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Blood flow is inherently linked to embryonic cardiac development, as haemo-

dynamic forces exerted by flow stimulate mechanotransduction mechanisms

that modulate cardiac growth and remodelling. This study evaluated blood

flow in the embryonic heart outflow tract (OFT) during normal development

at each stage between HH13 and HH18 in chicken embryos, in order to

characterize changes in haemodynamic conditions during critical cardiac

looping transformations. Two-dimensional optical coherence tomography

was used to simultaneously acquire both structural and Doppler flow

images, in order to extract blood flow velocity and structural information

and estimate haemodynamic measures. From HH13 to HH18, peak blood

flow rate increased by 2.4-fold and stroke volume increased by 2.1-fold.

Wall shear rate (WSR) and lumen diameter data suggest that changes in

blood flow during HH13–HH18 may induce a shear-mediated vasodilation

response in the OFT. Embryo-specific four-dimensional computational fluid

dynamics modelling at HH13 and HH18 complemented experimental obser-

vations and indicated heterogeneous WSR distributions over the OFT.

Characterizing changes in haemodynamics during cardiac looping will

help us better understand the way normal blood flow impacts proper cardiac

development.
1. Introduction
Embryonic cardiac formation is a finely orchestrated interplay between genetic

and environmental factors. Blood flow plays a critical role in embryonic heart

development, as constant interactions between flow and cardiac tissues generate

haemodynamic forces that modulate cardiac growth and remodelling [1–5].

Blood flow exerts pressure and shear stresses on heart walls triggering mechano-

transduction mechanisms that lead to physical, chemical and gene regulatory

responses in cardiac tissue [6]. Key cardiac morphogenetic events coincide with

periods of major haemodynamic change, as the dynamic blood flow environment

adjusts to meet the demands of the growing embryo. Normal haemodynamic

conditions are essential for proper cardiac development, as several studies have

shown that altered blood flow in animal models eventually leads to cardiac

defects and malformations [1,3,7–11]. Although it is clear that biomechanical

forces are fundamental components of heart morphogenesis, the processes that

relate blood flow to cardiac development remain unknown.

This study focuses on characterizing normal changes in blood flow through

the outflow tract (OFT) portion of the early embryonic heart. We employed

two-dimensional Doppler optical coherence tomography (OCT) to quantify

the blood flow environment at each stage during a critical period of cardiac for-

mation from Hamburger and Hamilton (HH) 13 to HH18 in chicken embryos

[12]. This developmental period, during which the heart is tubular, includes

cardiac looping and the beginning stages of chamber differentiation. The OFT

connects the primitive ventricle to the arterial vessel system, is very sensitive

to haemodynamic perturbation, and later gives rise to the aorta and pulmonary
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trunks, a portion of the interventricular septum, and the

semilunar valves, which are often involved in congenital

heart defects [3,8,9]. Characterizing the changes in haemody-

namics during this period of heart formation will help us

better understand the way normal blood flow impacts proper

cardiac development and provide a foundation for future

studies that investigate how altered haemodynamics lead to

cardiac defects.

Blood starts pumping through the embryonic heart at

HH10, long before cardiac morphogenesis is complete [13].

Blood pressure is exerted normal to the wall and results

from interactions between the wall and blood flow. During

myocardial compression, cardiac walls induce an increase

in blood pressure. During myocardial relaxation, however,

blood pressure generates a tension stress in the heart tissue.

Meanwhile, the frictional force of blood flow creates a

wall shear stress that acts tangentially to the endocardium

[6]. By HH18, endocardial cushions (regional wall thicken-

ings) at the inflow of the OFT function as primitive valves

that prevent backflow into the ventricle during diastolic

filling [14].

Cardiac looping is an important component of heart mor-

phogenesis. The linear heart tube bends and twists to bring

various heart segments into their relative positions to then

develop into the four-chambered heart. This process begins

soon after beating is initiated and continues through HH16

[14]. Looping is partly mediated by asymmetric gene and

molecular expression [15,16], but animal models have also

shown that mechanical forces play a major role in the loop-

ing process. Various hypotheses of mechanical looping

mechanisms have been proposed, where experiments show

that several redundant mechanisms are likely involved [17].

These include compressive axial forces as the heart tube

lengthens [18], differential growth on either side of the tube

[19], active cell shape change [14], cytoskeletal contractions

[20] and extrinsic forces from neighbouring tissues [21].

Forces exerted by increasing haemodynamic load during the

looping period are likely involved in the structural formation.

Abnormal looping can lead to serious structural defects similar

to those seen in congenital heart disease. For example, a transi-

ent reduction in haemodynamic load after venous obstruction

leads to impaired looping [3,22] and subsequent ventricular

septal and valve defects [3,9,23,24]. Understanding the

dynamic blood flow environments during cardiac looping is

essential for defining this important developmental event.

Previous work characterizing cardiac development between

HH13 and HH18 has focused on structural changes over the car-

diac cycle and stages. External and internal morphological

characteristics have been evaluated using cinephotography

and videography images to trace embryonic ventricular borders

and calculate cardiac volumes [25,26]. Others have defined the

diastolic filling characteristics of the embryonic heart, including

ventricular pressure, dorsal aortic velocity and atrioventricular

blood velocity [27–29]. More recently, four-dimensional OCT

has been used in conjunction with computational modelling

to analyse the biomechanics through the OFT at HH18 [30,31].

This study focused on haemodynamics in the OFT. We

measured OFT blood flow velocity and lumen diameter from

Doppler OCT images and calculated peak velocity ( peak V),

peak flow rate ( peak Q), stroke volume (SV), wall shear rate

(WSR), cardiac cycle length and time of flow. Embryo-specific

computational fluid dynamics (CFD) simulations were used to

complement these measurements and provide additional
insights into haemodynamics during the looping stages. This

work is the first to report changes in blood flow and WSR

through the OFT during cardiac looping from HH13 to HH18.
2. Material and methods
2.1. Chick embryo preparation
Fertilized Brown Leghorn chicken eggs were incubated blunt

end up at 37.58C and 80% humidity until they reached the desired

stage. Embryos at stages HH13 (48–52 h of incubation), HH14

(50–53 h), HH15 (50–55 h), HH16 (51–56 h), HH17 (52–64 h)

and HH18 (65–69 h) according to the defined Hamburger and

Hamilton structural morphology [12] were used in this study

(n ¼ 10 at each stage). A small section of the blunt-end shell and

the inner shell membrane were removed from above the embryo

heart. Any embryos that bled upon membrane removal or had

obvious structural defects were discarded. Optical microscopy

images were then acquired to record developmental stage, using

a Leica M165 C Stereomicroscope light microsocpe with

PCO-TECH Inc. sCMOS pco.edge 5.5 rolling shutter camera.

2.2. Optical coherence tomography image acquisition
Our custom-made OCT system has been previously detailed and

used to image embryonic chicken heart motion and blood flow

dynamics [32,33]. Briefly, the system has a spectral domain con-

figuration consisting of a superluminescent diode centred at

1325 nm from Thorlabs Inc. (Newton, NJ, USA) and a 1024 pixel,

92 kHz maximal line-scan rate infrared InGaAs line-scan camera

from Goodrich Inc. (Charlotte, NC, USA). This system allowed

acquisition of 512 � 512 pixel (512 A-scans) two-dimensional

images at approximately 140 frames per second with less than

10 mm resolution. Doppler flow phase images were generated

together with simultaneous structural images in post-processing

by calculating the phase differences between two adjacent

A-scans in a B-scan. Doppler velocities (vertical velocities, VZ)

were then computed from phase data, and the accuracy of these

velocities was recently confirmed with a syringe pump [33].

A thermocouple-controlled heating pad surrounding a ceramic

cup filled with water was used to maintain temperature in a plastic

box during acquisition. This apparatus kept the embryo near

37.58C in order to maintain the normal physiological heart rate.

For two-dimensional analyses, 200 sequential B-scan frames

from a longitudinal plane down the centre of the OFT were acquired

for each embryo (approx. three to four cardiac cycles; n ¼ 10). The

embryo was positioned so that the lumen completely filled

the OFT at maximum expansion and made a slit-like shape in the

centre of the OFT at maximum contraction [30,34]. A glass capillary

tube standard was imaged to calculate a pixel to length conversion

factor that was used in all structural analyses. For four-dimensional

(three-dimensional over time) analyses, cross-sectional B-scan

frames were acquired along the OFT in a representative embryo at

HH13 and at HH18. Separation between adjacent cross-sectional

planes was 7.5 mm. Following our previously described procedures,

these B-scan frame images were synchronized and reconstructed to

generate four-dimensional images [35], and the lumen segmented

for computational analysis [36].

2.3. Two-dimensional structural and Doppler optical
coherence tomography image analyses

Custom Matlab code (The MathWorks, Inc., Natick, MA, USA)

was used to extract simultaneous structural and Doppler velocity

image datasets from the acquired OCT raw data. A summary of

optical, structural OCT and Doppler OCT images acquired at

each stage is shown in figure 1. The overall analysis procedure is
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very similar to the process we reported for blood flow at HH18 in

surgically manipulated and control embryos [33]. This process

uses structural data to convert vertical velocity from the Doppler
phase data to absolute blood flow velocity magnitude, and then

employs Poisseuille’s equation to estimate peak Q, SV and WSR.

Doppler flow combined with structural images show a
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parabolic-like profile of blood flow through the OFT between

HH13 and HH18, which make these approximations valid

(figure 2). The parabolic profile with low Reynolds (Re , 4) and

Womersley (W , 0.6) numbers, imply that viscous forces domi-

nate blood flow in the OFT. A small Dean number (De , 3)

implies minor curvature effects in the OFT that cause the blood

flow profile to slightly skew towards the inner curvature,

especially close to the inlet [37].

Phase wrapping was evident in Doppler images of longitudinal

B-scans (figure 1). Wrapping occurs when the phase exceeds +p,

which corresponded to vertical velocities higher than

+23.4 mm s21 in our system. Conforming with parabolic-like vel-

ocity flow profiles in the OFT from HH13 to HH18 (figure 2)

[31,38], the fastest flow often wraps in the centre of the OFT (negative

phase enclosed by positive phase), while the slowest/non-wrapped

flow develops near the walls. Regions of wrapped and horizontal

flow (VZ¼ 0) in the OFT shifted from HH13 to HH18, as the heart

tube underwent looping. Consistent non-wrapped, non-horizontal

flow regions along the OFT centreline were identified at each stage

and used for the analysis. Regions directly adjacent or within

wrapped flow were not chosen for the measurement location to

avoid OCT signal deterioration as well as pixel-averaging errors

associated with phase wrapping and corresponding unwrapping

algorithms. While there were some differences in specific measure-

ment locations across the stages, all velocity sampling areas were

selected near the middle region of the OFT. The sampling area

used at each stage is shown in figure 1.

Phase shift OCT data within the sampling area were con-

verted to vertical velocity (VZ) values that were averaged and

filtered as previously described [33]. We then calculated the

magnitude of the blood flow velocity (V ) using:

V ¼ Vz

cos u
, ð2:1Þ

where u is the angle between the OFT centreline tangent and the

vertical direction. Doppler flow and structural images show that

blood flow follows the contour of the OFT between HH13 and

HH18, so that u is a good approximation for the angle between

VZ and the flow direction. For each sampling location, u was

measured with a custom Matlab program that calculated the centre-

line of the OFT during maximum flow by finding the midpoint
between outlined upper and lower myocardium walls from longi-

tudinal structural images at each position along the tube. The

sampling location was chosen along the OFT centreline, where

maximum velocities occurred, and the average peak V was calcu-

lated as the maximum absolute velocity at the sampling location

over the cardiac cycle. This velocity was compared across all stages.

OFT lumen diameters were measured from M-mode image

analysis. M-mode images were generated from a line perpendicu-

lar to the OFT centreline at the velocity measurement location and

used to display grey-scale structure from the chosen line over time

(figure 3). The upper and lower lumen interfaces in each M-mode

were traced to calculate the lumen diameter (D) over the entire

cardiac cycle.

The length of the cardiac cycle and time of flow were also

measured to further characterize the relationship between blood

flow and OFT wall dynamics at each stage. The length of the car-

diac cycle was measured as the time between blood flow velocity

peaks, and time of flow was defined as the average percentage of

time in the cardiac cycle when the main surge of blood was flowing

through the measurement location in the OFT. The presence of

flow was determined from the blood flow velocity versus time

trace as clear peaks above the background noise level (figure 3).

Volumetric flow rate over time was calculated using a form of

the Poiseuille equation [39,40]:

Q ¼ pD2vc

8
, ð2:2Þ

where Q is the blood flow rate through the OFT, vc is the measured

OFT centreline velocity (absolute value) and D is the OFT lumen

diameter from each frame. Equation (2.2) assumes that blood is

homogeneous, with parabolic, fully developed and laminar flow,

and zero velocity at the OFT lumen wall. SV was then estimated

by summing the forward flowing volume of blood calculated

from each frame during flow in a full cardiac cycle:

SV ¼
XN

i¼1

QiDt, ð2:3Þ

where Dt ¼ 1/frame rate (140 fps for our system) and N is the

number of frames in one cardiac cycle with forward flowing



50

(a) (b)

(c) (d)

500 800

600

400

200

0

400

300

200

100

0

0.6

0.4

0.2

0
13 14 15 16 17 18 13 14 15 16 17 18

m
ax

 d
ia

m
et

er
 (

mm
)

W
SR

 (
s–1

)
pe

ak
 Q

 (
m

m
3

s–1
)

pe
ak

 V
 (

m
m

s–1
)

SV
 (

m
m

3 
be

at
–1

)

13 14 15 16 17 1813 14 15 16 17
HH stage HH stage

WSR
max diameter

HH stage HH stage

18

6

4

2

0

40

30

20

10

0

Figure 4. Summary of haemodynamic results over advanced developmental stages from HH13 to HH18 (n ¼ 10 at each stage). (a) Peak V (mm s21), (b) peak Q
(mm3 s21), (c) SV (mm3 beat21) and (d ) WSR (s21) with maximum diameter (mm) displayed on the secondary y-axis. Average measures are shown at each stage
with s.d.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150652

5

blood (25–45 frames, depending on the cardiac cycle period and

time of flow at each stage).

WSR was calculated using another derivation of the

Poisseuille equation [41,42]:

WSR =
4vc

D
: ð2:4Þ

Embryonic chick blood has a fairly constant viscosity in the

physiological shear rate range [43], so that WSR should be pro-

portional to wall shear stress. Al-Roubaie et al. reported small

changes in viscosity during later development over large periods

of developmental time (4 days) [44], indicating that the changes

in viscosity between HH13 and HH18 (20 h) are likely minimal

and can be assumed constant. The WSR at the time of peak V in

the cardiac cycle was compared across all developmental stages.

2.4. Embryo-specific four-dimensional computational
fluid dynamics modelling of haemodynamics in
the outflow tract

To complement experimental measurements and to determine

three-dimensional distributions of flow and WSR over time, CFD

models of the beating heart OFT at HH13 and HH18 were gener-

ated. We used four-dimensional embryo-specific geometries of

the OFT lumen (segmented from OCT images), which consisted

of a sequence of meshes that depicted the dynamic motion of

the OFT walls over the cardiac cycle. Blood was modelled as a

Newtonian fluid having density r ¼ 1060 kg m23 [43] and vis-

cosity m ¼ 0.003 Pa s. Embryo-specific blood flow through the

OFT was modelled using a recently developed inverse method

based optimization procedure [45]. Briefly, normal tractions

(pressures) at the OFT lumen inlet and outlet surfaces (or more

practically their difference) were iteratively imposed, until com-

puted and measured Doppler velocities at an optimization

point in the interior of the lumen differed by less than 1%. One

representative embryo each at HH13 and HH18 were modelled.

CFD simulations were performed using the software ADINA

(Watertown, MA, USA). WSR over the OFT lumen surface were
obtained and compared to experimentally derived WSR, as

described earlier.
3. Results
Blood flow through the OFT was detected in optical and OCT

images from HH13 to HH18 (e.g. figure 1). Optical images

show that embryo body size, body curvature and the sur-

rounding vitelline vessel network make pronounced changes

during this development period. OCT structural and Doppler

images focus on the OFT and show the progression of the car-

diac looping process. The HH13 OFT is a mostly straight tube

near the edge of the embryo body. Consequently, blood flow

through the OFT at HH13 was mostly horizontal until it

reached the downstream half of the tube. As the development

stages advance, the OFT becomes more curved with larger

areas of vertical velocities, the interface between the OFT and

ventricle becomes more distinct, and the OFT endocardial

cushions become more visible. Cardiac looping and continued

development and growth of the embryo and heart affected

blood flow dynamics. Vertical velocity profiles, measured

from a line perpendicular to the direction of flow extending

from the velocity measurement location, revealed a para-

bolic-like profile at each stage (figure 2), validating the use of

the Poisseuille calculations to estimate Q, SV and WSR.
3.1. Blood flow ( peak V, peak Q and stroke volume)
Peak V, peak Q, SV and WSR were measured at each stage

between HH13 and HH18 and compared across all stages

(n ¼ 10 for each stage; figure 4). We report embryo group data

as the mean+ s.d. Peak V increased between HH13 and HH18

by 1.3-fold from 29.7+2.2 mm s21 to 39.3+4.4 mm s21,

respectively. The largest increase was between HH14 and

HH16, and was followed by a plateau region between



Table 1. Summary of average OFT flow parameters for each developmental stage (n ¼ 10). Data presented as means+ s.d. Statistical significance was
determined with a two-sample Student’s t-test, reporting two-tail p-values, for HH15 and HH18 values compared to HH13 values.

HH13 HH14 HH15 HH16 HH17 HH18

peak V (mm s21) 29.7+ 2.2 27.8+ 5.2 36.4+ 5.5* 39.7+ 3.9 39.5+ 4.7 39.3+ 4.4*

max diameter (mm) 397+ 27 399+ 21 375+ 24 434+ 41.9 499+ 32 533+ 55*

peak Q (mm3 s21) 1.8+ 0.3 1.7+ 0.3 2.0+ 0.4 3.0+ 0.6 3.9+ 0.5 4.4+ 0.9*

WSR (s21) 301+ 36 280+ 57 390+ 68* 369+ 52 319+ 49 299+ 51

cardiac cycle (ms) 599+ 59 554+ 58 531+ 39* 462+ 66 425+ 33 419+ 23*

SV (mm3 beat21) 0.22+ 0.05 0.22+ 0.04 0.25+ 0.08 0.31+ 0.07 0.38+ 0.07 0.47+ 0.11*

time of flow (%) 41.9+ 4.3 43.0+ 6.9 41.4+ 4.7 44.8+ 6.1 47.0+ 6.8 53.3+ 8.4*

*p-value , 0.05.

Table 2. Summary of backflow and forward surge flow presence in
embryos at each stage (n ¼ 10).

stage
embryos with
backflow (%)

embryos with
forward surge (%)

HH13 60 0

HH14 100 0

HH15 90 0

HH16 50 0

HH17 40 50

HH18 0 100
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HH16 and HH18 (table 1 and figure 4a). These values corre-

spond to previously published data at various locations in

the OFT measured through a combination of scanning micro-

scopic particle image velocimetry, ultrasound and OCT at

HH15 [46], HH17 [44,47] and HH18 [30,31,37,48]. Since the u

estimation in this study was based on the outline of the myo-

cardium walls from OCT structural images (instead of

standard ultrasound angle measuring procedures where u is

manually set by the operator), angle estimations were likely

very consistent.

Similar to the changes in peak V with increased develop-

mental stage, average peak Q increased between HH13

and HH18 by 2.4-fold from 1.8+0.3 mm3 s21 to 4.4+
0.9 mm3 s21, respectively, with the largest increase between

HH15 and HH18 (n ¼ 10). These values correspond to pre-

viously published data at HH18 [30,31,37,48]. Results are

summarized in table 1 and figure 4b.

Backflow was detected in the downstream portion of the

OFT in Doppler OCT images in at least a portion of embryos

at stages HH13–HH17. All HH14 embryos (n ¼ 10) exhibited

backflow, while no embryos at HH18 displayed backflow.

Backflow was present immediately prior to the systolic ejec-

tion phase. The volume of the backflow in each cardiac

cycle was very small compared to the forward flow SV (less

than 6%) at each stage. Additionally, an initial forward

flow surge was detected prior to the main ventricle ejection

in 50% of HH17 embryos and 100% of HH18 embryos

(table 2 and figure 5).

Average SV increased between HH13 and HH18 by 2.1-

fold from 0.22+0.05 mm3 beat21 to 0.47+0.11 mm3 beat21.

These values are comparable to previously published data

that was estimated with prolate spheroid ventricular volumes

[25]. Results are summarized in table 1 and figure 4c.

WSR at peak blood flow velocity at the sampling location

in the OFT was calculated at each developmental stage

HH13–HH18 (n ¼ 10). The average maximum WSR across

HH13–HH18 embryos was 301+ 36 s21 and 299+ 51 s21,

respectively, which is within previously published exper-

imental and CFD model estimates in the chick embryo OFT

at HH17 [47] and HH18 [30]. While there is no net change

in WSR from HH13 to HH18, WSR increased between these

stages to return to HH13 levels by HH18. WSR peaked at

HH15 at 390+ 68 s21, which was associated with an increase

in peak V. OFT lumen diameter remained relatively constant

between HH13 and HH15, but then also increased between

HH15 and HH18. Results are summarized in table 1 and

figure 4d.
3.2. Cardiac cycle (cardiac cycle length and time
of flow)

Cardiac cycle length and time of flow were measured at each

stage (HH13–HH18) to compare cycle timing (n ¼ 10)

(figure 6). The cardiac cycle decreased in length with advanced

developmental stage between HH13 and HH18 from 599+
59 ms to 419+23 ms, respectively. The results are summarized

in table 1 and figure 6a. Cardiac cycle measured in this study

corresponds to previously reported values measured from

the dorsal aorta, with increased heart rate with advancing

developmental stage [27–29].

The time of flow was measured for all embryos from clearly

distinguishable periods of blood flow in the velocity versus

time trace from each developmental stage between HH13

and HH18 (n ¼ 10). Time of flow, the percentage of time in

the cardiac cycle when blood was flowing (main surge), was

approximately half of the cardiac cycle for all embryos, consist-

ent with our previous observations at HH18 [30]. The time of

flow stayed near constant over the analysed developmental

stages and increased slightly between HH13 and HH18 from

41.9+4.3% to 53.3+8.4%, respectively. The results are

summarized in table 1 and figure 6b.
3.3. Computational fluid dynamics modelling of blood
flow in the outflow tract

Four-dimensional embryo-specific CFD modelling of blood

flow in the OFT revealed the changes in three-dimensional

flow profiles between HH13 and HH18 (figure 7a,b, top

rows). Velocity profiles were skewed towards regions of inner
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curvatures and OFT cushions, especially in the HH18 OFT. This

profile shape was expected due to centrifugal forces created by

the curved geometry of the OFT. Flow velocities increased as

the blood flow approached the outlet of the OFT at both

HH13 and HH18 due to tapering, although centreline velocities

remained higher along the whole length of the OFT at HH18.

Peak WSR was attained at maximal flow conditions with the

WSR being heterogeneously distributed over the OFT wall sur-

face (figure 7a,b, bottom rows). The overall WSR remained

similar (approx. 330 s21) for both HH13 and HH18 embryos;

however, regions of elevated WSR (more than 900 s21) were

found particularly near the OFT cushions closer to the inner

curvature at both stages. Velocities and WSR results obtained

from CFD modelling were consistent with experimentally

obtained parameters as described above.
 rface
12:20150652
4. Discussion
This study characterizes the blood flow forces through the

embryonic OFT during a critical developmental period,

which have been shown to stimulate tissue remodelling that

leads to cardiac defects [1,7,9,11,49]. Normal haemodynamic

assessment is the first step in elucidating the mechanisms

that cause altered blood flow to induce cardiac malformations.

The intrinsic relationship between substantial changes in blood

flow conditions and structural morphogenesis during cardiac

looping highlights the importance of understanding the role

of haemodynamics in heart formation.

The two-dimensional OCT longitudinal images acquired

in this study allow for an integrated view of blood flow and

OFT wall movement across a large group of embryos. Four-

dimensional OCT analyses have been recently used to

accurately track the dynamics of myocardial wall motion

and blood flow over time [30,31,50]. While we also show four-

dimensional embryo-specific CFD model examples based on

four-dimensional OCT images here, four-dimensional OCT

acquisition and image processing is significantly slower and

more complex than two-dimensional OCT procedures and

does not easily allow for routine embryo scans with large

sample sizes. Instead, the variables estimated from two-

dimensional longitudinal images in this study compare values

at one OFT position for peak V and peak Q, and additionally

for only one time point in the cardiac cycle for WSR.

While simplified, the high reproducibility between samples in

the same developmental stage shows our two-dimensional

OCT procedure was sufficiently accurate to detect subtle changes

in blood flowand structure during looping cardiac development.

The sampling location varied slightly in each stage to

allow for accurate Doppler velocity measurement. Our

Doppler OCT analysis requires areas of flow that are

non-wrapped and non-horizontal. As the looping of the

OFT and the growth of the cushions change, the geometry

of the lumen from HH13 to HH18, areas of measureable

blood flow change position in each developmental stage.

Computational models have shown that haemodynamics

vary along the length of the OFT, so that location will influ-

ence OFT diameter, blood flow velocity and wall shear

stress. This study compares WSR and D at the time of peak
V (and subsequent calculated measures) at each stage, since

all sampling locations remained within the middle of the

OFT and the small changes in positions likely have minor
effects. Moreover, SV and peak Q should be independent of

the position chosen for analysis.

4.1. Blood flow ( peak V, peak Q, stroke volume and
wall shear rate)

Looping and cushion generation both contribute to the geome-

try changes of the OFT during the HH13–HH18 development

period. This cardiogenesis in turn influences the flow of

blood and the resultant haemodynamic environment over the

course of development. Since blood flow is expected to increase

to meet the demands of the growing embryo, it is not surpris-

ing that peak V and peak Q increased from HH13 to HH18.

This increase was also captured in CFD embryo-specific

models of the OFT. In addition, changes in the OFT geometry

influenced blood flow profiles, which were three-dimensional

and skewed towards the inner curvature. The increase in

blood flow velocities and flow rates in conjunction with chan-

ging curvatures of the developing OFT influenced WSR

distributions obtained from the CFD models.

Overall, WSR remained relatively constant from HH13 to

HH14, substantially increased from HH14 to HH15, and then

steadily decreased with advanced stage reaching initial HH13

levels by HH18 (figure 4d ). WSR was computed at the time of

peak V, assuming a circular lumen with equation (2.4), which

is a good approximation when the OFT walls are fully

expanded [30,34]. The fluctuation in WSR from HH13 to

HH18 was accompanied by a large increase in lumen maxi-

mum diameter between HH15 and HH18, where the initial

increase in WSR preceded the increase in lumen diameter.

One explanation for this response is shear-mediated vasodila-

tion. Vasodilation is a mechanism used in other biological

states, including vessel blockage, to expand the lumen and

restore shear stress to normal levels [51,52]. Studies in the

chick embryo have shown that the zinc finger transcription

factor Krüppel-like factor 2 (KLF2) (induced by high shear

stress and an activator of shear-mediated vasodilation [53]) is

expressed in early embryonic endocardial cells of the OFT

[54]. In their study, Groenendijk et al. [54] concluded that the

spatial expression of KLF2 in relatively narrow portions of

the embryonic heart was due to high shear stress flow. The

results of our study imply that shear-induced vasodilation

may play a role in normal cardiovascular development.

WSR obtained from CFD simulations depicted hetero-

geneous WSR distributions over the OFT lumen wall, with

regions of higher WSR at OFT endocardial cushions and

inner curvatures. This indicates non-uniform stimuli on the

endocardial cells. Proper spatially and temporally varying

WSRs may be important for the normal development of

OFT endocardial cushions, which are key cardiac structures

as they act as primitive valves during looping stages

and later give rise to semilunar valves and a portion of the

interventricular septum.

Doppler OCT analysis revealed a small volume of backflow

in the OFT that decreased with advanced developmental

stage. Table 2 shows that there is a transition in development

where all HH14 embryos displayed backflow, while the per-

centage of embryos with backflow decreased as development

approached HH18, at which point no embryos exhibited back-

flow. Additionally, an initial surge of blood flow through the

OFT prior to the main flow of the cardiac cycle was evident

in HH17 and HH18 embryos. This flow is in the same direction

as the major flow but separated from the main surge (figure 5).
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At the earlier stages, as the ventricle fills with blood during

the diastolic phase, it expands possibly exerting a suction

pressure on blood flow in the OFT [55]. Endocardial cushions

help to ensure unidirectional flow in the OFT by blocking the

flow of blood during diastole. Backflow seen in the early

stages of development between HH13 and HH17 may be

caused by incomplete closure of the primitive cushions

before they are fully formed. Chamber formation beginning

in stages HH17–HH18 may also contribute to more efficient

pumping. Additionally, backflow may decrease with

advanced developmental stage because of differences in myo-

cardial contractility between HH13 and HH18 (figure 8). While

it is critical for adult heart valves to prevent intracardiac retro-

grade blood flow, studies in the embryonic zebrafish heart

suggest that shear stimulus produced by backflow in the devel-

oping heart is required for normal valvulogenesis [56]. Our

results may therefore reflect a transition in cardiac pumping

that is likely essential for proper heart development.

This study thoroughly defines the relationship between

SV and advanced developmental stage during looping by

characterizing embryos at each stage between HH13 and

HH18. This time period only spans 20 h in chick develop-

ment, with short time durations between each analysis

stage [12]. Increased SV throughout the progression of

cardiac development reflects an increase in ventricular

performance, as the heart adapts to an increased haemo-

dynamic load. According to the Starling law, the heart can

generate more force as the contractile muscle fibres stretch

towards the optimal sarcomere length [57,58]. In addition,

the ventricle is also developing and growing while increas-

ing its performance. SV calculations likely overestimate

actual values, since the estimation assumes that the OFT is

a circular cylinder over the entire cardiac cycle. OCT

images from a cross-sectional plane of the OFT show that

while the myocardium concentrically contracts and expands

over the cardiac cycle, the lumen is shaped like an ellipse

(although almost circular) at maximum expansion and a

slit at maximum contraction [30,34]. Even though this
method simplifies the dynamic and complex geometry of

the OFT, it does account for the changes in lumen diameter

and velocity over the cardiac cycle to serve as a comparison

of SV across developmental stages.

4.2. Cardiac cycle (cardiac cycle length and time of
flow)

This study also analysed the timing of the cardiac cycle

between HH13 and HH18 by measuring the length of the car-

diac cycle and the percentage of time in the cardiac cycle with

blood flow through the OFT. The cardiac cycle decreased by

1.4-fold and the time of flow remained relatively constant

from HH13 to HH18. These results suggest that the inter-

action between cardiac cycle length, time of flow and SV

are all tightly regulated in normal embryonic cardiovascular

development. Using SV and cardiac cycle length to calculate

cardiac output, our data show that cardiac output increases

by 3.1-fold from HH13 to HH18. Despite the substantial

changes in cardiac cycle and flow, the percentage of time in

the cardiac cycle during which there is blood flow stays

near 50% over all stages analysed.
5. Conclusion
Chicken embryos provide a valuable biological model of

cardiovascular development. This is because of the develop-

mental similarities with humans and the positioning of the

embryo in the egg, which permits the implementation of a var-

iety of in vivo imaging techniques (such as OCT) to measure

haemodynamic conditions. The major limitation with the

chicken embryo model is the lack of genetic alteration methods

available to investigate the signalling mechanisms driving

heart development. This study provides an important charac-

terization of blood flow in early development that can be

combined with genetic manipulation studies of cardiac for-

mation in other animal models. Previous studies have
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reported comparable haemodynamic parameters and intrinsic

relationships between blood flow and cardiac development in

avian, zebrafish and mammalian embryos [13,59]. For example,

chick embryos and zebrafish exhibit similar ventricular growth

patterns and altered blood flow in both organisms lead to

impaired cardiac development. Mechanotransduction regu-

lation of cardiac formation is only partially understood.

Future work is needed in the cardiovascular development

field to link changing blood flow and haemodynamics to

mechanotransduction-mediated tissue remodelling. In this

regard, the chicken embryo model is ideal for such studies as

haemodynamic manipulations in the chick are relatively easy,

while the heart is readily accessible for imaging.

Cardiac structure and ventricular performance together

generate the haemodynamic environment in the embryonic

OFT and play a critical role in cardiac formation. The heart

undergoes significant structural changes during HH13–

HH18 as the heart tube loops and forms a primitive ventricle.

For reference, wet embryo weight increases by 3.8-fold bet-

ween HH14 and HH18 [27]. Despite the lack of valves or

autonomic innervation in early cardiac development, cardiac

function including ventricular blood pressure, SV and heart

rate are tightly regulated [60], as cardiac output increases
proportionally to embryo weight [27]. This study used an inte-

grative imaging and modelling approach to characterize the

relationship between form and function of the developing

heart in order to improve understanding of the processes

involved in the development of the cardiovascular system.

This new knowledge quantifies normal patterns of haemo-

dynamic change in the early cardiac looping stages, which

will be fundamental to future investigations of altered

biomechanical environments that lead to cardiac defects.
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