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Fluidic origami with embedded pressure
dependent multi-stability: a plant
inspired innovation

Suyi Li and K. W. Wang

Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48109, USA

Inspired by the impulsive movements in plants, this research investigates the

physics of a novel fluidic origami concept for its pressure-dependent multi-

stability. In this innovation, fluid-filled tubular cells are synthesized by

integrating different Miura-Ori sheets into a three-dimensional topological

system, where the internal pressures are strategically controlled similar to

the motor cells in plants. Fluidic origami incorporates two crucial physio-

logical features observed in nature: one is distributed, pressurized cellular

organization, and the other is embedded multi-stability. For a single fluidic

origami cell, two stable folding configurations can coexist due to the non-

linear relationships among folding, crease material deformation and internal

volume change. When multiple origami cells are integrated, additional

multi-stability characteristics could occur via the interactions between pressur-

ized cells. Changes in the fluid pressure can tailor the existence and shapes of

these stable folding configurations. As a result, fluidic origami can switch

between being mono-stable, bistable and multi-stable with pressure control,

and provide a rapid ‘snap-through’ type of shape change based on the similar

principles as in plants. The outcomes of this research could lead to the devel-

opment of new adaptive materials or structures, and provide insights for

future plant physiology studies at the cellular level.
1. Introduction
Plants can move without muscles, and some of them are capable of achieving

spectacularly fast movements and then recovering to original configurations

[1,2]. A well-known example is the carnivorous Venus flytrap (Dionaea muscipula),

which can snap close its trap lobes within a second to capture the insect prey for

nutrition intake [3–6] (figure 1a). The rapidity and force of its movement inspired

Charles Darwin so much that he remarked on it as ‘one of the most wonderful in

the world’ [7]. Other examples include bladderworts (Utricularia spp.) [8] and poss-

ibly triggerplants (Stylidium) [9]. Despite the wide physiological differences among

these species, their rapid movements are all initiated by strategically swelling or

shrinking cells (motor cells) at different locations by ion transport and associated

osmotic fluid flow [10] (figure 1b). These distributed and pressurized motor cells

provide both nastic movements and structural rigidity, without the distinction

between the ‘actuators’ and ‘structures’ that are commonly seen separated in the

more conventional active structures; as a result, the active plant organs can

output large actuation force and stroke with a superior power to density ratio

[11]. Osmosis alone, however, is a relatively slow process, restricted by the filtration

coefficients of the plant cell plasma membrane. There are physiological evidences

suggesting that some plants may have evolved to exploit the buckling mechanisms

in multi-stable systems to significantly amplify the movement speed and

amplitude [12] (figure 1c). In the case of Venus flytrap, the initial osmotic cell

deformation would slowly bring the trap lobes to a critical shape where they

become elastically unstable, and then the buckling takes over and ‘snaps’ the

lobes rapidly to the desired final shape [3,5]. This snap-through mechanism

enables the plants to move at least an order of magnitude faster than osmosis

alone [12], and in some cases even faster than human visual perception [8].
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Figure 1. The impulsive movements of the trap lobes of Venus flytrap (a)
involve two physiological features that are closely relevant for developing
engineered adaptive structures. (b) Distributed and pressurized cellular organ-
ization that can lead to large actuation force and stroke with a superior power
to density ratio. (c) Embedded bistability that can amplify the response speed
(adapted from Forterre et al. [3]). Flytrap photo credit: Beatrice Murch (www.
wikipedia.com). (Online version in colour.)
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Therefore, the distributed, fluidic cellular organization and the

embedded multi-stability are two important physiological

features for the impulsive plant movements; and applying

both of them to engineered structures and material designs

could enable unprecedented rapid shape change capability

with advantageous weight efficiency.

Various plant-inspired material and structure concepts were

proposed to exploit the cellular organization feature for effective

shape changes [13–18]. The ‘cells’ in these concepts took various

shapes, including cylindrical capsules, customized polygons,

topologically optimized geometries and fibre composite tubes.

A large number of these cells can form a structure so that

when some of them are pressurized their internal volume

would increase to initiate a prescribed global shape change.

On the other hand, several systems were proposed to use

multi-stability for rapid actuation; they incorporated pre-

stressed sheets with double curvatures similar to the trap

lobes of Venus flytrap [19–21]. However, none of these works

have explored and developed rigorous understanding on how

to integrate these two features together in a synergistic way to

holistically manifest the attractive characteristics of impulsive

plant movements.

To advance the state of the art, in this research, a novel

fluidic origami concept is created by merging these two fea-

tures of plant movements with the rich designs in paper

folding art. Building upon the concept of stacking Miura-Ori
sheets into a three-dimensional topology with naturally

embedded tubular cells [22,23], the new idea is to strategically
control the cell internal pressures with working fluid to

achieve shape change similar to the shrinking and swelling

of the motor cells in nastic plant movements (figure 2). Such

fluidic origami can achieve significant actuation/morphing

by actively changing the internal fluid volume, and stiffness

tuning by constraining the fluid volume [24].

This research, for the first time, thoroughly investigates the

elastic characteristics of the fluidic origami system together

with the effects of internal pressure to reveal a very intriguing

feature of fluidic origami: pressure-dependent multi-stability.

Various multi-stability mechanisms in origami-based systems

were explored previously [25–30], but the pressure-dependent

multi-stability discussed in this research is uniquely different

in several aspects. It originates from the combination of

two different physical principles: origami elastically induced

and fluidic pressure induced multi-stability. For a single fluidic

origami cell, two stable folding configurations could coexist

due to the nonlinear relationships among folding, crease

material deformation and enclosed fluid volume change.

When multiple fluidic origami cells are integrated together,

additional multi-stability characteristics could occur via the

interaction between pressurized cells. The existence and

shape of these stable folding configurations can be tailored

by internal pressure control, so that when the pressure reaches

some specific critical levels, the fluidic origami can switch

between being mono-stable, bistable and even multi-stable.

Such rich and surprising pressure–stability relationship enables

the fluidic origami to achieve rapid and distributed shape

change with similar principles to those that govern rapid plant

movements. In addition, the multi-stability mechanism

depends primarily on scale-independent geometric principles,

and thus fluidic origami can be fabricated at vastly different

sizes without losing the rich pressure-dependent multi-stability

characteristics. Therefore, the proposed concept could have

great potential in the development of multi-functional materials

and structures at different size scales.

The objective of this research is to extensively investigate

the physical principles of and provide insights into the fluidic

origami pressure-dependent multi-stability. The following

sections discuss the geometry and kinematics of the fluidic

origami, analyse the physical origins behind the pressure–

stability relationships, correlate the system characteristics to

origami designs, discuss the potential functions of the fluidic

origami based structural and material systems and suggest

several lessons learned from this study that can be applied

to physiology studies on impulsive plant movements at the

cellular level.
2. Design and kinematics
The backbone of the fluidic origami is a set of kinematically

compatible tubular cells made by connecting two different

Miura-Ori folded sheets together (figure 2). Miura-Ori crease

is rigid-foldable so it can retain a degree of freedom for folding

even if the facets are assumed rigid and the creases are treated

as hinges; it is also a periodic tessellation, so one can focus

on the most fundamental unit cells (figure 3a) to analyse the

overall kinematics (a tubular fluidic origami cell is essentially

a series of identical unit cells). Miura-Ori can be designed by

three constants that remain unchanged regardless of folding:

the lengths of two adjacent crease lines (ak and bk), and the

angle between these two (gk) (figure 2a). The folding motion

http://www.wikipedia.com
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Figure 2. The concept of fluidic origami. (a,b) Two compatible Miura-Ori sheets, where the dashed lines are mountain fold creases and dashed-dotted lines are
valley fold creases, can be connected along their zig-zag creases to form an origami cell. (c) Different fluid-filled origami cells can then be integrated into a three-
dimensional topology, where the most basic unit cell is highlighted. (d ) Shape morphing (folding) can be achieved by controlling the fluidic pressures and volumes.
(Online version in colour.)
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Figure 3. The geometry and kinematics of the unit cell. (a) Definition of the various geometric variables; uI and uII are dihedral angles defined between the facets
and x – y reference plane. (b) The smaller Miura sheet I can bulge out or nest in the bigger sheet II. (c) The values of different dihedral angles defined in this unit
cell with respect to uI . Between configurations (i) and (ii) in (c), the folding angles of sheet I have the same magnitude but opposite sign; but the folding angles
are the same for sheet II. (Online version in colour.)
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can be described by the dihedral folding angle (uk) defined

between the x–y reference plane and its facets (figure 3a).

The subscript k (¼I,II) indicates the two different Miura

sheets. Without loss of generality, the Miura with the shorter

crease length (a) is designated as sheet I. To make the two con-

nected Miura-Ori sheets kinematically compatible so that they

will not separate during folding, the following relations need

to be satisfied [23]:

bII ¼ bI ¼ b ð2:1Þ

and

cos gII

cos gI

¼ aI

aII
: ð2:2Þ

The folding angles of the two Miura-Ori sheets are not

independent and they obey the following relationship [23]:

cos uII

cos uI
¼ tan gI

tangII

: ð2:3Þ
uI ranges from 2p/2 to p/2 so that sheet I bulges out of the

larger sheet (II) when uI , 0 and nests in otherwise

(figure 3b). For clarity, folding configuration with uI , 0 is

referred as the ‘convex shape’ and otherwise ‘concave

shape’. Previous studies pointed out that the dominant

deformation modes of an individual Miura-Ori sheet could

be bending and twisting rather than folding due the facet

flexibility [23]. However, once multiple Miura are connected,

the bending and twisting are effectively suppressed, leaving

folding as the primary deformation mode (proof in electronic

supplementary material, appendix S1). Therefore, the kin-

ematic and elastic characteristics of a fluidic origami unit

cell can be calculated with respect to one independent folding

variable. In this study, the sheet I folding angle uI is chosen

for such purpose so the unit cell length, width and height

can be calculated as follows:

L ¼ 2b cos uI tan gIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2uItan2gI

p , ð2:4Þ



Table 1. Design parameters used in the case studies.

Miura-Ori design

parameters

aI ¼ 25 mm b ¼ 25 mm

aII ¼ 1.25aI gI ¼ 608

crease torsional stiffness kI ¼ 5 N kc ¼ kI
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Figure 4. The normalized spring energy landscape with respect to origami
folding. The bistable characteristics shown in the dashed dotted lines
become prominent if kII/kI ratio is high (a) or the stress-free resting folding
angle deviates further away from 08 (b). Here, the stress-free configuration is
defined as the stable folding shape where no creases are subject to deformation
(hence zero potential energy); the bistable configuration is defined as the stable
folding shape with some crease deformations. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150639

4

W ¼ 2aI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2uI sin2gI

q
ð2:5Þ

and H ¼ aII sin uII sin gII � aI sin uI sin gI: ð2:6Þ

The enclosed internal fluid volume is

V ¼ 2a2
I b sin2gI cos uI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2gII

tan2gI

� cos2uI

s
� sin uI

 !
: ð2:7Þ

The dihedral angles between adjacent facets as defined in

figure 3a are

sin
w2

2
¼ cos uIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2uI sin2gI

q , ð2:8Þ

sin
w4

2
¼ sin gI

sin gII

sin
w2

2
ð2:9Þ

and w1 ¼ p� 2uI, w3 ¼ p� 2uII, w5 ¼ uII � uI. The values of

these dihedral angles (wi) and sheet II folding angle (uII)

with respect to uI are illustrated in figure 3c. Unless noted

otherwise, the case studies in this paper are based on a

sample Miura-Ori design listed in table 1. Note that for one

uII angle, there exist two corresponding uI angles of the

same magnitude but opposite signs (one with concave

shape and the other convex). The only exception is the mini-

mum possible value of uII, which corresponds to only one uI

angle of 08 (flat Miura sheet I). This non-unique relationship

between sheets I and II folding angles is the origin of the

elastic bistability discussed in the following section.
3. Elastic bistability of an unpressurized cell
Since fluidic origami is rigid-foldable with suppressed bending

and twisting, its facet material can be assumed rigid. This

assumption is sufficient to analyse the underlying physical

principles of the pressure-dependent stability characteristics.

The creases are assumed as thin flexural hinges so that one

can assign kI and kII as the torsional spring stiffness per unit
length for the creases of sheet I and II, respectively; and kc

as the spring stiffness per unit length of the zig-zag creases

that connect the two sheets. The total torsional spring

constants (Ki) corresponding to the dihedral angles (wi)

defined in figure 3a are: K1 ¼ 2kIb, K2 ¼ 2kIaI, K3 ¼ 2kIIb,

K4 ¼ 2kIIaII and K5 ¼ 4kcb: The numerical constants in these

equations equal the number of creases that have the same

dihedral angle in a unit cell. The total spring potential

energy of the system is

Pk ¼
1

2

X5

i¼1

Kiðwi � wo
i Þ

2, ð3:1Þ

where wo
i are the dihedral angles corresponding to the stress-

free stable folding configuration (uI ¼ uo
I ) where no creases

are subject to deformation. The change in Pk with respect
to the change in folding angle (uI) is illustrated in figure 4.

Because of the nonlinear geometric correlations between fold-

ing and crease deformation, the effective origami stiffness is

highly nonlinear with respect to the folding angle even

though the constituent crease material is linearly elastic.

The double potential energy wells, which are the defining

characteristics of a bistable system, start to show up as the tor-

sional spring stiffness of sheet II (kII) becomes sufficiently

larger than kI and kc (figure 4a), or the stress-free folding

angle (uo
I ) deviates further away from 08 (figure 4b). The

origin of this elastic bistability is directly related to the non-

unique uI –uII relationship as illustrated in figure 3c. If the

stress-free stable folding configuration is designed to have a

concave shape, the bistable one will be convex; and vice

versa. Therefore, even the Miura sheet I is deformed signifi-

cantly between the two stable configurations; the stiffer

sheet II is not deformed much.

To fabricate a proof-of-concept prototype of the elastically

bistable origami cell, the facets are water jet cut individually

from 0.01-inch thick stainless steel sheets. Then they are

applied to an adhesive, 0.05-inch thick plastic film (ultra-

high-molecular-weight polyethylene) to form two complete

Miura-Ori sheets (figure 5a). This particular prototype has

a Miura-Ori design of aI ¼ bI ¼ 38 cm, aII ¼ 1:5aI and

gI ¼ 60W: Bended spring steel tapes are bonded to creases cor-

responding to the dihedral angle w4 to provide some torsional

stiffness (K4). The stress-free resting angle for these tape

springs is about 908, which corresponds to uo
I � 59W: Then
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convex
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Figure 5. Experimental demonstration of elastically induced bistability.
(a) Miura-Ori sheets made by bonding stiff facets onto an adhesive plastic
film. (b) The two stable configurations. (Online version in colour.)
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the two Miura strips are connected along their zig-zag creases

by adhesive films to form a complete fluidic origami cell. Since

the torsional stiffness from the adhesive film itself is negligible,

the crease torsional stiffness K4 in sheet II is significantly larger

than other crease stiffness in sheet I. As a result, the fluidic ori-

gami cell becomes stable at two configurations, one concave

and one convex (figure 5b).

The potential energy landscapes in figure 4 are calculated

with respect to the folding angle uI: If the same energy is plotted

with respect to the external geometries of fluidic origami (L, H, W
in equations (2.4)–(2.6)), it shows quite unique characteristics

along different principal orientations (figure 6). Along the

z-axis, the fluidic origami is stable at two different heights, and

the critical, unstable equilibrium (energy ridge) is located

between these two (figure 6a); however, along the x- and

y-axes, the two stable lengths or widths are located on the

same side of the unstable equilibrium (figure 6b,c). Therefore,

if the fluidic origami is subjected to sufficiently large external

forces along the z-axis, it can be ‘snapped’ between the two

stable heights. If the fluidic origami is subject to forces along

x- or y-axis only, it can only be snapped from the higher-

energy stable configuration to the low-energy one, but not

vice versa. Moreover, the unstable equilibrium can be very

close to the maximum possible length or width that correspond

to uI ¼ 0, thus fluidic origami can appear to be almost mono-

stable, around either of the stable configurations, within most

of its deformation range along x- and y-axes.
4. Pressure – stability relationship of a
pressurized cell

The bistable characteristics of the fluidic origami cell can be

tailored by internal pressurization via pumping. Given that

the mechanical work done by the pressure is conservative, the

potential energy from the pressure in an individual unit cell is

Pp ¼ �PðV � VmÞ, ð4:1Þ

where enclosed volume V is a function of folding as defined in

equation (2.7), and fluid pressure P is determined by external

pumping. Vm is the maximum possible internal volume, and

this term is introduced to set the zero potential of Pp at this par-

ticular configuration. The magnitude of Vm is determined only

by Miura design:

Vm ¼ 2a2
I b sin2gI

tangII

tangI

, ð4:2Þ
which corresponds to a folding angle um
I given by

um
I ¼ �sin�1 tangIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tan2gI þ tan2gII

p
 !

: ð4:3Þ

The total system energy is the summation of Pk in (3.1)

and Pp in (4.1); therefore, the stability characteristics of a flu-

idic origami cell become a function of internal fluid pressure,

and this relationship is surprisingly rich: even with the same

Miura-Ori crease, different assignments of the kII/kI ratio and

folding angle uo
I value can lead to three distinctive types of

pressure–stability relationships.

(i) The fluidic origami is always mono-stable, and the

value of the stable folding angle can be tailored signifi-

cantly by internal pressure. At low pressure, fluidic

origami is stable near uo
I ; as pressure increases, the

stable folding angle converges to um
I (figure 7a).

(ii) The fluidic origami is initially mono-stable near uo
I :

However, as the internal pressure rises above a critical

level, a second branch of stable configurations shows

up near um
I so that the system becomes bistable.

When the pressure continues to rise and exceeds a

second critical level, the stable branch near uo
I disap-

pears so that fluidic origami becomes mono-stable

again (figure 7b). This type of pressure–stability

relationship will be referred to as ‘weakly bistable’.

(iii) The fluidic origami is initially bistable as shown in the

previous section. As the internal pressure rises above a

critical level, one of the stable equilibrium branches

disappears and the system becomes mono-stable

near um
I (figure 7c). This type of pressure–stability

relationship will be referred to as ‘strongly bistable’.

The proof-of-concept fluidic origami prototype discussed

in the previous section is strongly bistable by design. To

experimentally demonstrate its pressure–stability relation-

ship, a custom-made plastic film bladder is inserted into

the origami cell to provide a pneumatic pressurization

(measured by a PCBTM 113B21 pressure transducer), and

the origami deformation in the height direction is measured

by a laser vibrometer (PolytechTM OFV 303) (figure 8a). The

fluidic origami cell is initially placed at the stable equilibrium

branch further away from um
I (concave shape). As the internal

pressure rises above the critical level, the fluidic origami cell

becomes mono-stable so it is forced to ‘snap’ to the other

stable branch of convex shape by releasing some of the

stored energy, leading to a rapid shape change (figure 8b;

electronic supplementary material, movie S1).

Figure 9 illustrates the existence of these three types of

pressure–stability relationships with respect to different

kII/kI and uo
I assignments, as well as to different Miura-Ori

designs. Generally speaking, the values of uo
I folding angles

need to deviate away from zero for bistability to occur; and

the higher kII/kI ratio, the easier it is to achieve bistability.

Strongly bistable designs occur with both positive and nega-

tive uo
I values; however, the weak bistability only exists when

uo
I is positive. Different Miura-Ori designs can also affect the

pressure–stability relationship. Bistable designs are easier to

achieve with a lower aII/aI ratio by comparing the four differ-

ent design space plots in figure 9. The results in this figure

indicate that different fluidic origami can exhibit similar
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pressure–stability relationships even if they differ from each

other significantly in terms of external geometries and fold-

ing motion ranges. And the design space in figure 9 could

provide a practical guideline to customize fluidic origami

for various application requirements.
5. Multi-stability from the interaction of two
pressurized cells

A single fluidic origami cell can be switched between being

mono- and bi-stable by internal pressure control, and
additional stable folding configurations could occur via the

interactions between pressurized cells. For a clear explana-

tion without losing generality, here we will focus on a pair

of identical fluidic origami unit cells, denoted as cell (1)

and (2), that are stacked together into a dual-cell assembly

as shown in figure 10a. The sheet I folding angles of these

two cells (u
ð1Þ
I , u

ð2Þ
I ) can either be equal to each other so that

they are both concave or both convex (‘primary folding

branch’); or u
ð1Þ
I , u

ð2Þ
I can have the same magnitude but

opposite signs so that one is concave and the other convex

(‘secondary folding branch’). These two folding branches

are connected where the Miura sheets I are both flat:
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u
ð1Þ
I ¼ u

ð2Þ
I ¼ 0: Because of these kinematic constraints, the

total energy of the assembly is simply the summation of

the energies from two cells (P ¼ P
ð1Þ
k þPð1Þp þP

ð2Þ
k þPð2Þp ).

This paper considers two representative pressure loading

scenarios: ‘uniform pressure’ by which the two cells have

the same internal pressure and ‘differential pressure’ by

which only one cell is pressurized.

Additional stable folding configurations can occur due to

the interaction between the two pressurized cells, and the

origins of these pressure-induced stabilities are independent

of the aforementioned elastic bistability. Assuming the

creases of the dual cell assembly are all perfect hinges with-

out any torsional stiffness (P
ð1Þ
k ¼ P

ð2Þ
k ¼ 0), their total

pressure potential energy landscapes can be illustrated as in

figure 10b,c. Under differential pressure, the assembly is bis-

table: the pressurized cell is always stable at maximum

volume configuration (um
I ), while the un-pressurized cell is

stable at either um
I or �um

I (figure 10b). Under uniform

pressure, the assembly can be tri-stable: the two cells can be

stable at their maximum volume um
I on the primary folding

branch; and they have another two stable configurations on

the secondary folding branch (figure 10c). The origin of

these secondary branch stable configurations is not intuitive:

they come from the antagonistic interaction between the two

cells. As their enclosed volumes are both increasing under
pressure, they are in the opposite folding directions: one

with increasing uI, and the other with decreasing uI: As a

result, they can reach a balance at a specific critical folding

angle at u
ð1Þ
I ¼+u�I :

The existence of these uniform pressure-induced stable

configurations on the secondary branch depends on Miura-

Ori design. Since the two fluidic origami cells are assumed

identical, their total pressure energy can be calculated

based on equations (2.7) and (4.1) as

Pð1Þp þPð2Þp ¼ �P 2A cos u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � cos2u
p

� 2Vm
h i

, ð5:1Þ

where u ¼ u
ð1Þ
I ¼ �u

ð2Þ
I and the constants A and k are

functions of Miura-Ori design: A ¼ 2a2
I b sin2gI and

k ¼ tan gII=tangI; the external pressure P and the maximum

internal volume Vm are independent of folding. Therefore,

the uniform pressure induced stable configurations can exist

if and only if there is a critical folding angle u�I so that

d

du
Pð1Þp þPð2Þp

� �
u¼u�

I

¼ �2 PA
d

du
cos u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � cos2u
ph i

u¼u�
I

¼ 0:

ð5:2Þ

Equation (5.2) can be valid if and only if k [ ð�1, 1Þ,
which leads to the conclusion that the secondary uniform

pressure stable configurations exist if and only if

tan gII=tangI ,
ffiffiffi
2
p

: By incorporating the relationship between

the two compatible Miura-Ori designs in equations (2.1)–(2.3),

the associated critical folding angle u�I can be calculated as

u�I ¼
1

2
cos�1 ðaII=aIÞ2 � 1

sin2gI

" #
, ð5:3Þ

which is illustrated in figure 11. While the discussions above

are based on the dual cell assembly, in a more sophisticated

system with many identical cells, these additional, pressure-

induced stabilities can arise from the interactions between

any two pressurized cells even if they are not immediately

adjacent to each other, as long as the kinematic constraints

on folding angles u
ð1Þ
I ¼+u

ð2Þ
II hold valid (the uniform
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pressure multi-stability is demonstrated in a quad-cell

prototype in electronic supplementary material, movie S2).
6. Pressure – stability relationship in a dual cell
assembly

When the crease torsional spring stiffness and internal

pressure are both considered, the elastic bistability is coupled
with the additional features from the dual-cell interaction; as

a result the pressure–stability relationships of the dual cell

assembly become more sophisticated compared to an individ-

ual cell. When the assembly is under uniform pressure, its

stability characteristics can be summarized as follows:

— If the two cells are mono-stable by themselves, the assembly

remains mono-stable on its primary folding branch.

However, if tangII=tangI ,
ffiffiffi
2
p

, two additional stable con-

figurations on the secondary folding branch will appear

when the applied pressure rises above a critical level, and

their corresponding folding angles converge to +u�I as

pressure continues to increase (figure 12a).

— If the two cells are weakly bistable by themselves, the

assembly can be tri-stable without pressure, with one

stable configuration on the primary folding branch

and two on the secondary branch. As pressure increases,

the pressure–stability relationship on the primary

branch is similar to that of an individual cell. If

tan gII=tan gI ,
ffiffiffi
2
p

, the two stable configurations on the

secondary branch continue to exist and their folding

angles converge to +u�I as pressure increases; otherwise

they will merge and disappear at a critical pressure level

(figure 12b).

— If the two cells are strongly bistable by themselves, the

assembly’s pressure–stability relationships are similar to

those of the weakly bistable assembly, except that it has

four stable configurations initially (figure 12c).
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Under differential pressure, the pressure–stability relation-

ships on the primary and secondary folding branches are

both similar to those of individual cells (figure 12e,f).
Generally speaking, when the internal pressure is low

(P
ð1Þ
k , P

ð2Þ
k � Pð1Þp , Pð2Þp ), the multi-stable configurations of the

dual cell assembly are primarily elastically induced; when the

pressure is sufficiently high (Pð1Þp , Pð2Þp � P
ð1Þ
k , P

ð2Þ
k ), the stab-

ility characteristics converge to those shown in figure 10. It is

in the intermediate pressure range that fluid origami will

experience changes in the values and existence of the stable

folding angles, and such controllable changes in stability can

lead to very attractive adaptive functions and biological

insights as discussed in the following section.
7. Potential impacts on engineering and plant
biology

Designing and developing structural or material systems by

using fluidic origami as building blocks could achieve some

very intriguing features. The pressure-dependent multi-

stability enables the fluidic origami to achieve distributed

and rapid shape change based on similar principles as in

plants like the Venus flytrap. Rapid movement happens

when branches of stable configurations disappear or appear

at critical pressure levels. For example, fluidic origami can

start from resting at one stable configuration, and then by

pressurizing it to a critical pressure value, it can be forced

to rapidly ‘snap’ to another branch of stable configuration

by releasing the stored energy (electronic supplementary

material, movie S1). Once the pressure is released, fluidic

origami can either snap back to its original configuration
or relax to a different shape, depending on the specific

pressure–stability relationship.

Furthermore, since even a simple dual-cell assembly can

have such rich stability characteristics, multiple fluidic origami

cells, each with uniquely synthesized designs, can be integrated

to form an adaptive cellular material or structural system with

a large number of tailored stable configurations. Such a sophis-

ticated fluidic origami system could switch among its stable

configurations by strategically pressurizing different cells to

achieve autonomous and efficient shape change or mechani-

cal property tuning, suitable for various applications like

morphing aircraft wings and kinetic architectures.

The development of fluidic origami is an example of how

the lessons from nature can lead to innovative engineering

systems; on the other hand, the physical insights obtained

from this study of pressure-dependent multi-stability could

provide guidelines for future plant physiology studies at a

cellular level. Currently, studies on the impulsive and reco-

verable movements in plants primarily focus at the organ

level. For example, the ‘snap-through’ motion in the Venus

flytrap is described by analysing the curvature changes of

its trap lobes and treating them as bistable membranes.

Although such studies on the macroscopic level offered

many valuable insights, they could not provide a holistic pic-

ture because the inherently hierarchical and cellular

organizations of the plant organs are not considered. And

the underlying mechanisms of these rapid movements are

still not completely clear.

This research offers two valuable insights to plant

rapid movements at a microscopic level. First of all, the

multi-stability in fluidic origami originates from the elasticity

of the constituent crease material and the interactions

between pressurized cells; this observation suggests that the
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‘snap-through’ bistable mechanisms in plants could originate

from the elastic properties of the motor cell walls and/or
the interaction among cells with different turgor pressures.

Secondly, the existence of stable folding configurations

changes with respect to internal pressure level; this suggests

that plants could exploit similar mechanisms to achieve rapid

movements. Therefore, this research on pressure-dependent

multi-stability in fluidic origami cells could provide guidance

for future plant movement study at the cellular level.
 .org
J.R.Soc.Interface

12:20150639
8. Summary
This paper discusses the physics of the pressure-dependent

multi-stability characteristics of fluidic origami: an adaptive

structure/material concept that combines the rich paper-

folding topology with the physiological features associated

with the impulsive and recoverable plant movements.

Three-dimensional fluid-filled tubular cells are developed

via well-designed and integrated Miura-Ori sheets, and

their internal fluid pressures are strategically controlled like

in plant motor cells for nastic movements.

The nonlinear geometric relationships among folding,

crease material deformation and the enclosed internal fluidic

volume give the fluidic origami surprisingly rich pressure–

stability relationships. An individual fluidic origami cell

can be elastically bistable from the interaction between its
two constituent Miura-Ori sheets. Upon pressurization,

the individual cell can switch between mono-stable and

bistable at critical pressure levels. When two pressurized

cells are stacked together, additional stable configurations

can occur from their interactions. The existence and values

of the corresponding stable-folding angles can be controlled

by internal pressurization. As a result, fluidic origami can

switch between being mono-stable, bistable and multi-

stable when the pressure reaches specific critical levels.

Such pressure–stability relationships can be tailored by

assigning Miura-Ori crease geometries, the torsional stiffness

difference between crease lines, and the stress-free stable

folding configurations.

This research mainly focuses on the understanding of the

fundamental physics of pressure-dependent multi-stability of

an individual fluidic origami cell and from dual cell inter-

action. The findings can be the building blocks towards

future development of sophisticated, multicellular fluidic

origami structures or materials at different size scales that

are capable of distributed and rapid shape morphing and

have tuneable mechanical properties. And these findings

can also provide valuable insights into the physiology of

plant movement at the cellular level.
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