. The standard

expression for the response to selection, R, is given by the

breeder’s equation [27]

R ¼ h2S, ð2:9Þ

where S is the selection differential, S, which is equal to the

average superiority of the selected parents, i.e.

S ¼ m� � m, ð2:10Þ

where m* is the mean of the selected population. In this case, S
will be negative because we are selecting individuals with the
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Figure 3. The correlation between louse counts obtained from left and right
sides of the counted salmon. Lice were counted on both sides of 550 fish.
There was a strong correlation (R ¼ 0.8; p , 0.001), indicating that good
estimates of parasite load may be obtained from one side of the fish, at
reduced cost and effort. The dashed lines represent 95% confidence limits
for mean predicted values of the linear regression line.
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lowest lice counts. This may also be written

S ¼ �s

p
f
ðT � mÞ

s

� �
¼ �si, ð2:11Þ

where

i ¼ 1

p
f
ðT � mÞ

s

� �
ð2:12Þ

is the intensity of selection, a standardized measure of the

proportion of the population being used for selection [27].

The breeder’s equation (equation (2.9)) assumes no change in

variance due to selection, reflecting the infinitesimal model,

which assumes a very large (effectively infinite) number of loci

each with infinitesimal effect. Under this model, the amount of

selection acting at any given locus is small and therefore that

the change in allele frequencies is negligible.

However, short-term changes in variance are assumed to

occur via the Bulmer effect [27,35]. The Bulmer effect captures

the reduction in variance due to the disequilibrium among loci

that arises in a selected population; it is short term because

random mating is assumed to rapidly restore equilibrium.

Specifically, truncated selection reduces the trait variance in

the selected parental population [27] to

V� ¼ s2 1� ðT � mÞ
s

i� i2
� �

¼ s2½1� k� ¼ V0½1� k�, ð2:13Þ

where

k ¼ i iþ ðT � mÞ
s

� �
, ð2:14Þ

where V0 is the phenotypic variance prior to selection. Note that

this expression (2.14) differs slightly from standard because we

are selecting individuals with the lowest values for the trait,

rather than the highest. Following the notation of [35], this

decrease in variance in the parental generation reduces the

variance in the first offspring generation by

1

2
h4kV0:

This is a temporary reduction generated by linkage disequili-

brium. We use di to denote the disequilibrium contribution at

the ith generation. In each generation of selection, the existing

disequilibrium contribution is halved and a new contribution

generated [27,35], i.e.

diþ1 ¼ 1
2di þ 1

2h
4kVi:

Denoting the pre-selection additive and phenotypic variances by

A0 and V0, respectively, the additive and phenotypic variances

and the heritability in the ith generation are given

Ai ¼ A0 þ di,

Vi ¼ V0 þ di

and

h2
i ¼

Ai

Vi
:

In our simulated selection schemes, we account in each gener-

ation for this reduction in variance and heritability in the

response to selection.

2.4. Simulation studies
We used the epidemiological model to simulate infection

dynamics and control first in the absence of selective breeding

and then on selected populations. We predicted the response to

selection in terms of reduction in mean parasite load across the

fish population and the required frequency of treatment to main-

tain lice below a threshold over the 2 year production cycle,

following Revie et al. [34].
From the breeder’s equation, the key parameters affecting the

response to selection are the heritability, the intensity of selection

and the variance in the trait prior to selection. Though changes to

the epidemiological parameters would affect absolute lice num-

bers, they would have little impact on the relative reduction in

population growth and treatment frequencies, which are our

focus. We ran simulations for a wide range of selection intensities

from selection on the best 80% of the population down to selec-

tion on just 1% of population. In aquaculture, the large numbers

of offspring mean that extreme selection intensities down to 1%

of the population are feasible. We also investigated the sensitivity

of the response to selection (in terms of reduction in treatment

frequency) to the heritability and the variance in susceptibility

prior to selection.
3. Results
3.1. Experimental infection trials
Lice counts were obtained for a total of 1405 fish. To deter-

mine when mechanisms of resistance are expressed, 691

and 714 fish were sampled at the early (7 dpi) and late

(17 dpi) infection stages, respectively. To establish a practical

protocol for resistance measurement, counts were compared

using both sides of the fish and just one side. All lice were

counted on a total of 550 fish—149 fish exposed for 7 days

and 401 fish exposed for 17 days. On the remaining 855

fish, only the lice on the right side of the fish were counted.

At 17 dpi, the mean whole-body louse count was 54.5+
1.2 (mean+ s.e.m.). The head, body, tail fin, anal fin, pelvic

fin, dorsal fin and pectoral fins were counted separately.

The body contained more lice than any other region

(14.3+0.5) followed by the pectoral fin (13.0+ 0.3).

At 7 dpi, the mean louse count on the right side was

26.2+ 0.5, compared to 27.0+0.5 at 17 dpi. Mean louse

count did not vary significantly from the chalimus I to the

chalimus II stages (figure 1) suggesting that parasite loss

was minimal between 7 and 17 dpi.
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There was a strong correlation (R ¼ 0.8; p , 0.001; figure 3)

between lice counts from the left and right sides of the fish,

indicating that good estimates of parasite load may be obtained

from one side of the fish, at reduced cost and effort. The distri-

bution of sea lice was right skewed (figure 2) with substantial

variation between individuals: most fish have relatively low

counts but a small number have high counts.

We found significant differences in size-corrected louse

counts among families at both time points (figure 4a,b).

Heritability estimates were not significantly different at 7

(0.27+ 0.08) and 17 dpi (0.31+ 0.08), giving a pooled

estimate of 0.30+ 0.06. These results indicate that dif-

ferences among families are probably established early

during the infection process and maintained through to

the chalimus II stage.

3.2. Epidemiological model with selective breeding
and sea lice control

We predicted the response to selection in terms of the reduction

in mean parasite load across the fish population and in the

required frequency of treatment over the 2 year production

cycle, following Revie et al. [34]. Our model predicts clear

reductions from generation 1 in the required frequency of

drug treatment to maintain the same degree of parasite control

as in the unselected population (figure 5a) although reductions
occur much more rapidly for the higher intensities of selection.

After five generations of selection, the required treatment fre-

quency is reduced by about 5% for a selection intensity of

80% (i.e. most fish are retained for breeding) and by about

50% for a selection intensity of 1% (i.e. only the best 1% are

used for breeding). Our default heritability from our exper-

imental trials was 0.3. A heritability of 0.2 would slow the

response to selection by nearly three generations, while a her-

itability of 0.4 would speed the response by nearly two

generations (figure 5b). A reduction in the initial standard devi-

ation in susceptibility to lice of 50% would slow the response

by two to three generations, while a doubling of the trait stan-

dard deviation would speed the response by around four

generations (figure 5c).

The need for treatment of lice population in unselected

populations and populations following 10 generations of

selection differed. Assuming drug efficacies for cypermethrin

adopted by Revie et al. [34] (table 1), we found that in the

unselected population, six treatments can keep lice popu-

lations below 20–25 lice per fish (figure 6, grey line); after

10 generations of selection on the best 0.2 of the population,

three treatments are sufficient to keep lice densities below

this level (figure 6, orange line); after 10 generations of selec-

tion on the best 0.01 of the populations, our model predicts

that treatments are not needed to control the lice population

(figure 6, red line).
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4. Discussion
Selective breeding is a key element of disease management in

intensive animal production and provides a cheap and effec-

tive alternative in situations where parasite resistance to

chemical treatments is becoming a concern [36,37]. Selective

breeding against a number of diseases is now used in aqua-

culture [38,39]. Although the potential for breeding salmon

resistant to sea lice has been recognized [24–26,40,41], the

industry has lacked reliable methods for estimating breeding

values and the response to selection has not been assessed.

Here, we provide a practical protocol for quantifying resist-

ance to sea lice and show that selection could substantially

reduce the need for drug treatments.

Counting multiple immature sea lice on large numbers of

fish is a labour-intensive and demanding task. Therefore, we

explored whether counting only one side of each fish would

provide an accurate measure of host resistance. Counting lice

on both sides of each fish would improve the precision with

which the relative susceptibility of each animal can be esti-

mated and generate a higher heritability (it would increase

from 0.3 to 0.32), but the reduced effort required to count

only one side of each fish would allow more fish to be

counted and encourage adoption of the procedure by fish

breeders. The analysis of sea lice counts following tank infec-

tion challenge has shown that there is a strong correlation

between counts on the left- and right-hand sides of each

fish. This means that it is possible to use counts from a

single side to estimate susceptibility to infection.

The timing of sea lice counts following deliberate infec-

tion is important. Adult lice are larger and easier to count

than the developmental stages, but their mobility means

that counts of adult lice do not reflect the resistance status

of the host. The number of lice was very similar at 7 and

17 dpi. These results indicate that the variation in resistance

among young fish is a consequence of mechanisms acting

against establishment and initial survival. There was little
evidence for effective resistance against established chalimus

stages. These results inform the mechanisms of immunity

and also mean that sea lice counting can be flexible so long

as it is carried out during the chalimus stages.

The distribution of lice was right skewed and overdis-

persed. A relatively small number of fish had high counts

while most fish had relatively low counts. A skewed distri-

bution of parasites is observed in the majority of parasitic

infections [42–44]. This may be because some hosts are

more susceptible than others or because infecting parasites

are not evenly distributed in the infection environment. In

tank infections the latter is less likely. The causes of differen-

tial susceptibility to infection are partly genetic [45,46] but the

physiological mechanisms and the specific genes involved

are not known. However, as mean lice counts remained

unchanged from 7 to 17 dpi, this suggests that the physiologi-

cal mechanisms were active before day 7. The swimming

performance of infectious copepodids is not sufficient to

follow fast-moving salmon, only to intercept them as they

pass and therefore the mechanisms underlying variation are

unlikely to involve the release of a chemical trail from fish,

although there could feasibly be chemical differences at the

surface of the fish. As the adaptive immune response takes

more than 7 days to develop, the innate immune response

against the incoming copepodids is likely to be the main

factor determining the relative susceptibility of young fish.

This could be a direct response or a consequence of the

host’s ability to evade any immunosuppressive factors

secreted by the developing lice.

The ranking of families was very stable during the chalimus

stages from 7 to 17 dpi. This suggests that, at the seawater

temperature tested, these timings provide a convenient

window to estimate variation in response to tank challenge

infection. Prior to 7 days, sea lice are not permanently attached

by filament and may become detached in handling and are,

moreover, smaller and more difficult to find and count. Soon

after 17 days, lice mature into pre-adults and are capable of

moving from fish to fish. In this instance, relatively resistant

fish, which prevented the development of larvae, could be

infected subsequently by pre-adults and mistakenly appear

susceptible. Overall, a relatively long window of stable

counts of sessile lice simplifies the logistics of identifying

resistant and susceptible fish.

The heritability of sea louse abundance was not signifi-

cantly different at days 7 and 17; a pooled estimate was 0.30

with a standard error of 0.06, similar to or exceeding previous

estimates obtained in Scottish and Norwegian salmon [24–26].

This is similar to the heritability of milk production in dairy

cattle [29] and sufficiently high to justify selective breeding.

Our mathematical model allowed prediction of the

response to selection. Based on our model, which has been

fitted to field data from Scottish salmon farms [34] and

parametrized using field trials to assess genetic variation in

susceptibility, breeding for resistance to sea lice would

reduce levels of infective larvae by reducing the number of

individuals with high numbers of lice. This environmental

benefit is not captured in traditional methods of estimating

the response to selective breeding and was achieved by inte-

grating quantitative genetics into an epidemiological model

[47–49], allowing genetic variation between individuals and

selective breeding to be modelled.

Selective breeding reduces the number of lice because

hosts become more resistant and fewer lice transmission



rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150574

7
stages are produced. Consequently, the requirement for treat-

ment is reduced. Such treatment reduction has the potential

to prevent or slow the development of chemical resistance

in treated populations, thus extending the life of developed

medicines and improving longer term control [26,37,50]. In

particular, the ability in salmon aquaculture to select a

small number of sires and produce large numbers of off-

spring suggests that a relatively rapid response to selection

is possible. Therefore, selective breeding offers a cheap and

relatively rapid method that can form a key part of integrated

pest management strategy for sea lice control.

In livestock, parasites contribute to many major diseases.

Examples include the cattle tick Rhipicephalus microplus in

Australian cattle [51,52] and nematodes in sheep across the

world [45,53,54]. Additional problems are caused by flies,

fleas, flukes and lice [55]. Disease susceptibility can also be

influenced by many factors such as stress, nutrition,

coinfection, intensity of exposure and parasite-mediated

immunosuppression [56–58]. In estimating the heritability

of disease, these factors influence the non-genetic component

but they do not need to be explicitly captured. Here, the com-

bination of experimental challenge, diagnostics, quantitative

genetics and epidemiological modelling has provided a
comprehensive framework for parasite control. This combi-

nation of disciplines could in principle be applied to

develop control methods for a wide variety of diseases of

managed populations of livestock and fish.

Sea lice currently pose a substantial problem for the aqua-

culture industry: they impact the welfare of farmed fish;

threaten wild populations; and limit the profitability and

future growth of the industry [59]. We have demonstrated

through the integration of field trials, quantitative genetics

and mathematical modelling, that selective breeding could sub-

stantially reduce the need for chemical treatments against sea

lice. Selective breeding therefore offers the opportunity for

more profitable, more ecologically sound and welfare-friendly

fish farming.
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