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In evolutionary game theory, an important measure of a mutant trait (strategy)

is its ability to invade and take over an otherwise-monomorphic population.

Typically, one quantifies the success of a mutant strategy via the probability

that a randomly occurring mutant will fixate in the population. However,

in a structured population, this fixation probability may depend on where

the mutant arises. Moreover, the fixation probability is just one quantity by

which one can measure the success of a mutant; fixation time, for instance, is

another. We define a notion of homogeneity for evolutionary games that cap-

tures what it means for two single-mutant states, i.e. two configurations of a

single mutant in an otherwise-monomorphic population, to be ‘evolutionarily

equivalent’ in the sense that all measures of evolutionary success are the same

for both configurations. Using asymmetric games, we argue that the term

‘homogeneous’ should apply to the evolutionary process as a whole rather

than to just the population structure. For evolutionary matrix games in

graph-structured populations, we give precise conditions under which the

resulting process is homogeneous. Finally, we show that asymmetric matrix

games can be reduced to symmetric games if the population structure

possesses a sufficient degree of symmetry.
1. Introduction
One of the most basic models of evolution in finite populations is the Moran

process [1]. In the Moran process, a population consisting of two types, a

mutant type and a wild-type, is continually updated via a birth–death process

until only one type remains. The mutant and wild-types are distinguished by

only their reproductive fitness, which is assumed to be an intrinsic property

of a player. A mutant type has fitness r . 0 relative to the wild-type (whose fit-

ness relative to itself is 1), and in each step of the process an individual is

selected for reproduction with probability proportional to fitness. Reproduction

is clonal, and the offspring of a reproducing individual replaces another

member of the population who is chosen for death uniformly at random. Even-

tually, this population will end up in one of the monomorphic absorbing states:

all mutant type or all wild-type. In this context, a fundamental metric of the

success of the mutant type is its ability to invade and replace a population of

wild-type individuals [2].

In a population of size N, the probability that a single mutant in a wild-type

population will fixate in the Moran process is

r ¼ 1� r�1

1� r�N : ð1:1Þ

In this version of a birth–death process, the members of the population are

distinguished by only their types; in particular, there is no notion of spatial

arrangement, i.e. the population is well mixed. Lieberman et al. [3] extend the

classical Moran process to graph-structured populations, which are populations

with links between the players that indicate who is a neighbour of whom. In

this structured version of the Moran process, reproduction happens with prob-

ability proportional to fitness, but the offspring of a reproducing individual can

replace only a neighbour of the parent. Since individuals are now distinguished

by both their types (mutant or wild) and locations within the population, a

natural question is whether or not the fixation probability of a single-mutant
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type depends on where this mutant appears in the population.

Lieberman et al. [3] show that this fixation probability is inde-

pendent of the location of the mutant if everyone has the

same number of neighbours, i.e. the graph is regular [4]. In

fact, remarkably, the fixation probability of a single mutant

on a regular graph is the same as that of equation (1.1)—an

observation first made in a special case by Maruyama [5].

This result, known as the Isothermal Theorem, is indepen-

dent of the number of neighbours the players have (i.e. the

degree of the graph).

The Moran process is frequency-independent in the sense that

the fitness of an individual is determined by type and is not influ-

enced by the rest of the population. However, the Moran model

can be easily extended to account for frequency-dependent fitness.

A standard way in which to model frequency-dependence is

through evolutionary games [6–8]. In the classical set-up, each

player in the population has one of two strategies, A and B,

and receives an aggregate pay-off from interacting with the rest

of the population. This aggregate pay-off is usually calculated

from a sequence of pairwise interactions whose pay-offs are

described by a pay-off matrix of the form

A B
A
B

a b
c d

� �
: ð1:2Þ

Each player’s aggregate pay-off is then translated into fit-

ness and the strategies in the population are updated based

on these fitness values. Since a player’s pay-off depends on

the strategies of the other players in the population, so does

that player’s fitness. Traditionally, this population is assumed

to be infinite, in which case the dynamics of the evolutio-

nary game are governed deterministically by the replicator

equation of Taylor & Jonker [6]. More recently, evolutionary

games have been considered in finite populations [8,9],

where the dynamics are no longer deterministic but rather

stochastic. In order to restrict who interacts with whom in

the population, these populations can also be given structure.

Popular types of structured populations are graphs [3,10,11],

sets [12] and demes [13,14].

We focus here on evolutionary games in graph-structured

populations that proceed in discrete time steps. Such processes

define discrete-time Markov chains, either with or without

absorbing states (depending on mutation rates). Typically, in

evolutionary game theory, one starts with a population of

players and repeatedly updates the population based on some

update rule such as birth–death [8], death–birth [10,15], imita-

tion [16], pairwise comparison [17,18] or Wright–Fisher [19,20].

These update rules can be split into two classes: cultural and

genetic (see [21]). Cultural update rules involve strategy imita-

tion, whereas genetic update rules involve reproduction and

inheritance. Without mutations, an update rule may be seen as

giving a probability distribution over a number of strategy-

acquisition scenarios: a player inherits a new strategy through

imitation (cultural rules) or is born with a strategy determined

by the parent(s) (genetic rules). Mutation rates disrupt these

scenarios by placing a small probability of a player taking on a

novel strategy. The way in which strategy-mutation rates are

incorporated into an evolutionary process depends on both

the class of the update rule and the specifics of the update rule

itself. In a general sense, we say that strategy mutations are homo-
geneous if they depend on neither the players themselves nor the

locations of the players. This notion of homogeneous strategy
mutations is analogous to that of a symmetric game, which is

a game for which the pay-offs depend on the strategies played

but are independent of the identities and locations of the players.

The Isothermal Theorem seems to indicate that popula-

tions structured by regular graphs possess a significant

degree of homogeneity, meaning that different locations

within the population appear to be equivalent for the purposes

of evolutionary dynamics. However, it is important to note that

(i) fixation probability is just one metric of evolutionary success

and (ii) the Moran process is only one example of an evolution-

ary process. For example, in addition to the probability of

fixation, one could look at the absorption time, which is the aver-

age number of steps until one of the monomorphic absorbing

states is reached. Moreover, one could consider frequency-

dependent processes, possibly with different update rules, in

which fitness is no longer an intrinsic property of an individual

but is also influenced by the other members of the population.

We show that the Isothermal Theorem does not extend to

arbitrary frequency-dependent processes such as evolutionary

games. Furthermore, we show that this theorem does not apply

to fixation times; that is, even for the Moran process on a regular

graph, the average number of updates until a monomorphic

absorbing state is reached can depend on the initial placement

of the mutant.

Given that the Isothermal Theorem does not extend to other

processes defined on regular graphs, the next natural question is

what is the meaning of a spatially homogeneous population in

evolutionary game theory? In fact, we argue using asymmetric

games [21] that the term ‘homogeneous’ should apply to an

evolutionary process as a whole rather than to just the population

structure. Even for populations that appear to be spatially

homogeneous, such as populations on complete graphs, non-

uniform distribution of resources within the population can

result in heterogeneity of the overall process. Similarly, for

symmetric games, heterogeneity can be introduced into the

dynamics of an evolutionary process through strategy

mutations. Therefore, a notion of homogeneity of an evolution-

ary game should take into account at least (i) population

structure, (ii) pay-offs, and (iii) strategy mutations.

If the strategy-mutation rates are miniscule, then the popu-

lation spends most of its time in monomorphic states. With

small mutation rates, one can define an embedded Markov

chain on the monomorphic states and use this chain to study

the success of each strategy [22,23]. That is, when a mutation

occurs, the population is assumed to return to a monomorphic

state before another mutant arises. Thus, the states of interest

are the monomorphic states and the states consisting of a

single mutant in an otherwise-monomorphic population. We

say that an evolutionary game is homogeneous if any two states

consisting of a single mutant (A-player) in a wild-type popu-

lation (B-players) are mathematically equivalent. We make

precise what we mean by ‘mathematically equivalent’ in §2,

but, informally, this equivalence means that any two such

states are the same up to relabelling. In particular, all metrics,

such as fixation probability, absorption time, etc., are the

same for any two states consisting of a single A-mutant in a

B-population. We show that an evolutionary game in a graph-

structured population is homogeneous if the graph is

vertex-transitive (‘looks the same’ from each vertex), the pay-

offs are symmetric and the strategy mutations are homogeneous.

This result holds for any update rule and selection intensity.

Finally, we explore the effects of population structure on

asymmetric evolutionary games. In the weak selection limit,



rsif.royalsocietypublishing.org
J.R

3
we show that asymmetric matrix games with homogeneous

strategy mutations can be reduced to symmetric games if the

population structure is arc-transitive (‘looks the same’ from

each edge in the graph). This result is a finite-population ana-

logue of the main result of McAvoy & Hauert [21], which

states that a similar reduction to symmetric games is possible

in sufficiently large populations. Thus, we establish that this

reduction applies to any population size if the graph possesses

a sufficiently high degree of symmetry. Our explorations, both

for symmetric and asymmetric games, clearly demonstrate the

effects of population structure, pay-offs and strategy mutations

on symmetries in evolutionary games.
.Soc.Interface
12:20150420
2. Markov chains and evolutionary equivalence
2.1. General Markov chains
The evolutionary processes we consider here define discrete-

time Markov chains on finite state spaces. The notions of

symmetry and evolutionary equivalence that we aim to intro-

duce for evolutionary processes can actually be stated quite

succinctly at the level of the Markov chain. We first work

with general Markov chains, and later we apply these ideas

to evolutionary games.

Definition 2.1 (Symmetry of states). Suppose that

X ¼ {Xn}n�0 is a Markov chain on a (finite) state space, S,

with transition matrix T. An automorphism of X is a bijection

f :S ! S such that Ts,s0 ¼ TfðsÞ,fðs0Þ for each s, s0 [ S: Two

states s, s0 [ S are said to be symmetric if there exists

f [ AutðXÞ such that fðsÞ ¼ s0:

Definition 2.1 says that the states of the chain can be rela-

belled in such a way that the transition probabilities are

preserved. This relabelling may affect the long-run distri-

bution of the chain since it need not fix absorbing states, so

we make one further refinement in order to ensure that if

two states are symmetric, then they behave in the same way:

Definition 2.2 (Evolutionary equivalence). States s and s0 are

evolutionarily equivalent if there exists an automorphism of the

Markov chain, f [ AutðXÞ, such that

(i) fðsÞ ¼ s0;

(ii) if m is a stationary distribution of X, then fðmÞ ¼ m:

For a Markov chain with absorbing states, the notions of

symmetry and evolutionary equivalence of states need not

coincide (see example B.16). However, if the Markov chain has

a unique stationary distribution (as would be the case if it were

irreducible), then symmetry implies evolutionary equivalence:

Proposition 2.3. If X has a unique stationary distribution, then
two states are symmetric if and only if they are evolutionarily
equivalent.

We show in appendix B that a Markov chain symmetry

preserves the set of stationary distributions (lemma B.7), so

if there is a unique stationary distribution, then condition

(ii) of definition 2.2 is satisfied automatically by any
symmetry. Proposition 2.3 is then an immediate consequence

of this result.

If s and s0 are evolutionarily equivalent, then it is clear for

absorbing processes that the probability that s fixates in

absorbing state �s is the same as the probability that s0 fixates

in state �s (and similarly for fixation times). If the process has a

unique stationary distribution, then the symmetry of s and s0

implies that this distribution puts the same mass on s and s0:

These properties follow at once from the fact that the states s

and s0 are equivalent up to relabelling.

2.2. Markov chains defined by evolutionary games
Our focus is on evolutionary games on fixed population struc-

tures. If S is a finite set of strategies (or ‘actions’) available to

each player, and if the population size is N, then the state

space of the Markov chain defined by an evolutionary game

in such a population is S ¼ SN : For evolutionary games with-

out random strategy mutations, the absorbing states of the

chain are the monomorphic states, i.e. the strategy profiles con-

sisting of just a single unique strategy. Thus, states s and s0 are

evolutionarily equivalent if they are symmetric relative to the

monomorphic states. On the other hand, evolutionary pro-

cesses with strategy mutations are typically irreducible (and

have unique stationary distributions); in these processes, the

notions of symmetry and evolutionary equivalence coincide

by proposition 2.3.

In order to state the definition of a homogeneous evolution-

ary process, we first need some notation. For s, s0 [ S, we

denote by sðs0 ,iÞ,s the state in SN whose ith coordinate is s’
and whose jth coordinate for j = i is s; that is, all players

are using strategy s except for player i, who is using s’.

Definition 2.4 (Homogeneous evolutionary process). An

evolutionary process on SN is homogeneous if for each

s, s0 [ S, the states sðs0 ,iÞ,s and sðs0 ,jÞ,s are evolutionarily equiv-

alent for each i, j ¼ 1, . . . , N: An evolutionary process is

heterogeneous if it is not homogeneous.

In other words, an evolutionary process is homogeneous

if, at the level of the Markov chain it defines, any two states

consisting of a single mutant in an otherwise-monomorphic

population appear to be relabellings of one another. As

noted in §2.1, all quantities with which one could measure

evolutionary success are the same for these single-mutant

states if the process is homogeneous.
3. Evolutionary games on graphs
We consider evolutionary games in graph-structured popu-

lations. Unless indicated otherwise, a ‘graph’ means a

directed, weighted graph on N vertices. A directed graph is

one in which the edges have orientations, meaning there

may be an edge from i to j but not from j to i. Moreover,

the edges carry weights, which we assume are non-negative

real numbers. A directed, weighted graph is equivalent to a

non-negative N � N matrix, D, where there is an edge

from i to j if and only if Dij = 0: If there is such an edge,

then the weight of this edge is simply Dij: Since there is a

one-to-one correspondence between directed, weighted

graphs on N vertices and N � N real matrices, we refer to

graphs and matrices using the same notation, describing D
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Figure 1. Three different levels of symmetry for connected graphs. Regular
graphs have the property that the degrees of the vertices are all the same.
Vertex-transitive graphs look the same from each vertex and are necessarily
regular. Symmetric (arc-transitive) graphs look the same from any two
(directed) edges. Each of these containments is strict; there exist graphs
that are regular but not vertex-transitive (figure 2) and vertex-transitive
but not symmetric ( figure 7a). (Online version in colour.)
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Figure 2. A single mutant (cooperator) at vertex 11 of the Frucht graph. In
the Snowdrift Game, the probability that cooperators fixate depends on the
initial location of this mutant on the Frucht graph (even if the intensity of
selection is weak). (Online version in colour.)
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as a graph but using the matrix notation Dij to indicate the

weight of the edge from vertex i to vertex j.
Every graph considered here is assumed to be connected

(strongly), which means that for any two vertices, i and j,
there is a (directed) path from i to j. This assumption is not

that restrictive in evolutionary game theory since one can

always partition a graph into its strongly connected com-

ponents and study the behaviour of an evolutionary process

on each of these components. Moreover, for evolutionary pro-

cesses on graphs that are not strongly connected, it is possible

to have both (i) recurrent non-monomorphic states in processes

without mutations and (ii) multiple stationary distributions in

processes with mutations. Some processes (such as the death–

birth process) may not even be defined on graphs that are not

strongly connected. Therefore, we focus on strongly connected

graphs and make no further mention of the term ‘connected’.

Since our goal is to discuss symmetry in the context of

evolutionary processes, we first describe several notions of

symmetry for graphs. The three types of graphs we treat here

are regular, vertex-transitive and symmetric. Informally speaking,

a regular graph is one in which each vertex has the same

number of neighbouring vertices (and this number is

known as the degree of the graph). A vertex-transitive graph

is one that looks the same from any two vertices; based on

the graph structure alone, a player cannot tell if he or she

has been moved from one location to another. A symmetric

(or arc-transitive) graph is one that looks the same from any

two edges. That is, if two players are neighbours and are

both moved to another pair of neighbouring vertices, then

they cannot tell that they have been moved based on the

structure of the graph alone. We recall in detail the formal

definitions of these terms in appendix B. The relationships

between these three notions of symmetry, as well as some

examples, are illustrated in figure 1.

We now focus on evolutionary processes in graph-structured

populations.
3.1. The Moran process
Consider the Moran process on a graph, D: Lieberman et al. [3]

show that if D is regular, then the fixation probability of a
randomly placed mutant is given by equation (1.1), the fixation

probability of a single mutant in the classical Moran process.

This result (known as the Isothermal Theorem) proves that, in

particular, this fixation probability does not depend on the

initial location of the mutant. (We refer to this latter statement as

the ‘weak’ version of the Isothermal Theorem.) Our definition

of homogeneity in the context of evolutionary processes (defi-

nition 2.4) is related to this independence of initial location

and has nothing to do with fixation probabilities in the classical

Moran process. Naturally, the Isothermal Theorem raises the

question of whether or not this location independence extends

to absorption times (average number of steps until an absorbing

state is reached) when D is regular.

Suppose that D is the Frucht graph of figure 2. The Frucht

graph is an undirected, unweighted, regular (but not vertex-

transitive) graph of size 12 and degree 3 [24]. The fixation

probabilities and absorption times of a single mutant in a

wild-type population are given in figure 3 as a function of

the initial location of the mutant. The fixation probabilities

do not depend on the initial location of the mutant, as pre-

dicted by the Isothermal Theorem, but the absorption times

do depend on where the mutant arises. In fact, the absorp-

tion time is distinct for each different initial location of the

mutant. The details of these calculations are in appendix

C. Therefore, even the weak form of the Isothermal Theorem

fails to hold for absorption times. In particular, the Moran pro-

cess on a regular graph need not define a homogeneous

evolutionary process.

This set-up involving two types of players, frequency-

independent interactions, and a population structure defined

by a single graph, can be generalized considerably:
3.2. Symmetric games
A powerful version of evolutionary graph theory uses two
graphs to define relationships between the players: an

interaction graph, E, and a dispersal graph, D [25–29]. These

graphs both have non-negative weights. As an example of

how these two graphs are used to define an evolutionary pro-

cess, we consider a birth–death process based on two-player,

symmetric interactions:
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Example 3.1. Consider a symmetric matrix game with n
strategies, A1,. . ., An, and pay-off matrix

A1 A2 � � � An

A1

A2

..

.

An

a11 a12 � � � a1n
a21 a22 � � � a2n

..

. ..
. . .

. ..
.

an1 an2 � � � ann

0
BBB@

1
CCCA : ð3:1Þ

If ðs1, . . . , sNÞ [ f1, . . . , ngN , then the total pay-off to

player i is

uiðs1, . . . , sNÞ :¼
XN

j¼1

Eijasisj : ð3:2Þ

If b � 0 is the intensity of selection, then the fitness of

player i is

fbðuiðs1, . . . , sNÞÞ :¼ expfbuiðs1, . . . , sNÞg: ð3:3Þ

In each time step, a player (say, player i) is chosen for

reproduction with probability proportional to fitness. With

probability 1 � 0, the offspring of this player adopts a

novel strategy uniformly at random from fA1, . . ., Ang; with

probability 1 2 1, the offspring inherits the strategy of the

parent. Next, another member of the population is chosen

for death, with the probability of player j dying proportional

to Dij: The offspring then fills the vacancy created by the

deceased neighbour, and the process repeats. E is called the

‘interaction’ graph since it governs pay-offs based on encoun-

ters, and D is called the ‘dispersal’ graph since it is involved

in strategy propagation.
3.2.1. Heterogeneous evolutionary games
We now explore the ways in which population structure and

strategy mutations can introduce heterogeneity into an evol-

utionary process. Consider the Snowdrift Game with strategies

C (cooperate) and D (defect) and pay-off matrix

C D
C
D

5 3
7 0

� �
: ð3:4Þ
Suppose that both E and D are the (undirected,

unweighted) Frucht graph (figure 2). If the selection intensity

is b ¼ 1, then the fixation probability of a single cooperator in

a population of defectors in a death–birth process depends

on the initial location of the cooperator (figure 4). Since the

Frucht graph is regular (but not vertex-transitive), this example

demonstrates that the Isothermal Theorem does not extend to

frequency-dependent games. In particular, symmetric games

on regular graphs can be heterogeneous, and regularity of

the graph does not imply that the ‘fixation probability of a ran-

domly placed mutant’ is well defined. This dependence of the

fixation probability on the initial location of the mutant is not

specific to the Snowdrift Game or the death–birth update

rule; one can show that it also holds for the Donation Game

in place of the Snowdrift Game or the birth–death rule in

place of the death–birth rule, for instance.

With b ¼ 1, the selection intensity is fairly strong, which

raises the question of whether or not these fixation probabilities

still differ if selection is weak. In fact, our observation for this

value of b is not an anomaly: suppose that s and s0 are states

(indicating some non-monomorphic initial configuration of

strategies), and that si and sj are monomorphic absorbing

states (indicating states in which each player uses the same

strategy). Let rs,i denote the probability that state i is reached

after starting in state s, and let ts denote the average number

of updates required for the process to reach an absorbing

state after starting in state s: Each of rs,i and ts may be

viewed as functions of b, and we have the following result:

Proposition 3.2. Each of the equalities

rs,i ¼ rs0 ,j ð3:5aÞ

and

ts ¼ ts0 ð3:5bÞ

holds for either (i) every b � 0 or (ii) at most finitely many b � 0:

Thus, if one of these equalities fails to hold for even a single value of
b, then it fails to hold for all sufficiently small b . 0.

For a proof of proposition 3.2, see appendix A. This result

allows one to conclude that if there are differences in fixation

probabilities or times for large values of b (where these
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differences are more apparent), then there are corresponding

differences in the limit of weak selection.

Even if a symmetric game is played in a well-mixed

population, heterogeneous strategy mutations may result in

heterogeneity of the evolutionary process. Consider, for

example, the pairwise comparison process [17,18] based on

the symmetric Snowdrift Game, (3.4), in a well-mixed

population with N ¼ 3 players. We model this well-mixed

population using a complete, undirected, unweighted graph

of size 3 for each of E and D (figure 5). For i [ {1, 2, 3}, let

1i [ ½0, 1� be the strategy-mutation (‘exploration’) rate for

player i. These strategy mutations are incorporated into the

process as follows: at each time step, a focal player (player

i) is chosen uniformly at random to update his or her strategy.

A neighbour (one of the two remaining players) is then

chosen randomly as a model player. If b is the selection inten-

sity, pf is the pay-off of the focal player, and pm is the pay-off

of the model player, then the focal player imitates the strategy

of the model player with probability

1� 1i

1þ e�bðpm�pfÞ
: ð3:6Þ

and chooses to retain his or her strategy with probability

1� 1i

1þ e�bðpf�pmÞ
: ð3:7Þ

With probability 1i, the focal player adopts a new strategy

uniformly at random from the set fC, Dg, irrespective of the

current strategy. Provided at least one of 11, 12 and 13 is posi-

tive, the Markov chain on fC, Dg3 defined by this process is

irreducible and has a unique stationary distribution, m. Let

11 ¼ 0.01 and 12 ¼ 13 ¼ 0. Since the mutation rate depends

on the location, i, the strategy mutations are heterogeneous. If

the selection intensity is b ¼ 1, then a direct calculation (to

four significant figures) gives

m(C, D, D) ¼ 0:005812 = 0:0004897 ¼ m(D, C, D), ð3:8Þ

where m(C, D, D) (resp. m(D, C, D)) is the mass m places on the

state (C, D, D) (resp. (D, C, D)). Therefore, by proposition 2.3
and definition 2.4, this evolutionary process is not homo-

geneous, despite the fact that the population is well mixed

and the game is symmetric. This result is not particularly sur-

prising, but it clearly illustrates the effects of heterogeneous

strategy-mutation rates on symmetries of the overall process.

3.2.2. Homogeneous evolutionary games
The behaviour of an evolutionary process sometimes depends

heavily on the choice of update rule. As a result, a particular

problem in evolutionary game theory is often stated (such as

the evolution of cooperation) and subsequently explored separ-

ately for a number of different update rules. For example,

consider the Donation Game (an instance of the Prisoner’s

Dilemma) in which cooperators pay a cost, c, in order to pro-

vide the opponent with a benefit, b. Defectors pay no costs

and provide no benefits. On a large regular graph of degree

k, Ohtsuki et al. [10] show that selection favours cooperation

in the death–birth process if b/c . k, but selection never
favours cooperation in the birth–death process. Therefore,

the approach of exploring a problem in evolutionary game

theory separately for several update rules has its merits. On

the other hand, one might expect that high degrees of sym-

metry in the population structure, pay-offs and strategy

mutations induce symmetries in an evolutionary game for a

variety of update rules.
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Before stating our main theorem for symmetric matrix

games, we must first understand the basic components that

make up an evolutionary game. Evolutionary games gener-

ally have two timescales: interactions and updates. In each

(discrete) time step, every player in the population has a strat-

egy, and this strategy profile determines the state of the

population. Neighbours then interact (quickly) and receive

pay-offs based on these strategies and the game(s) being

played. The total pay-off to a player determines his or her fit-

ness. In the update step of the process, the strategies of the

players are updated stochastically based on the fitness profile

of the population, the population structure and the strategy

mutations. Popular examples of evolutionary update rules

are birth–death, death–birth, imitation, pairwise comparison

and Wright–Fisher. Since interactions happen much more

quickly than updates, there is a separation of timescales.

The most difficult part of an evolutionary game to describe

in generality is the update step. If S is the strategy set of the game

and N is the population size, then a state of the population is

simply an element of SN, i.e. a specification of a strategy for

each member of the population. Implicit in the state space of

the population being SN is an enumeration of the players. That

is, if s [ SN is an N-tuple of strategies, then this profile indicates

that player i uses strategy si: For our purposes, we need only one

property to be satisfied by the update rule of the process, which

we state here as an axiom of an evolutionary game:

Axiom. The update rule of an evolutionary game is

independent of the enumeration of the players.

Remark 3.3. As an example of what this axiom means, consider

a death–birth process in which a player is selected uniformly at

random for death and is replaced by the offspring of a neigh-

bour. A neighbour is chosen for reproduction with probability

proportional to fitness, and the offspring of this neighbour

inherits the strategy of the parent with probability 1 2 1 and

takes on a novel strategy with probability 1 for some 1 . 0. If

all else is held constant (fitness, mutations, etc.), the fact that a

player is referred to as the player at location i is irrelevant: let

SN be the symmetric group on N letters. If p [ SN is a permu-

tation that relabels the locations of the players by sending i to

p21(i), then the strategy of the player at location p21(i) after

the relabelling is the same as the strategy of the player at location

i before the relabelling. In particular, if s [ SN is the state of the

population before the relabelling, then pðsÞ [ SN is the state of

the population after the relabelling, where pðsÞi ¼ spðiÞ: The

probability that player p21(i) is selected for death and replaced

by the offspring of playerp21( j) after the relabelling is the same

as the probability that player i is selected for death and replaced

by the offspring of player j before the relabelling. Thus, for this

death–birth process, the probability of transitioning between

states s and s0 before the relabelling is the same as the probability

of transitioning between states pðsÞ and pðs0Þ after the relabel-

ling. In this sense, a relabelling of the players induces an

automorphism of the Markov chain defined by the process (in

the sense of definition 2.1), and the axiom states that this

phenomenon should hold for any evolutionary update rule.

In order to state our main result for symmetric games, we

note that an evolutionary graph, G, in this setting consists of

two graphs: E and D: We say that G is regular if both E and

D are regular. For vertex-transitivity of G (resp. symmetry

of G), we require slightly more than each E and D being
vertex-transitive (resp. symmetric); we require them to be sim-
ultaneously vertex-transitive (resp. symmetric). First of all, we

need to define what an automorphism of G is. For p [ SN , let

pE be the graph defined by ðpEÞij :¼ EpðiÞpðjÞ for each i and j.
Using this action, we define an automorphism of an evolution-

ary graph as follows:

Definition 3.4 (Automorphism of an evolutionary graph).

An automorphism of G ¼ ðE, DÞ is an action, p [ SN , such

that pE ¼ E and pD ¼ D: We denote by Aut(G) the set of

automorphisms of G.

We now have the definitions of vertex-transitive and

symmetric evolutionary graphs:

Definition 3.5. G ¼ ðE, DÞ is vertex-transitive if for each i and

j, there exists p [ Aut(GÞ such that p(i) ¼ j.

Definition 3.6. G ¼ ðE, DÞ is symmetric if E ¼ D and E is a

symmetric graph.

Finally, using the notion of an automorphism of G, we

have our main result:

Theorem 3.7. Consider an evolutionary matrix game on a graph,

G ¼ ðE, DÞ, with symmetric pay-offs and homogeneous strategy
mutations. If p [ Aut(GÞ, then the states with a single mutant
at vertex i and p(i), respectively, in an otherwise-monomorphic
population, are evolutionarily equivalent. That is, in the notation
of definition 2.4, the states sðs0 ,iÞ,s and sðs0 ,pðiÞÞ,s are evolutionarily
equivalent for each s, s0 [ S:

The proof of theorem 3.7 may be found in appendix

B. The proof relies on the observation that the hypotheses

of the theorem imply that any two states consisting of a

single A-player in a population of B-players can be obtained

from one another by relabelling the players. Thus, in light

of the argument in Remark (3.3), relabelling the players

induces an automorphism on the Markov chain defined by

the evolutionary game. Since any relabelling of the players

leaves the monomorphic states fixed, there is an evolutionary

equivalence between any two such states in the sense of defi-

nition 2.2. Note that this theorem makes no restrictions on the

selection strength or the update rule.

Corollary 3.8. An evolutionary game on a vertex-transitive graph
with symmetric pay-offs and homogeneous strategy mutations is
itself homogeneous.

Remark 3.9. By theorem 3.7, two mutants appearing on a

graph might define evolutionarily equivalent states even if

the graph is not vertex-transitive. For example, the Tietze

graph [30], like the Frucht graph, has 12 vertices and is regu-

lar but not vertex-transitive. However, unlike the Frucht

graph, the Tietze graph has some non-trivial automorphisms.

By theorem 3.7, any two vertices in the Tietze graph that are

related by an automorphism have the property that the two

corresponding single-mutant states are indistinguishable.

An example of two evolutionarily equivalent states on this

graph is given in figure 6. In appendix C, for the Snowdrift

Game with death–birth updating, we give the fixation prob-

abilities and absorption times for all configurations of a single

cooperator among defectors, which further illustrates the

effects of graph symmetries on an evolutionary process.
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Figure 6. The Tietze graph with two different initial configurations. Like the Frucht graph, the Tietze graph is regular of degree k ¼ 3 (but not vertex-transitive)
with N ¼ 12 vertices. Unlike the Frucht graph, the Tietze graph possesses non-trivial automorphisms. In (a), a cooperator is at vertex 6 and all other players are
defectors. In (b), a cooperator is at vertex 11 and, again, the other players are defectors. Despite the fact that the Tietze graph is not vertex-transitive, the single-
mutant states defined by (a) and (b) are evolutionarily equivalent. Graphically, this result is clear since one obtains (a) from (b) by flipping the graph (i.e. applying
an automorphism), and such a difference between the two states does not affect fixation probabilities, times, etc. However, it is not true that any two single-mutant
states are evolutionarily equivalent. For example, in the Snowdrift Game with b ¼ 0.1 and death – birth updating, the single-mutant state with a cooperator at
vertex 1 (resp. vertex 6) has a fixation probability of 0.3777 (resp. 0.4186). Therefore, the two single-mutant states with cooperators at vertices 1 and 6, respectively,
are not evolutionarily equivalent, so this process is not homogeneous. (Online version in colour.)
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Remark 3.10. For a given population size, N, and network

degree, k, there may be many vertex-transitive graphs of size

N with degree k. For each such graph, the fixation probability

of a randomly occurring mutant is independent of where on

the graph it occurs by theorem 3.7. However, this fixation prob-

ability depends on more than just N and k; it also depends on

the configuration of the network. For example, figure 7 gives

two vertex-transitive graphs of size N ¼ 6 and degree k ¼ 3.

As an illustration, consider the Snowdrift Game (with pay-off

matrix (3.4)) on these graphs with birth–death updating. If

the selection intensity is b ¼ 0.1, then the fixation probability

of a single cooperator in a population of defectors is 0.1632 in

(A) and 0.1722 in (B) (both rounded to four significant figures).

These two fixation probabilities differ for all but finitely many

b � 0 by proposition (3.2).

Until this point, our focus has been on states consisting of

just a single mutant in an otherwise-monomorphic population.

One could also inquire as to when any two states consisting of

two (or three, four, etc.) mutants are evolutionarily equivalent.

It turns out that that the answer to this question is simple: in

general, the population must be well mixed in order for any

two m-mutant states to be evolutionarily equivalent if m . 1.

The proof that this equivalence holds in well-mixed popu-

lations follows from the argument given to establish theorem

3.7 (see appendix B). On the other hand, if the population

is not well mixed, then one can find a pair of states with

the first state consisting of two mutants on neighbouring

vertices and the second state consisting of two mutants on

non-neighbouring vertices. In general, the mutant type will

have different fixation probabilities in these two states. For

example, in the Snowdrift Game on the graph of figure 7b, con-

sider the two states, s and s0, where s consists of cooperators on

vertices 1 and 2 only and s0 consists of cooperators on vertices 1

and 3 only. If b ¼ 0.1, then the fixation probability of coopera-

tors under death–birth updating when starting at s (resp. s0) is
0.3126 (resp. 0.2607). Therefore, despite the arc-transitivity of

this graph, it is not true that any two states consisting of exactly

two mutants are evolutionarily equivalent. Only in well-mixed

populations are we guaranteed that any two such states

are equivalent.

3.3. Asymmetric games
One particular form of pay-off asymmetry appearing in evol-

utionary game theory is ecological asymmetry [21]. Ecological

asymmetry can arise as a result of an uneven distribution

of resources. For example, in the Donation Game, a coopera-

tor at location i might provide a benefit to his or her opponent

based on some resource derived from the environment. Both

this resource and the cost of donating it could depend on i,
which means that different players have different pay-off

matrices. These pay-off matrices depend on both the location

of the focal player and the locations of the opponents. Thus,

pay-offs for a player at location i against an opponent at

location j in an n-strategy ‘bimatrix’ game [21,31,32] are

given by the asymmetric pay-off matrix

Mij ¼

A1 A2 . . . An

A1

A2

..

.

An

aij
11, a ji

11 aij
12, a ji

21 . . . aij
1n, a ji

n1

aij
21, a ji

12 aij
22, a ji

22 . . . aij
2n, a ji

n2

..

. ..
. . .

. ..
.

aij
n1, a ji

1n aij
n2, a ji

2n . . . aij
nn, a ji

nn

0
BBBB@

1
CCCCA
: ð3:9Þ

Similar to equation (3.2), the total pay-off to player i for

strategy profile ðs1, . . . , sNÞ [ f1, . . . , ngN is

uiðs1, . . . , sNÞ :¼
XN

j¼1

Eijaij
sisj
: ð3:10Þ

We saw in §3.2 an example of a heterogeneous evolutionary

game in a well-mixed population with symmetric pay-offs.

Rather than looking at a symmetric game with heterogeneous
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Figure 7. Undirected, unweighted, vertex-transitive graphs of degree k ¼ 3 with N ¼ 6 vertices; (b) is a symmetric (arc-transitive) graph and (a) is not. (Online
version in colour.)
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strategy mutations, we now look at an asymmetric game with

homogeneous strategy mutations. Consider the ecologically

asymmetric Donation Game on the graph of figure 5 (both E

and D) with a death–birth update rule. In this asymmetric

Donation Game, a cooperator at location i donates bi at a cost

of ci; defectors donate nothing and incur no costs. If b ¼ 0.1,

b1 ¼ b2 ¼ b3 ¼ 4, c1 ¼ 1 and c2 ¼ c3 ¼ 3, then the fixation prob-

ability of a single cooperator at location 1 (figure 5a) is 0.2232,

while the fixation probability of a single cooperator at location 2

(figure 5b) is 0.1842 (both rounded to four significant figures).

Therefore, even in a well-mixed population with homogeneous

strategy mutations (none, in this case), asymmetric pay-offs can

prevent an evolutionary game from being homogeneous.

Asymmetric matrix games in large populations reduce to

symmetric games if selection is weak [21]. In the limit of weak

selection, McAvoy & Hauert [33] establish a selection condition

for asymmetric matrix games in finite graph-structured popu-

lations that extends the condition (for symmetric games) of

Tarnita et al. [34]:

Theorem 3.11 (McAvoy & Hauert [33]). There exists a set of
structure coefficients, {s

ij
1, s

ij
2, s

ij
3}i,j, independent of pay-offs,

such that weak selection favours strategy r [ f1, . . . , ng if and
only if

XN

i,j¼1

Eij(s
ij
1(aij

rr � aij
��)þ s

ij
2(aij

r� � aij
�r)þ s

ij
3(aij

r� � aij)) . 0,

ð3:11Þ

where aij
�� ¼ ð1=nÞ

Pn
s¼1 aij

ss, aij
r� ¼ ð1=nÞ

Pn
s¼1 aij

rs, aij
�r ¼ ð1=nÞPn

s¼1 aij
sr and aij ¼ ð1=n2Þ

Pn
s,t¼1 aij

st:

Strictly speaking, theorem 3.11 is established for E and D

undirected, unweighted and satisfying E ¼ D: However, the

proof of theorem 3.11 extends immediately to the case with E

and D directed, weighted and possibly distinct, so we make

no restrictive assumptions on E and D in the statement of

this theorem here. In the simpler case n ¼ 2, condition 3.11

takes the form

XN

i,j¼1

Eij(t
ij
1(aij

11 � aij
22)þ t

ij
2(aij

12 � aij
21)) . 0, ð3:12Þ
for some collection {t
ij
1, t

ij
2}i,j: For the death–birth process with

E and D the graph of figure 7a, we calculate exact values for all

of these structure coefficients (see appendix C). In particular, we

find that t12
1 ¼ 707 905=9 315 552 and t14

1 ¼ 16 291=194 074, so

vertex-transitivity does not guarantee that the structure coeffi-

cients are independent of i and j. For the same process on the

graph in figure 7b, we find that t
ij
1 ¼ t

ij
2 ¼ 2189=27 728 for

each i and j, so these coefficients do not depend on i and j. (In

general, even for well-mixed populations, t1 and t2 need not

be the same; for the same process studied here but on the

graph of figure 5, t
ij
1 ¼ 33=1616 and t

ij
2 ¼ 99=1616 for each i

and j.) This lack of dependence on i and j is due to the fact

that the graph of figure 7b is symmetric, and it turns out to be

a special case of a more general result:

Theorem 3.12. Suppose that an asymmetric matrix game with
homogeneous strategy mutations is played on an evolutionary
graph, G ¼ ðE, DÞ: For each p [ Aut(GÞ, k [ f1, 2, 3g and
i, j [ f1, . . . , Ng,

s
ij
k ¼ s

pðiÞpðjÞ
k : ð3:13Þ

The proof of theorem 3.1 may be found in appendix

B. The following corollary is an immediate consequence of

theorem 3.12:

Corollary 3.13. If E ¼ D and E is a symmetric graph (i.e. G is a
symmetric evolutionary graph), then the structure coefficients are
independent of i and j.

Since symmetric graphs are also regular, we have:

Corollary 3.14. If E ¼ D and E is a symmetric graph (i.e. G is a
symmetric evolutionary graph), then strategy r is favoured in the
limit of weak selection if and only if

s1ðarr � �a��Þ þ s2ð�ar� � �a�rÞ þ s3ð�ar� � �aÞ . 0, ð3:14Þ

where M ¼ ðastÞ1�s,t�n is the spatial average of the matrices M ij,
i.e.

M :¼ 1

kN

XN

i,j¼1

EijM
ij, ð3:15Þ

where k is the degree of the graph, G.
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Remark 3.15. Equation (3.14) is just the selection condition of

Tarnita et al. [34] for symmetric matrix games.

It follows from corollary 3.14 that asymmetric matrix

games on arc-transitive (symmetric) graphs can be reduced

to symmetric games in the limit of weak selection.
publishing.org
J.R.Soc.Interface
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4. Discussion
Evolutionary games in finite populations may be split into

two classes: those with absorbing states (‘absorbing pro-

cesses’) and those without absorbing states. In absorbing

processes, the notion of fixation probability has played

a crucial role in quantifying evolutionary outcomes, but

fixation probabilities are far from the only measure of evol-

utionary success. Much of the literature on evolutionary

games with absorbing states has neglected other metrics

such as the time to absorption or the time to fixation con-

ditioned on fixation occurring (‘conditional fixation time’).

This bias towards fixation probabilities has resulted in certain

evolutionary processes appearing more symmetric than they

actually are. We have illustrated this phenomenon using

the frequency-independent Moran process on graphs: the

Isothermal Theorem guarantees that, on regular graphs, a

single mutant cannot distinguish between initial locations

in the graph if the only metric under consideration is the

probability of fixation. However, certain initial placements

of the mutant may result in faster absorption times than

others if the graph is regular but not vertex-transitive, and

the Frucht graph exemplifies this claim. The same phenom-

enon also holds for conditional fixation times.

The Frucht graph, which is a regular structure with no

non-trivial symmetries (there are no two vertices from

which the graph ‘looks’ the same), also allowed us to show

that the Isothermal Theorem of Lieberman et al. [3] does

not extend to frequency-dependent evolutionary games.

That is, on regular graphs, the probability of fixation of a

single mutant may depend on the initial location of the

mutant if fitness is frequency-dependent. This claim was

illustrated via a death–birth process on the Frucht graph, in

which the underlying evolutionary game was a Snowdrift

Game. For b ¼ 1 (strong selection), the fixation probability

of a cooperator at vertex 11 was nearly 14% larger than the

fixation probability of a cooperator at vertex 4. Moreover,

we showed that if the fixation probabilities of two initial con-

figurations differ for a single value of b, then they are the

same for at most finitely many values of b. In particular,

these fixation probabilities differ for almost every selection

strength, so our observation for b ¼ 1 was not an anomaly.

Similar phenomena are observed for frequency-dependent

birth–death processes on the Frucht graph, for example,

and even for frequency-dependent games with the ‘equal

gains from switching’ property, such as the Donation Game.

Theorem 3.7 is an analogue of the Isothermal Theorem

that applies to a broader class of games and update rules.

The Isothermal Theorem is remarkable since regularity of the

population structure implies that the fixation probabilities are

not only independent of the initial location of the mutant, they

are the same as those of the classical Moran process. Our treat-

ment of homogeneous evolutionary processes is focused on

when different single-mutant states are equivalent, not when

they are equivalent to the corresponding states in the classical
Moran process. Even if the fixation probability of a single

mutant does not depend on the mutant’s location, other factors

(such as birth and death rates) may affect whether or not this

fixation probability is the same as the one in a well-mixed

population [35,36]. Remark 3.10, which compares the fixation

probabilities for the Snowdrift Game on two different vertex-

transitive graphs of the same size and degree, shows that the

fixation probability of a single mutant—even if independent

of the mutant’s location—can depend on the configuration of

the graph. In light of these results, the symmetry phenomena

for the Moran process guaranteed by the Isothermal Theorem

do not generalize and should be thought of as properties

of the frequency-independent Moran process and not of

evolutionary processes in general.

Theorem 3.7, and indeed most of our discussion of hom-

ogeneity, focused on symmetries of states consisting of just a

single mutant. In many cases, mutation rates are sufficiently

small that a mutant type, when it appears, will either fixate

or go extinct before another mutation occurs [22,23]. Thus,

with small mutation rates, one need not consider symmetries

of states consisting of more than one mutant. However, if

mutation rates are larger, then these multi-mutant states

become relevant. Our definition of evolutionary equivalence

(definition 2.2) applies to these states, but, as expected, the

symmetry conditions on the population structure guaranteeing

any two multi-mutant states are equivalent are much stronger.

In fact, as we argued in §3.2.2, the population must, in general,

be well-mixed even for any pair of states consisting of two
mutants to be evolutionarily equivalent. Consequently, our

focus on single-mutant states allowed us to simultaneously

treat biologically relevant configurations (assuming mutation

rates are small) and obtain non-trivial conditions guaranteeing

homogeneity of an evolutionary process.

The counterexamples presented here could be defined on

sufficiently small population structures, and thus all calcu-

lations (fixation probabilities, structure coefficients, etc.) are

exact. However, these quantities need not always be explicitly

calculated in order to prove useful: in our study of asym-

metric games, we concluded that an asymmetric game on

an arc-transitive (symmetric) graph can be reduced to a sym-

metric game in the limit of weak selection. (The graph of

figure 7a demonstrates that vertex-transitivity alone does

not guarantee that an asymmetric game can be reduced to

a symmetric game in this way.) This result was obtained by

examining the qualitative nature of the structure coefficients

in the selection condition 3.11, but it did not require explicit

calculations of these coefficients. Therefore, despite the diffi-

culty in actually calculating these coefficients, they can still

be used to glean qualitative insight into the dynamics of

evolutionary games.

On large random regular graphs, the dynamics of an

asymmetric matrix game are equivalent to those of a certain

symmetric game obtained as a ‘spatial average’ of the individual

asymmetric games [21]. Corollary 3.14 is highly reminiscent

of this type of reduction to a symmetric game. For large

populations, this result is obtained by observing that large

random regular graphs approximate a Bethe lattice [4] and

then using the pair approximation method [37] to describe the

dynamics. The pair approximation method is exact for a Bethe

lattice [10], so, from this perspective, corollary 3.14 is not that

surprising since Bethe lattices are arc-transitive. Of course, a

Bethe lattice has infinitely many vertices, and corollary 3.14 is

a finite-population analogue of this result.
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The term ‘homogeneous’ is used in the literature to refer to

several different kinds of population structures. This term has

been used to describe well-mixed populations [38,39]. For

graph-structured populations, ‘homogeneous graph’ some-

times refers to vertex-transitive graphs [26,40]. In algebraic

graph theory, however, the term ‘homogeneous graph’ implies

a much higher degree of symmetry than does vertex-transitivity

[41]. ‘Homogeneous’ has also been used to describe graphs

in which each vertex has the same number of neighbours,

i.e. regular graphs [42–44]. In between regular and vertex-

transitive graphs, ‘homogeneous graph’ has also referred to

large, random regular graphs [45]. As we noted, large, random

regular graphs approximate Bethe lattices (which are infinite,

arc-transitive graphs), but these approximations need not

themselves be even vertex-transitive.

In many of the various uses of the term ‘homogeneous’,

a common aim is to study the fixation probability of a

randomly placed mutant. Our definition of homogeneous
evolutionary game formally captures what it means for two

single-mutant states to be equivalent, and our explorations

of the Frucht graph (in conjunction with theorem 3.7) show

that vertex-transitivity, and not regularity, is what the term

‘homogeneous’ in graph-structured populations should

indicate. We also demonstrated the effects of pay-offs

and strategy mutations on the behaviour of these single-

mutant states and concluded that the term homogeneous

should apply to the entire process rather than to just the

population structure. The homogeneity (theorem 3.7) and

symmetry (theorem 3.12) results given here do not depend

on the update rule, in contrast to results such as the sym-

metry of conditional fixation times in the Moran process of

Taylor et al. [46] or the Isothermal Theorem of Lieberman

et al. [3]. We now know that games on regular graphs

are not homogeneous, and we know precisely under which

conditions the ‘fixation probability of a randomly placed

mutant’ is well defined. These results provide a firmer foun-

dation for evolutionary game theory in finite populations and

a basis for defining the evolutionary success of the strategies

of a game.
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Appendix A. Fixation and absorption
Using a method inspired by a technique of Press & Dyson

[47], we derive explicit expressions (in terms of the transi-

tion matrix) for fixation probabilities and absorption times.

Subsequently, we prove a simple lemma that says that

Markov chain symmetries preserve the set of a chain’s

stationary distributions.

A.1. Fixation probabilities
Suppose that {Xn}n�0 is a discrete-time Markov chain on a

finite state space, S, that has exactly K (� 1) absorbing

states, s1, . . . , sK: Moreover, suppose that the non-absorbing
states are transient [22]. The transition matrix for this chain,

T, may be written as

T ¼ IK 0
S1 S2

� �
, ðA 1Þ

where IK is the K � K identity matrix and 0 is the matrix of

zeros (in this case, its dimension is K � ðjSj � KÞ, where jSj
is the number of states in S). This chain will eventually

end up in one of the K absorbing states, and we denote by

rs,i the probability that state si is reached when the chain

starts off in states s [ S: Let P be the jSj � K matrix of fixation

probabilities, i.e. Ps,i ¼ rs,i for each s and i. This matrix satisfies

TP ¼ P, ðA 2Þ

which is just the matrix form of the recurrence relation satis-

fied by fixation probabilities (obtained from a ‘first-step’

analysis of the Markov chain). Consider the matrix,

M ¼MðTÞ, defined by

M :¼ � IK 0
S1 S2 � IjSj�K

� �
: ðA 3Þ

Since r j,i ¼ di,j for i, j [ f1, . . . , Kg, we see that

�MP ¼ TP� 0 0
0 IjSj�K

� �
P ¼ IK

0

� �
: ðA 4Þ

Moreover, the matrix M must have full rank since the

non-absorbing states are transient; that is,

detM ¼ (�1)jSj det (S2 � IjSj�K) = 0: ðA 5Þ

Therefore, by Cramer’s rule,

rs,i ¼ �
detM(s, ei)

detM , ðA 6Þ

where the notation Mðs, eiÞ means the matrix obtained by

replacing the column corresponding to state s with the ith
standard basis vector, ei. Thus, equation (A 6) gives explicit

formulae for the fixation probabilities.
A.2. Absorption times
Let t be the jSj-vector indexed by S whose entry ts is

the expected time until the process fixates in one of the

absorbing states when started in state s [ S: This vector

satisfies ti ¼ 0 for i ¼ 1,. . ., K as well as the recurrence relation

Tðtþ 1Þ ¼ tþ
PK

i¼1 ei: Therefore,

Mt ¼
XjSj

j¼Kþ1

ej, ðA 7Þ

so, by Cramer’s rule,

ts ¼
XjSj

j¼Kþ1

detMðs, ejÞ
detM : ðA 8Þ

We now turn to Markov chains defined by evolutionary

games. Before proving proposition 3.2, we make two

assumptions:

(i) The pay-off-to-fitness mapping is of the form

fbðpÞ ¼ expfbpg, fbðpÞ ¼ bp, fbðpÞ ¼ 1þ bp or

fbðpÞ ¼ 1� bþ bp, where b denotes the intensity of

selection and p denotes pay-off. (Of course, fitness

can be defined in one of the latter three ways only if

the pay-offs are such that fbðpÞ � 0.)
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(ii) The update probabilities are rational functions of the

fitness profile of the population.

Remark A.1. Assumptions (i) and (ii) are not at all restrictive in

evolutionary game theory. Any process in which selection

occurs with probability proportional to fitness will satisfy

this rationality condition, and indeed all of the standard evol-

utionary processes (birth–death, death–birth, imitation,

pairwise comparison, Wright–Fisher, etc.) have this property.

The four pay-off-to-fitness mappings are also standard.

With assumptions (i) and (ii) in mind, we have:

Proposition (3.2). Each of the equalities

rs,i ¼ rs0 ,j ðA 9aÞ

and

ts ¼ ts0 ðA 9bÞ

holds for either (i) every b � 0 or (ii) at most finitely many b � 0.
Thus, if one of these equalities fails to hold for even a single value of
b, then it fails to hold for all sufficiently small b.0.

Proof. Suppose that s, s0 [ S and that si and sj are absorbing

states. By equation (A 6),

rs,i ¼ rs0 ,j ,
detMðs, eiÞ

detM ¼
detMðs0, ejÞ

detM
,detMðs, eiÞ ¼ detMðs0, ejÞ:

ðA 10Þ

Similarly, by equation (A 8),

ts ¼ ts0 ,
XjSj

j¼Kþ1

detMðs, ejÞ
detM ¼

XjSj
j¼Kþ1

detMðs0, ejÞ
detM

,
XjSj

j¼Kþ1

detMðs, ejÞ ¼
XjSj

j¼Kþ1

detMðs0, ejÞ:

ðA 11Þ

Assuming (i) and (ii), equations (A 10) and (A 11) are equiv-

alent to polynomial equations in either b or expfbg. Either way,

since non-zero polynomial equations have at most finitely many

solutions, we see that the equalities rs,i ¼ rs0 ,j and ts ¼ ts0 each

hold for either (i) every b or (ii) finitely many values of b.

Thus, if rs,i = rs0 ,j (resp. ts = ts0 ) for even a single selection

intensity, then these fixation probabilities (resp. absorption

times) differ for almost every selection intensity. In particular,

they differ for all sufficiently small b. B
Appendix B. Symmetry and evolutionary
equivalence
B.1. Symmetries of graphs
Here we recall some standard notions of symmetry for graphs.

Although we treat directed, weighted graphs in general,

throughout the main text we give several examples of undirected

and unweighted graphs, which are defined as follows:

Definition B.1 (Undirected graph). A graph, D, is undirected

if Dij ¼ D ji for each i and j.

Definition B.2 (Unweighted graph). A graph, D, is

unweighted if Dij [ f0, 1g for each i and j.
Since our goal is to discuss symmetry in the context of

evolutionary processes, we first describe several notions of

symmetry for graphs. In a graph, D, the indegree and outde-
gree of vertex i are

PN
j¼1 D ji and

PN
j¼1 Dij, respectively.

With these definitions in mind, we recall the definition of a

regular graph:

Definition B.3 (Regular graph). D is regular if and only if

there exists k [ R such that

XN

j¼1

D ji ¼
XN

j¼1

Dij ¼ k, ðB 1Þ

for each i. If D is regular, then k is called the degree of D:

Let SN denote the symmetric group on N letters; that is,

SN is the set of all bijections p : f1, . . . , Ng ! f1, . . . , Ng:
Each p [ SN extends to a relabelling action on the set of

directed, weighted graphs defined by ðpDÞij ¼ DpðiÞpðjÞ: In

other words, any relabelling of the set of vertices results in

a corresponding relabelling of the graph. The automorphism
group of D, written AutðDÞ, is the set of all p [ SN such

that pD ¼ D: We now recall a condition slightly stronger

than regularity known as vertex-transitivity:

Definition B.4 (Vertex-transitive graph). D is vertex-

transitive if for each i and j, there exists p [ Aut(DÞ such

that pðiÞ ¼ j:

Informally, a graph is vertex-transitive if and only if

it ‘looks the same’ from every vertex. If a graph is vertex-

transitive, then it is necessarily regular. The strongest form of

symmetry for graphs that we consider here is the following:

Definition B.5 (Symmetric graph). D is symmetric (or arc-

transitive) if for each i,j with Dij = 0 and i0, j0 with

Di0j0 = 0, there exists p [ Aut(DÞ such that pðiÞ ¼ i0 and

pðjÞ ¼ j0:

A graph is symmetric if it ‘looks the same’ from any two

directed edges. Arc-transitivity is typically defined for

unweighted graphs, i.e. graphs satisfying D [ f0, 1gN�N :

For the more general class of weighted graphs, we require

that SN act transitively on the set of edges of D, where

‘edge’ means a pair (i, j ) with Dij = 0. Thus, all of the

edges in a symmetric, weighted graph have the same

weight: otherwise, if (i, j ) and (i0, j0) are edges but

Dij = Di0j0 , then there would exist no permutation, p, send-

ing i to i0, j to j0, and preserving the weights of the graph.

Therefore, since the weights of a symmetric graph take one

of two values (0 or else the only non-zero weight), such a

graph is essentially unweighted.

B.2. Symmetries of evolutionary processes
In §2.1, we defined two states, s and s0, to be evolutionarily
equivalent if (i) there exists an automorphism of the Markov

chain, f [ Aut( XÞ, such that fðsÞ ¼ s0, and (ii) this auto-

morphism satisfies fðmÞ ¼ m for each stationary distribution,

m, of the chain. Condition (i), which means that s and s0 are

symmetric, alone is not quite strong enough to guarantee that

s and s0 have the same long-run behaviour. To give an example

of a symmetry of states that is not an evolutionary equivalence,

we consider the neutral Moran process in a well-mixed

population of size N ¼ 3:
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Example B.6. In a well-mixed population of size N ¼ 3, con-

sider the (frequency-independent) Moran process with two

types of players: a mutant type and a wild-type. Suppose

that the mutant type is neutral with respect to the mutant;

that is, the fitness of the mutant relative to the wild-type

is 1. Since the population is well mixed, the state of the popula-

tion is given by the number of mutants it contains,

i [ f0, 1, 2, 3g ¼: S. Consider the map f :S ! S defined by

fðiÞ ¼ 3� i: States 0 and 3 are absorbing, and, for i [ f1, 2g,
the transition probabilities of this process are as follows:

Ti,i�1 ¼ Ti,iþ1 ¼
i
3

� �
3� i

3

� �
ðB 2aÞ

and

Ti,i ¼
i
3

� �2

þ 3� i
3

� �2

: ðB 2bÞ

It follows at once that f preserves these transition probabil-

ities, sof is an automorphism of the Markov chain. Let ri be the

probability that mutants fixate given an initial abundance of i
mutants. The states 1 and 2 are symmetric since f(1) ¼ 1, but

it is not true that r1 ¼ r2 since r1 ¼ 1/3 and r2 ¼ 2/3. The

reason for this difference in fixation probabilities is that states

1 and 2, although symmetric, are not evolutionary equivalent

since f swaps the two absorbing states of the process.

In contrast to example B.6, processes with unique station-

ary distributions have the property that every symmetry of

the Markov chain is an evolutionary equivalence (proposition

2.3). The following lemma establishes proposition (2.3):

Lemma B.7. If f :S ! S is a symmetry of a Markov chain and m

is a stationary distribution of this chain, then f(m) is also a station-
ary distribution. In particular, if m is unique, then f(m) ¼ m.

Proof. If T is the transition matrix of this Markov chain, then

½fðmÞTT�s ¼
X
s0[S

fðmÞs0Ts0 ,s

¼
X
s0[S

mfðs0ÞTfðs0Þ,fðsÞ

¼
X
s0[S

ms0Ts0 ,fðsÞ

¼ ½mTT�fðsÞ
¼ mfðsÞ

¼ fðmÞs,

ðB 3Þ

so fðmÞTT ¼ fðmÞT, which completes the proof. B

We turn now to the proofs of our main results (theorems

3.7 and 3.12):

Theorem 3.7. Consider an evolutionary matrix game on a graph,
G ¼ ðE, DÞ, with symmetric pay-offs and homogeneous strategy
mutations. If p [ Aut(GÞ, then the states with a single mutant
at vertex i and p(i), respectively, in an otherwise-monomorphic
population, are evolutionarily equivalent. That is, in the notation
of definition 2.4, the states sðs0 ,iÞ,s and sðs0 ,pðiÞÞ,s are evolutionarily
equivalent for each s, s0 [ S:

Proof. The state space of the Markov chain defined by this

evolutionary game is SN, where S is the strategy set and N
is the population size. For p [ Aut(GÞ, let p act on the
state of the population by changing the strategy of player i
to that of player p21(i) for each i ¼ 1, . . . , N. In other

words, p sends s [ SN to ps [ SN , which is defined by

ðpsÞi ¼ sp�1ðiÞ for each i. Therefore, for s, s0 [ S, we have

psðs0 ,iÞ,s ¼ sðs0 ,pðiÞÞ,s, ðB 4Þ

for each i ¼ 1, . . . , N. Since p is an automorphism of the evol-

utionary graph, G, we have pE ¼ E and pD ¼ D: Moreover,

ppreserves the strategy mutations since they are homogeneous.

Since the pay-offs are symmetric, p just rearranges the fitness

profile of the population: the pay-off of player i becomes the

pay-off of player p21(i) (see equation (3.2)), so the same is

true of the fitness values. Therefore, applying the map p to SN

is equivalent to applying the map on SN obtained by simply

relabelling the players. Since any such relabelling of the

players results in an automorphism of the Markov chain on

SN that preserves the monomorphic absorbing states, it follows

that sðs0 ,iÞ,s and sðs0 ,pðiÞÞ,s are evolutionarily equivalent. B

Theorem 3.12. Suppose that an asymmetric matrix game with
homogeneous strategy mutations is played on an evolutionary
graph, G ¼ ðE, DÞ: For each p [ Aut(GÞ, k [ f1, 2, 3g and
i, j [ f1, . . . , Ng,

s
ij
k ¼ s

pðiÞpðjÞ
k : ðB 5Þ

Proof. Let T be the transition matrix for the Markov chain

defined by this process. Since there are non-zero strategy

mutations, this chain has a unique stationary distribution,

m. The matrix T defines a directed, weighted graph on

jSj ¼ jSjN vertices that has an edge from vertex s to vertex

s0 if and only if Ts,s0 = 0: If there is an edge from s to s0,

then the weight of this edge is simply Ts,s0 : The (outdegree)

Laplacian matrix of this graph, L ¼ LðTÞ, is defined by

L ¼ IjSj � T [48]. In terms of this Laplacian matrix, Press &

Dyson [47] show that for any vector, v, the stationary

distribution satisfies

m � n ¼ detLðs, nÞ
detLðs, 1Þ , ðB 6Þ

for each state, s, where Lðs, nÞ denotes the matrix obtained

from L by replacing the column corresponding to state s by

v. Thus, if cr is the vector indexed by S ¼ SN with crðsÞ
being the frequency of strategy r in state s, then the average
abundance of strategy r is

Fr :¼ m � cr ¼
detLðs, crÞ
detLðs, 1Þ : ðB 7Þ

Since T is a function of the pay-offs, a ¼ (aij
st)s,t,i,j, we may

write Fr ¼ FrðaÞ: (a is just an ordered tuple defined by

a
ij
st :¼ aij

st for each s, t, i and j.) Moreover, since the entries of

T are assumed to be smooth functions of a [34], Fr is also a

smooth function of a by equation (B 7) and the definition of

L: We will show that for each s and t,

@Fr

@aij
st

ja¼0 ¼
@Fr

@ap(i)p(j)
st

ja¼0, ðB 8Þ

for each i and j. The theorem will then follow from the deri-

vations of s
ij
1, s

ij
2 and s

ij
3 in [33] since it is shown there that

each sij is a function of the elements in the set

@Fr

@aij
st

ja¼0

( )n

s,t¼1

: ðB 9Þ



Table 1. The absorption times of the 12 initial configurations of a single
mutant in a wild-type population for the Moran process on the Frucht
graph. The fitness of the mutant relative to the wild-type is r ¼ 2.

initial vertex of mutant absorption time

1 238.1836

2 237.0596

3 234.5982

4 235.8447

5 236.5967

6 234.5792

7 231.6988

8 238.0375

9 233.6122

10 235.1514

11 230.1340

12 228.7114

Table 2. The fixation probabilities and absorption times of the 12 initial
configurations of a single cooperator among defectors for the death – birth
process on the Frucht graph. Pay-offs are frequency-dependent and derived
from the Snowdrift Game, (3.4). The intensity of selection is b ¼ 1.

initial vertex of
mutant

fixation
probability

absorption
time

1 0.6505 116.0959

2 0.6471 115.4026

3 0.6469 115.7302

4 0.6448 115.7348

5 0.6463 116.0100

6 0.6562 117.4671

7 0.7299 129.8609

8 0.6512 116.6906

9 0.6545 118.3795

10 0.6551 117.8995

11 0.7344 131.6681

12 0.7326 131.9634

Table 3. The fixation probabilities and absorption times of the 12 initial
configurations of a single cooperator among defectors for the death – birth
process on the Tietze graph. Pay-offs are frequency-dependent and derived
from the Snowdrift Game, (3.4). The intensity of selection is b ¼ 0.1.
These values are illustrated graphically in figure 8.

initial vertex of
mutant

fixation
probability

absorption
time

1 0.3777 70.7869

2 0.3777 70.7869

3 0.3777 70.7869

4 0.4141 76.5048

5 0.4186 77.3094

6 0.4186 77.3094

7 0.4141 76.5048

8 0.4186 77.3094

9 0.4186 77.3094

10 0.4141 76.5048

11 0.4186 77.3094

12 0.4186 77.3094
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For s, t, i and j fixed and a [ R, let Fs,t,i,j
r ðaÞ be the function

of the vector with a at entry aij
st and 0 in all other entries. Sym-

bolically, if dx,y is defined as 1 if x ¼ y and 0 otherwise and

a
ðs,t,i,jÞ
0 ðaÞ :¼ ðads,s0dt,t0di,i0d j,j0 Þs0 ,t0 ,i0 ,j0 , ðB 10Þ

then

Fs,t,i,j
r ðaÞ :¼ Fr(a

ðs,t,i,jÞ
0 ðaÞ): ðB 11Þ

Let p [ SN and suppose that p [ Aut(GÞ; that is, pE ¼ E

and pD ¼ D: p induces a map on the pay-offs, a, defined by

p(aij
st)s,t,i,j ¼ (apðiÞpðjÞst )s,t,i,j: Let orbSN ðaÞ denote the orbit of a

under this action, and consider the enlarged state space

S0 :¼ SN � orbSN ðaÞ. Using the Markov chain on SN coming

from the evolutionary process, we obtain a Markov chain on

SN � orbSN ðaÞ via the transition matrix, T0, defined by

Tðs,bÞ,ðs0 ,b0Þ
0 :¼ db,b0Ts,s0 ðbÞ: ðB 12Þ

for s, s0 [ SN and b, b0 [ orbSN ðaÞ: (We write T(b) to indicate

the transition matrix as a function of the pay-off values of

the game.) p extends to a map on S0 defined by

pðs, bÞ ¼ ðps, pbÞ: Since p preserves E, D and the strategy

mutations (since they are homogeneous), it follows that the

induced map p :S0 ! S0 is an automorphism of the Markov

chain on S0 defined by T0. If m0 is a stationary distribution for

the chain T0, then, for each s [ SN and b [ orbSN ðaÞ,

m(s,b)
0 ¼

X
s0[SN

X
b0[orbSN ðaÞ

m0ðs0 ,b0ÞT
0
ðs0 ,b0Þ,ðs,bÞ

¼
X

s0[SN

X
b0[orbSN ðaÞ

m0ðs0 ,b0Þdb0 ,bTs0 ,s

¼
X

s0[SN

m0ðs0 ,bÞTs0 ,s: ðB 13Þ

It then follows from the uniqueness of m ¼ mðbÞ that there

exists cm0 ðbÞ � 0 such thatm0(s,b) ¼ cm0 ðbÞms: Ifm
0 is such a station-

ary distribution, then, by lemma (B.7), pm0 ¼ m00 for some other

stationary distribution, m00, of the chain on S0: This equation

implies that cm00 ðbÞ ¼ cm0 ðpbÞ for each b [ orbSN ðaÞ: Therefore,

pmðpbÞs ¼ mðpbÞps ¼ mðbÞs, ðB 14Þ
for each s [ SN and b [ orbSN ðaÞ:Consequently, sincepcr¼ cr,
Fs,t,i,j
r (a) ¼ Fr(a

ðs,t,i,jÞ
0 ðaÞ)

¼ m(a
ðs,t,i,jÞ
0 ðaÞ) � cr

¼ pm(pa
ðs,t,i,jÞ
0 ðaÞ) � cr

¼ pm(a
ðs,t,pðiÞ,pðjÞÞ
0 ðaÞ) � pcr

¼ m(a
ðs,t,pðiÞ,pðjÞÞ
0 ðaÞ) � cr

¼ Fr(a
ðs,t,pðiÞ,pðjÞÞ
0 ðaÞ)

¼ Fs,t,pðiÞ,pðjÞ
r ðaÞ: ðB 15Þ
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Figure 8. (a) Fixation probability and (b) absorption time versus initial vertex of mutant (cooperator) for a death – birth process on the Tietze graph. In both figures,
the game is a Snowdrift Game whose pay-offs are described by pay-off matrix (3.4), and the selection intensity is b ¼ 0.1. This example illustrates the single-
mutant states that are not evolutionarily equivalent in the Tietze graph. Moreover, it happens to be the case that any two of these states with the same fixation
probability (or absorption time) are evolutionarily equivalent. (Online version in colour.)

Table 4. The structure coefficients in equation (3.12) for the death – birth
process on the vertex-transitive (but not symmetric) graph of figure 7a
with homogeneous strategy-mutation rate 1 ¼ 0.01.

(i, j ) t
ij
1 t

ij
2

(1, 2) 707 905/9 315 552 32 989/405 024
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As a result, we have

@Fr

@aij
st

���
a¼0
¼ d

da

���
a¼0

Fs,t,i,j
r ¼ d

da

���
a¼0

Fs,t,p(i),p(j)
r

¼ @Fr

@ap(i)p(j)
st

ja¼0, ðB 16Þ

so equation (B 8) holds, which completes the proof. B
(1, 4) 16 291/194 074 57 057/776 296

(1, 6) 707 905/9 315 552 32 989/405 024

(2, 1) 707 905/9 315 552 32 989/405 024

(2, 3) 16 291/194 074 57 057/776 296

(2, 6) 707 905/9 315 552 32 989/405 024

(3, 2) 16 291/194 074 57 057/776 296

(3, 4) 707 905/9 315 552 32 989/405 024

(3, 5) 707 905/9 315 552 32 989/405 024

(4, 1) 16 291/194 074 57 057/776 296

(4, 3) 707 905/9 315 552 32 989/405 024

(4, 5) 707 905/9 315 552 32 989/405 024

(5, 3) 707 905/9 315 552 32 989/405 024

(5, 4) 707 905/9 315 552 32 989/405 024

(5, 6) 16 291/194 074 57 057/776 296

(6, 1) 707 905/9 315 552 32 989/405 024

(6, 2) 707 905/9 315 552 32 989/405 024

(6, 5) 16 291/194 074 57 057/776 296
Appendix C. Explicit calculations
We now perform explicit calculations using equations (A 6)

and (A 8) to show that the Isothermal Theorem extends to

neither absorption times nor frequency-dependent games. We

also calculate the structure coefficients for the death–birth pro-

cess on the graph of figure 7a to show that corollary 3.14 does

not necessarily hold for graphs that are vertex-transitive

but not symmetric.

C.1. The Moran process
Consider the Moran process on the Frucht graph (figure 2), and

suppose that the mutant type has fitness r . 0 relative to the

wild-type. By the Isothermal Theorem of Lieberman et al. [3],

the fixation probability of a fixed number of mutants is indepen-

dent of the configuration of those mutants on the graph. For r¼ 2,

the absorption times (of configurations of a single mutant in a

wild-type population) are listed in table 1. The fixation prob-

ability of a single mutant is ð1� 1=2Þ=ð1� 1=212Þ 	 0:5001 for

every vertex. Thus, unlike fixation probabilities, absorption

times depend on the initial location of the mutant. (Some of the

absorption times are similar in this case, but no two are the same.)

C.2. Frequency-dependent games

C.2.1. Symmetric games
Consider the instance of the Snowdrift Game that has for a

pay-off matrix (3.4). For this game, table 2 gives the fixation

probabilities and the absorption times (rounded to four

digits after the decimal point) for the death–birth process

on the Frucht graph (figure 2) with b ¼ 1.
Similarly, for the same game (and update rule) but on the

Tietze graph (figure 6) with b ¼ 0.1, table 3 and figure 8 give

the fixation probabilities and absorption times for all possible

configurations of a single cooperator among defectors.

C.2.2. Asymmetric games
For the death–birth process on the graph in figure 7a with

homogeneous strategy-mutation rate 1 ¼ 0.01, we calculate

the complete collection of structure coefficients {t
ij
1, t

ij
2}i,j (for

r ¼ 1) as follows: let c1 be the vector indexed by S with

c1ðsÞ being the frequency of strategy 1 in state s, and let 1
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be the vector of ones. McAvoy & Hauert [33] show that, for

any s, equation (3.11) is equivalent to

1

n
tr (½L(s, c1)jb¼0�

�1 � ½L(s, 1)jb¼0�
�1)

d

db

���
b¼0

L(s, 0)

� �
. 0,

ðC 1Þ

where L ¼ L(T) ¼ IjSj � T is the (outdegree) Laplacian matrix

of the graph defined by T. If k [ f1, 2g, i and j are fixed, and

we choose the (two-strategy) asymmetric game so that

ai0j0
st ¼

1 s ¼ 1, t ¼ k, i0 ¼ i, j0 ¼ j;
0 otherwise,

�
ðC 2Þ
then

t
ij
k ¼

1

2
tr (½L(s, c1)jb¼0�

�1 � ½L(s, 1)jb¼0�
�1)

d

db

���
b¼0

L(s, 0)

� �
:

ðC 3Þ

Using this method, we obtain the structure coefficients

for figure 7a listed in table 4. For the same process

on the symmetric graph of figure 7b, we find that t
ij
1 and

t
ij
2 are independent of i and j and are both equal to

2189/27 728.
R.Soc.Inte
References
rface
12:20150420
1. Moran PAP. 1958 Random processes in genetics.
Math. Proc. Camb. Phil. Soc. 54, 60. (doi:10.1017/
s0305004100033193)

2. Nowak MA. 2006 Evolutionary dynamics: exploring
the equations of life. Cambridge, MA: Belknap Press.

3. Lieberman E, Hauert C, Nowak MA. 2005
Evolutionary dynamics on graphs. Nature 433,
312 – 316. (doi:10.1038/nature03204)

4. Bollobás B. 2001 Random graphs. Cambridge, UK:
Cambridge University Press.

5. Maruyama T. 1974 A simple proof that certain
quantities are independent of the geographical
structure of population. Theor. Popul. Biol. 5,
148 – 154. (doi:10.1016/0040-5809(74)90037-9)

6. Taylor PD, Jonker LB. 1978 Evolutionary
stable strategies and game dynamics. Math.
Biosci. 40, 145 – 156. (doi:10.1016/0025-
5564(78)90077-9)

7. Hofbauer J, Sigmund K. 1998 Evolutionary games
and population dynamics. Cambridge, UK:
Cambridge University Press.

8. Nowak MA, Sasaki A, Taylor C, Fudenberg D. 2004
Emergence of cooperation and evolutionary stability
in finite populations. Nature 428, 646 – 650.
(doi:10.1038/nature02414)

9. Taylor C, Fudenberg D, Sasaki A, Nowak MA. 2004
Evolutionary game dynamics in finite populations.
Bull. Math. Biol. 66, 1621 – 1644. (doi:10.1016/j.
bulm.2004.03.004)

10. Ohtsuki H, Hauert C, Lieberman E, Nowak MA. 2006
A simple rule for the evolution of cooperation on
graphs and social networks. Nature 441, 502 – 505.
(doi:10.1038/nature04605)
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17. Szabó G, Töke C. 1998 Evolutionary Prisoner’s
dilemma game on a square lattice. Phys. Rev. E 58,
69 – 73. (doi:10.1103/physreve.58.69)

18. Traulsen A, Pacheco JM, Nowak MA. 2007 Pairwise
comparison and selection temperature in
evolutionary game dynamics. J. Theor. Biol. 246,
522 – 529. (doi:10.1016/j.jtbi.2007.01.002)

19. Ewens WJ. 2004 Mathematical population genetics.
New York, NY: Springer.

20. Imhof LA, Nowak MA. 2006 Evolutionary game
dynamics in a Wright-Fisher process. J. Math. Biol.
52, 667 – 681. (doi:10.1007/s00285-005-0369-8)

21. McAvoy A, Hauert C. 2015 Asymmetric evolutionary
games. PLoS Comp. Biol. 11, e1004349. (doi:10.
1371/journal.pcbi.1004349)

22. Fudenberg D, Imhof LA. 2006 Imitation processes
with small mutations. J. Econ. Theory 131,
251 – 262. (doi:10.1016/j.jet.2005.04.006)

23. Wu B, Gokhale CS, Wang L, Traulsen A. 2011 How
small are small mutation rates? J. Math. Biol. 64,
803 – 827. (doi:10.1007/s00285-011-0430-8)

24. Frucht R. 1939 Herstellung von graphen mit
vorgegebener abstrakter gruppe. Compos. Math. 6,
239 – 250.

25. Ohtsuki H, Nowak MA, Pacheco JM. 2007 Breaking
the symmetry between interaction and replacement
in evolutionary dynamics on graphs. Phys. Rev. Lett.
98, 108106. (doi:10.1103/physrevlett.98.108106)

26. Taylor PD, Day T, Wild G. 2007 Evolution of
cooperation in a finite homogeneous graph. Nature
447, 469 – 472. (doi:10.1038/nature05784)

27. Ohtsuki H, Pacheco JM, Nowak MA. 2007
Evolutionary graph theory: breaking the
symmetry between interaction and replacement.
J. Theor. Biol. 246, 681 – 694. (doi:10.1016/j.jtbi.
2007.01.024)

28. Pacheco JM, Pinheiro FL, Santos FC. 2009 Population
structure induces a symmetry breaking favoring the
emergence of cooperation. PLoS Comp. Biol. 5,
e1000596. (doi:10.1371/journal.pcbi.1000596)
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