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For several decades, it was largely assumed that stone tool use and production

were abilities limited to the genus Homo. However, growing palaeontological

and archaeological evidence, comparative extant primate studies, as well as

results from methodological advancements in biomechanics and morphological

analyses, have been gradually accumulating and now provide strong support

for more advanced manual manipulative abilities and tool-related behaviours

in pre-Homo hominins than has been traditionally recognized. Here, I review

the fossil evidence related to early hominin dexterity, including the recent

discoveries of relatively complete early hominin hand skeletons, and new meth-

odologies that are providing a more holistic interpretation of hand function,

and insight into how our early ancestors may have balanced the functional

requirements of both arboreal locomotion and tool-related behaviours.
1. Introduction
‘Now it appears that man-apes—creatures able to run. . . and with brains no

larger than those of apes now living—had already learned to make and to

use tools’. Washburn [1, p. 63].

Washburn’s [1] (see also [2]) declaration referred to the contemporary discov-

eries by the Leakey family [3,4] of the robust australopith skull of ‘Zinjanthropus
boisei’ in association with a living floor of Oldowan stone tools. Only a few

months later the remains of Homo habilis Olduvai Hominid (OH) 7 were

discovered [4–7] and quickly deemed the maker of these stone tools, while Zin-
janthropus was considered likely to be the prey instead [7]. In the decades

following, tool use and tool making were largely considered to be an ability lim-

ited to (and, indeed, used to define) the genus Homo (see [8] for a review).

However, a growing wealth of palaeontological, archaeological and comparative

primate evidence makes clear that Washburn’s [1] assertion that pre-Homo ‘ape-

men’ were making and using tools still holds true today. In particular, recent,

relatively complete fossil hominin hand skeletons [9–11] and archaeological

discoveries [12,13] have added greatly to the growing group of palaeoanthropol-

ogists and archaeologists open to the idea that enhanced manual dexterity and

tool-related behaviours have been a part of our evolutionary history for much

longer than traditionally believed [14–22] (see also [23,24]).

Inferences about manipulative ability and potential tool-related behaviours

in the earliest hominins must rely largely on morphological fossil evidence.

Comparative extant primate studies, showing a dominance of using organic

plants as tools in New and Old World monkeys and hominoids, suggests that

the modification of plants and tool use were behaviours probably present in

the last common ancestor of humans and Pan (chimpanzees and bonobos)

[24], and potentially evolved multiple times in extinct fossil primates and hom-

inins [22]. However, evidence of the modification and use of organic materials

as tools either does not preserve in the fossil record or is not recognizable as

tools [17,22]. Thus, researchers are generally forced to focus their interpretation

and understanding of the evolution of human manipulative behaviours on
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Figure 1. Bony and soft tissue morphology of the human hand considered advantageous for the manipulative precision and power squeeze grips used during stone
tool use and production. (a) The suite of bony features typically considered distinct in the human hand (although some specific features are found in other primates,
such as broad apical tufts in baboons) that reflect the ability to forcefully oppose the pads of the thumb and fingers, the well-developed musculature to the thumb
and fifth digit, the high external loading of the thumb and distribution of that load across the wrist and palm, and the broad fingertips for control and manipulation
of objects, especially within one hand. (b) Human precision grip (shown, a five-jaw chuck precision grip) in which the pads of the thumb and fingers grasp and
manipulate the object and (c) a power squeeze grip, in which the fingers grasp the object diagonally and thumb is in line with the forearm. In stone tool beha-
viours, the thumb and fifth fingers are important for the manipulating and stabilizing objects in both the dominant and non-dominant hands. Muscles of the thumb
and fifth digit that are strongly activated during use of these grips in tool making are noted [34]. FPL, flexor pollicis longus; FCU, flexor carpi ulnaris; FDM, flexor
digiti minimi; ADM, abductor digiti minimi; OP, opponens pollicis; DI, dorsal interosseus; AP, oblique adductor pollicis; FPB, flexor pollicis brevis; EPB, extensor pollicis
brevis; Mc, metacarpal. *The styloid process found at dorsoradial corner of the third metacarpal and thus cannot been seen in palmar view. **Marzke et al. [35]
show that the FPL is not strongly active in either the dominant or non-dominant hand, particularly during precision pinch grips, in experienced knappers (but
see [36]).
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fossilized hand anatomy, especially in the earliest stages

of human evolution (e.g. between approx. 7 and approx.

3.5 Ma; see §3) and modified stone tools. Furthermore, the mor-

phological evidence for the majority of our evolutionary

history has been limited to isolated hand bones that are not

directly associated with taxonomically identifying remains

(i.e. craniodental material) or stone tool evidence. Thus,

palaeoanthropologists have debated the taxonomic attribution

and manipulative capabilities of many early fossil hominins for

several decades [14,15,18,25–28]. However, recent palaeonto-

logical and archaeological discoveries, as well as advances in

methods for analysing morphological remains, have shed

new light on the manipulative abilities of early hominins.

There are several reviews of the morphological evidence

for manipulative behaviours in human evolution [29–33].

Therefore, this paper focuses on the more recent fossil and

archaeological evidence and the results of new method-

ologies that are helping to broaden our understanding of

the evolution of the human hand and, in particular, the

potential manipulative abilities of early hominins and how

these might also have been balanced with requirements of

arboreal locomotion.
2. What makes humans distinct? Manipulative
abilities and morphological correlates

For the past few decades, research into the evolution of human

manipulative abilities has focused—with good reason—on
identifying the manipulative behaviours that are unique to

humans compared with other primates, and the morphological

features of the human hand that might facilitate these abilities.

This research is thoughtfully and thoroughly reviewed most

recently by Markze [33] and others [29–32], and thus is briefly

summarized below and in figure 1.

Comparative experimental studies of primate manual

manipulation, including those on experienced human stone

tool knappers, have revealed three manipulative abilities con-

sidered unique to the human hand [37–47]. The first is

precision handling: the ability to rotate and manipulate

objects within one hand using the thumb and fingertips

[37,41]. Other primates typically need to use the palm as

well [43] or their other hand, a foot or the mouth to manipu-

late an object into the desired position [39,41]. The second is

forceful precision gripping, in which the pads of the thumb

and one or more of the fingers are able to forcefully stabilize

or manipulate an object, and at the same time withstand large

external forces, such as when knapping a stone tool [29,41]

(figure 1b). Other primates are capable of precision grips, typi-

cally tip-to-tip or pad-to-side grips between the thumb and

index finger, but these are not generally done with strong

force (i.e. precision holding; [38–40,45]). However, recent

studies have revealed precision pinch grips in wild, habituated

macaques [44] and chimpanzees [46,47] that may be forceful,

requiring further investigation into whether forceful precision

pinch grips are truly unique to humans.

The third uniquely human manipulative ability is power

squeeze gripping of cylindrical objects in which the fingers
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grip the object diagonally across the palm and the thumb is

either wrapped around the object or is in line with the fore-

arm, such as when using a hammer [48] (figure 1c). Other

primates are capable of power grips (using the palm) or diag-

onal hook grips (fingers usually stabilized against the palm),

but neither provide the same control that the power squeeze

grip does in humans [48].

To potentially infer when these unique manipulative abil-

ities may have evolved in the human lineage, many have

tried to identify the distinctive features, or suites of features,

in human bony and soft tissue anatomy that facilitate these

gripping behaviours [29,30,32,49–51]. These anatomical fea-

tures are summarized in figure 1. The most obvious and

critical difference about the human hand compared with

other primates is our robust and long thumb relative to the

length of the fingers. Experimental studies have demon-

strated that the thumb of the dominant hand [52,53] and,

although much less so, the non-dominant hand [34], incur

substantial external force during stone tool making and

particularly during tool use, such as when using a flake

[53,54] (but see [52] and §5). The bony morphology and

musculature of the thumb reflect its importance in human

manipulative behaviours. All but one of the muscles of the

human thumb have a significantly larger moment arm

(i.e. better mechanical advantage or leverage) than that of

chimpanzees [35,55]. Two muscles in particular, the opponens

pollicis and adductor pollicis, also have larger cross-sectional

area and potential torque that together provide better leverage

and limit fatigue when opposing the thumb to the pads of the

other fingers [55]. Larger muscle attachments on the first

metacarpal (Mc1) for the opponens pollicis and first dorsal

interosseous muscles also help to increase leverage and

stabilize the joint at the base of the thumb during opposition

[32,56]. Much attention has been paid to the independent

and well-developed flexor pollicis longus (FPL) muscle of

humans that helps to flex and stabilize the tip of the thumb

[19,29,30,51,57]. Although this muscle is important for pre-

cision control and manipulation, it is particularly active

during power squeeze grips [35] (but see [36]), rather than

precision pinch grips, and other primates also have an

independent FPL (e.g. hylobatids [51]) or a similar gabled-

attachment on the pollical distal phalanx (e.g. orangutans

[57]; figure 1a). Distinctive changes in carpal bone mor-

phology, such a broader and flatter trapezium-Mc1 joint, the

reorientation of the radial carpal (e.g. scaphoid-trapezoid)

and carpometacarpal (e.g. capitate-Mc2) articulations, and

the development of a styloid process on the base of the Mc3,

together help to better distribute across the wrist and palm

the large loads incurred by the thumb during tool-related

behaviours [31,58–61].

The fifth digit is also particularly important during stone

tool-related behaviours, but its morphology has been largely

ignored in comparative and experimental studies [33,35,55].

The fifth digit stabilizes the dominant hand during power

squeeze grips and precision grips (e.g. of the core during the

strike of the hammerstone), as well as during precision grips

of the non-dominant hand when manoeuvring an object

within the hand to find the desired position [35]. In humans,

the fifth metacarpal is the most robust of the digits 2–5 and

has a unique saddle-shaped joint with the hamate that helps

to rotate the fifth digit towards the thumb [31,35,50].

Several other distinctive features of the human bony and

soft tissue hand anatomy have also been correlated with
forceful precision and power squeeze grips (figure 1),

but the functional roles of the marginal aspects of the

hand—the thumb and fifth digit—have been shown to be

particularly important for the dexterity required to make

and use stone tools [35,55]. Looking at the morphology of

these two digits, and their associated wrist bones, in fossil

hominins may be the most informative way of inferring

the evolution of manipulative abilities and tool-related

behaviours in human evolutionary history [33].
3. Manipulative abilities of the earliest fossil
hominins

Functional interpretations of hand remains in the earliest

fossil hominins have focused not only on their potential

manipulative abilities, but also on how the morphological

requirements for manipulation may have been balanced with

those of arboreal locomotion. Perhaps the most critical aspect

to the unique manipulative abilities of humans is our intrinsic

hand proportions (relative length of the thumb and fingers).

However, we are extremely limited in what we can say about

hand proportions in the early hominins because it requires

the preservation of multiple bones from the same individual.

The earliest relatively complete hand is that of Ardipithecus
ramidus [62]. With hand proportions that are described as

more Old World monkey-like than chimp-like (i.e. short meta-

carpals, long fingers, robust thumb), the authors describe the

functional morphology only in relation to locomotion [62].

They do not discuss potential manipulative abilities, presum-

ably because, at 4.4 Ma, Ardipithecus appears about a million

years before the earliest evidence of stone tool use and tool

making [12,13,63] (see §5).

However, others have not been deterred from inferring

human-like manipulative abilities in the absence of stone tool

evidence, and from much less fossil evidence [19,21,64].

Among the two hand bones preserved from one of the earliest

bipedal hominins, Orrorin tugenensis (ca 6 Ma), one is a distal

pollical phalanx [65,66]. Its surprisingly human-like shape

and FPL muscle attachment has led some to conclude that

Orrorin possessed human-like precision grip abilities that

evolved for the manipulation of organic objects, not stone

tool making, with the relaxation of locomotor requirements

on the forelimbs [19] (but see [66]).

Similar claims have been made for Australopithecus afarensis
[18,28,50]. Though there is a wealth of hand fossils attributed

to Au. afarensis [67–69], only a few metacarpals can be reliably

associated with the same individual [50] (figure 2a). Hand

proportions have been estimated in Au. afarensis by several

researchers and range from potentially gorilla-like [27]

to very similar [50], if not equal, to modern humans [18,28].

Functional interpretations based on these differences in recon-

structed hand proportions, as well as other wrist and hand

morphology, also vary: Rolian & Gordon [18] conclude that

Au. afarensis could not have produced precision grips with

the same efficiency as modern humans; Marzke [29,50]

suggests Au. afarensis was capable of pad-to-side as well as

three-jaw chuck precision grips, but likely had less effective

precision handling and power squeeze grips; while Alba

and co-workers [18,28] allow for the distinctly human-like

pad-to-pad precision grips. Importantly, especially given the

absence of evidence for stone tool behaviours prior to 2.6 Ma

[63] until recently [12,13] (see §5), some researchers have
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Figure 2. Fragmentary or unassociated early hominin hand remains. (a) The composite hand of Au. afarensis from various sites in Hadar, Ethiopia. Only metacarpals 2 – 5
articulate well together and are presumed to be from the same individual. (b) A sample of isolated hand bones from (i) Sterkfontein, generally attributed to Au. africanus
and (ii) Swartkrans, associated with either Au. robustus or early Homo. None of the fossils can be associated with the same individual and several elements are not
represented in the fossil record. (c) The associated juvenile hand fossils of H. habilis OH 7. Although the phalanges are well represented in the OH 7 hand, little of
the thumb and palm is preserved making functional inferences challenging. All known wrist bones shown at bottom and numbers indicate digits 1 – 5. Note that
the phalanges of rays 2 – 5 cannot be attributed to any particular ray with certainty. All bones are shown in palmar view (apart from the wrist bones) and to the
same scale although siding varies. (Online version in colour.)
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supported the idea that the evolution of precision grip ability in

Au. afarensis (and earlier hominins) should not be restricted to

the context of stone tool behaviours, but may have initially

evolved for non-lithic tool use or tool making, or any other

complex manipulative behaviours that are required of extant

non-human primates [14,17–20,24,28,29].

The inference of human-like manipulative ability in early

hominins is generally inherently linked to the relaxation of

selective pressures on the hands for locomotion. There have

been decades of debate regarding the significance of arboreal

locomotion in the early hominin locomotor repertoire and

the functional importance of ‘arboreal’ features such as long

and curved fingers (see review by Ward [70]). The most

common evolutionary scenario is one in which, with the

advent of bipedalism, long, curved fingers are needed less, or

not at all, for grasping in trees, freeing the fingers to shorten

in length (either via neutral or positive selection) and the

thumb, somewhat by default, to become relatively long

[18,71]. Alternatively, it has been suggested that human hand

proportions may have been a pleiotropic by-product of redu-

cing the length of our toes for bipedalism [18,72] or that they

are actually symplesiomorphic, more similar to the Miocene

apes, and that early hominins never had the long fingers typi-

cal of our living chimpanzee and bonobo cousins [28,73].

In all of these scenarios, human hand proportions can be

viewed, at least partly, as an exaptation, rather than adaptation,

for enhanced dexterity [18,28]. The key to choosing between

these scenarios relies on being able to accurately reconstruct

intrinsic hand (and potentially foot) proportions in early

hominins, which is particularly challenging due to the poor

preservation and lack of associated hand skeletons (see

below). For example, the estimated human-like hand
proportions reconstructed for Au. africanus can only be esti-

mated from unassociated metacarpals [74] (figure 2b). Hand

proportions in Paranthropus/early Homo (e.g. Swartkrans speci-

mens; figure 2c), the ‘handy-man’ H. habilis OH7 hand (contra
[2]; figure 2d ) and Homo erectus are completely unknown

because there is simply not enough fossil evidence. The fossil

hominin sites at Sierra de Atapuerca, Spain, preserve numer-

ous hand bones, ranging from a single early Homo phalanx

from Sima del Elefante [75], to dozens of hand bones from

Gran Dolina (Homo antecessor) [76] and Sima de los Huesos

(Homo heidelbergensis), the latter of which remain unpublished

[77]. All show morphology that can broadly be described as

modern human-like, but they cannot be associated with

any particular individual to directly quantify intrinsic hand

proportions or provide an overall functional interpretation of

the hand in these Homo species.
4. What can we learn from relatively complete
hominin hand skeletons?

(a) Little foot
In addition to Ar. ramidus, there are only three relatively com-

plete early hominin hands prior to Neandertals (figure 3). The

first is the left hand of Australopithecus prometheus [78] StW

573 or ‘Little foot’, discovered in 1999 in the Silberberg Grotto

of Sterkfontein, South Africa [9,78,79] and dated to as early as

3.7 Ma [80] or as late as 2.2 Ma [81] (figure 3a). It is associated

with a relatively complete skeleton, allowing the rare oppor-

tunity to interpret the hand morphology within the context of

the remainder of upper limb and postcranial skeleton, as well
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Figure 3. The associated hand remains of early hominins. (a) The left hand of Au. prometheus StW 573 [78] in situ; (b) the reconstructed right hand of MH2
( palmar view), with inset image of hand bones in situ; (c) the reconstructed right hand of Hand 1 H. naledi ( palmar view) with inset image of hand bones in situ.
All hands are shown to the same scale. Photo credit: R. J. Clarke (a) and P. Schmid (b,c). (Online version in colour.)
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as taxonomically identifiable craniodental remains [9,78,79].

Preliminary observations of the hand morphology describe an

unusual trapezium-Mc1 articulation that is unlike humans or

chimpanzees, a robust, human-like thumb and proximal phal-

anges that are as curved as Au. afarensis [9]. No inferences

about its manipulative capability have yet been made and we

still await a full description and morphometric analysis of the

left (and right) [79] hand remains. However, curved phalanges

suggest use of the hand for locomotor grasping and the current

absence of stone tools in Member 2 at Sterkfontein [82] suggests

that the evolution of any human-like manipulative capabilities

in StW 573 may have been in response to non-lithic tool use.
(b) Australopithecus sediba
In 2010, a relatively complete right hand of the female adult

Australopithecus sediba MH2 skeleton from Malapa, South

Africa dated to 1.98 Ma was discovered [10,83] (figure 3b).

Preserving 20 of the 27 bones in the human hand, MH2 offered

the first (published) opportunity to make inferences about

potential overall locomotor and manipulative hand function

in an early hominin. Furthermore, the MH2 hand is found

in association with a complete right arm [84] and much of

the postcranial skeleton [83], and post-dates the appearance

of stone tools in the archaeological record [13,63]. Although

stone tools have not yet been found in direct association with

Au. sediba [10], tool making (using stone and bone) has been

documented at other local, contemporaneous sites, such as

Sterkfontein [82] and Swartkrans [14,16].

The MH2 hand bones present a unique mosaic of features.

The proximal and intermediate phalanges are mildly curved,

similar to those of Au. africanus and OH 7 [10,11], and display

well-developed flexor sheath ridges indicating powerful flex-

ion of the hand during grasping. The wrist bones also show

more similarities to other australopiths than to Homo [11]

and the metacarpal shafts, especially that of the Mc1, are

remarkably gracile (although the Mc3 of the male juvenile
MH1 skeleton is more robust, suggesting a strong degree

of sexual dimorphism in the hand morphology) [10,11].

However, the distal pollical phalanx is broad with a well-

developed FPL attachment, the first metacarpal has a distally

extended, human-like positioning of the dorsal interosseous

tendon, and the robust base of the fifth metacarpal suggests

that the extrinsic and intrinsic musculature to the fifth

finger were well developed [10] (figures 1 and 3b). (However,

it is important to note that recent evidence has not found a

strong correlation between entheses shape and the size of

the muscle [85,86].) Perhaps most importantly, the complete-

ness of the Au. sediba MH2 hand offers the first accurate

quantification of hand proportions in an early hominin,

showing that the thumb is not only long relative to the fin-

gers, but is actually relatively longer than that of modern

humans (i.e. falling outside the range of human variation)

[10]. Such a long thumb would have greatly facilitated pad-

to-pad opposition of the thumb and fingers, and ultimately

lead to greater control and manipulation of small objects in

particular [29].

With the traditional view that the hand of the last common

ancestor of Pan and humans was generally Pan-like (but see

[62,87]) with long fingers, one can consider the long thumb

of humans to be the result of reducing the length of the fingers,

rather than increasing the length of the thumb per se [18]. Such a

scenario is expected in a hand that is no longer significantly

used for locomotion. However, if the hand were still under

forelimb-dominated locomotor selective pressures, then

lengthening the thumb would allow a hominin to retain long

fingers needed for grasping branches but also a long thumb

that is advantageous for pad-to-pad precision gripping [18].

Digit proportions in Au. sediba reveal that the thumb, and

particularly the Mc1, is unexpectedly long (relative to the

length of the third ray and to hand size) [10,11,28], suggesting

perhaps a selection for increased thumb length. However, the

length of the proximal and intermediate phalanges (relative

to metacarpal length) is similar to that of modern humans,
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suggesting long fingers were not a functional requirement

of its locomotor strategy. Within the context of the remainder

of the MH2 skeleton, it may be that the functional require-

ments of locomotion were fulfilled by the long, ape-like

upper limb [84] and mildly curved phalanges [10], while the

hand proportions of Au. sediba largely reflect the requirements

of enhanced dexterity.
 blishing.org
Phil.Trans.R.Soc.B

370:20150105
(c) Homo naledi
The recent discovery of a complete right hand (missing only

the pisiform) of Homo naledi offers unprecedented insight into

how the hominin hand might balance the functional require-

ments of both locomotor grasping and manipulation [11,88]

(figure 3c). The H. naledi right hand was found partially articu-

lated in association with over 150 other isolated hand bones in

the Dinaledi Chamber of the Rising Star cave system, South

Africa [11,88]. The remains have yet to be dated but present

yet another distinct mosaic of morphological features not yet

known in any other hominin [11]. The wrist is remarkably

derived, demonstrating most of the key features considered

advantageous for coping with high external loading of the

thumb during tool-related behaviours [27,32,33,59–61]

(figure 1). The radial carpal and carpometarcarpal joints

show signs of reorientation to a more human-like proximodis-

tal alignment, including a trapezoid that is palmarly expanded

to have a human-like ‘boot-shape’. However, the trapezium-

Mc1 articulation is remarkably small and there is no styloid

process on the Mc3 [11]. The thumb is long relative to the fin-

gers; although not as long as Au. sediba MH2, H. naledi falls

only within the variation of modern human males (and outside

that of females) [11]. The thumb is robust with a human-like

attachment for the FPL muscle and well-developed, flaring

muscle attachments for the opponens pollicis and first dorsal

interosseous muscles, while the hamate-Mc5 articulation is

saddle-shaped like in humans. Together, this morphology

suggests enhanced opposition of the thumb to the fingers, par-

ticularly while holding and manipulating large objects, as well

as efficient precision and precision pinch grips [35]. The suite of

features found in the H. naledi wrist and palm have only been

found in committed stone toolmakers like Neandertals and

H. sapiens, strongly suggesting that H. naledi had enhanced

manipulative abilities for tool-related behaviours. Like with

Au. sediba, there are no stone tools yet found in association

with the H. naledi remains and without knowing the geological

age, H. naledi may have used stone and/or organic materials

as tools.

In contrast to the derived morphology of the wrist and

palm, however, the fingers of H. naledi are strongly curved;

more curved than australopiths, including Au. afarensis [11].

Phalangeal curvature is one of the best indicators of function

in the hand [89–92]. The degree of longitudinal curvature is

strongly correlated with the degree of arboreal locomotion

across primates, with climbing and, especially, suspensory

taxa showing much stronger curvature than terrestrial quad-

rupedal or bipedal taxa [89–91]. Phalangeal curvature is also

known to be sensitive to changes in locomotion throughout

ontogeny, such that more arboreal juveniles have more

strongly curved phalanges than their more terrestrial adult

counterparts [93]. The strong phalangeal curvature in both

the proximal and intermediate phalanges of H. naledi is a

clear functional indicator that this hominin still used its

hands for locomotor grasping. The combination of such
curved phalanges with a largely late-Homo-like wrist and

palm demonstrates that (i) locomotor grasping was a

functionally significant behaviour [94], not just a primitive,

non-adaptive retention that has yet to be lost (contra [95])

and (ii) this hominin was capable of using their hands for

both enhanced manipulation and arboreal locomotion, such

that one functional role did not necessarily need to be

sacrificed for the other.
5. New insights from new discoveries
and methodologies

Decades of research aiming to identify and test the potential

morphological features of the human and hominin hand that

are adaptive for stone tool behaviours were somewhat under-

mined by the discovery of the Late Pleistocene Homo
floresiensis [96]. Hand bones dated to 17–19 000 BP [97,98]

and belonging to at least two, small-bodied individuals

(LB1 and LB6) are surprisingly primitive; more similar to

extant apes and australopiths than to other Homo species,

despite their remarkably young age [98–100]. For example,

although H. floresiensis has a broad pollical distal phalanx

with a human-like FPL attachment [98,100], the proximal

phalanges are curved to a similar degree as in Au. afarensis
[100] and the wrist lacks a Mc3 styloid process, a boot-

shaped trapezoid, and a reorientation of the radial carpal and

metacarpal joints that are found in later Homo (and H. naledi)
[98,99]. However, there is a well-documented archaeological

sequence at Flores clearly demonstrating that stone tool

making and use were part of the behavioural repertoire

of H. floresiensis from as early as 840 ka [97,101]. Thus, the

direct association between the largely primitive hand of

H. floresiensis and stone tools (produced via a simple reduction

sequence [97]) calls into question our traditional assumptions

about the necessary morphological features and biomechanical

consequences of stone tool production [98].

Furthermore, recent archaeological discoveries have chan-

ged the traditional perception that stone tool production is an

ability limited to the genus Homo (see review in [8]). The first

is that of stone cut marks on bone at Dikika, Ethiopia, dated

to 3.39 Ma and in deposits currently associated only with Au.
afarensis [12,102]. The archaeological evidence demonstrates

the use of sharp-edged stones to remove flesh and blunt

stones to access marrow [12] (but see [103]). McPherron

et al. [12,104] put forth the important message of changing

the traditional archaeological paradigm that stone tool use

could not have occurred prior to stone tool making, and the

need to look for evidence of stone tool use in deposits that

predate recognizable stone tools (and predate Homo).

McPherron et al.’s [12,104] somewhat controversial [103]

claim of tool-use ability in pre-2.6 Ma hominins is further sub-

stantiated by the recent discovery of pre-Oldowan stone tools,

currently named Lomekwian, dated to 3.3 Ma from Lomekwi 3

in Kenya [13]. These tools are 700 000 years older than earliest

Oldowan technology (2.6 Ma [63]) and over 500 000 years older

than the earliest possible fossil evidence of Homo (2.8 Ma [105]).

Their techno-morphology suggests they were made using arm

and hand motions that are most similar to the hammer-

on-anvil technique used by chimpanzees during nut-cracking

(but likely requiring greater cognitive ability [106]; see also

[107]), rather than the free-hand knapping of the Oldowan

[13]. The inferred knapping technique suggests a substantial
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degree of hand motor control and forceful loading of the

hands, but likely less dexterity than Oldowan-making homin-

ins [13]. These tools are found in the same geographical

and chronological context of Kenyanthropus platyops, but are

also contemporaneous with Au. afarensis [13]. Importantly,

both the Lomekwian and Dikika cut marks [12] are too old

to be associated with currently known Homo fossils, and

thus demonstrate a manipulative (and cognitive) ability of

pre-Homo hominins that has not been traditionally recognized.

Biomechanical studies of tool use and tool making have

helped to clarify how fossil hominin hands may have been

loaded during stone tool-use and tool-making activities

[34,52–54]. Rolian et al. [52] created artificial ‘stone tools’

instrumented with force plates to examine how the external

forces and joint stress were distributed across the thumb

and index finger. They found that the thumb experienced

higher external loads and joint stress during tool making

than during flake use (but see [53,54] and below). They also

found that individuals with longer digits required relatively

less muscle force to stabilize the digit joints and experienced

relatively less joint stress during stone tool behaviours,

because their digits and joints were relatively more robust.

The implications of their results, they suggest, are that the

gracile pollical metacarpals of chimpanzees and early aus-

tralopiths could not produce or withstand the high forces

that occur during stone tool making [52].

Others [34,53,54] have also investigated external loading of

the radial digits during Oldowan stone tool making, but by

using pressure strips along the digits, such that force was

measured directly on the hand rather than by the tool (as in

[52]). In contrast to Rolian et al. [52], Williams et al. [53] found

that the loading experienced by the thumb during tool

making was actually lower (not higher) than that of the index

and middle finger. In other words, the human thumb is

‘over-built’ for Oldowan stone tool making, but appears well

adapted for the much higher external forces experienced

during flake use [54]. Key & Dunmore [34] further suggest

that the robust thumb of humans and other hominins was

selected, at least in part, for the loads experienced in the non-

dominant hand during stone tool making (although these

loads are much lower than those experienced by the thumb

of the dominant hand). This variation in experimental results

at least partly reflects differences in methodology (portable

force plates [52] versus pressure strips [34,53,54], and novice

[52] versus expert [34,53,54] knappers), but also demonstrates

the challenges of trying to simulate and quantify the biomechan-

ics of tool-related manipulative behaviours in fossil hominins

using modern humans (and modern human hand anatomy).

Kinematic modelling of the primate hand also has

the potential to make more informed inferences of the manipu-

lative abilities in early hominins. Feix et al. [108] created a

kinematic model of thumb and index finger precision grip

and manipulative movement based on bony hand morphology

in a broad sample of extant primates and fossil hominins. They

found that joint mobility and (scaled) digit proportions are

critical for determining precision grip and manipulation

potential (figure 1), but having a relatively long thumb or

high joint mobility alone does not necessarily result in greater

dexterity [108]. Despite (potential) differences in digit pro-

portions and joint mobility in australopiths, Au. afarensis and

Au. sediba show a manipulation workspace that is similar to

that of modern humans [108], supporting previous inter-

pretations of increased dexterity in these taxa [10,18,29] and
archaeological evidence of tool-related behaviours in

pre-Homo hominins [12,13].

Finally, greater access to three-dimensional scanning

techniques, including surface scanning [34–36,53–61,98,99]

and microtomography [109,110], has allowed for more com-

prehensive functional analyses of both the external and

internal morphology of hand bones. In particular, analyses

of the internal trabecular morphology of hand bones has pro-

vided new insights into how early hominins may have

actually, rather than potentially, used their hands [110]. Trabec-

ular bone remodels throughout an individual’s life in

response to mechanical loading, a concept known as bone

functional adaptation [111]. Several experimental studies

have shown that changes in loading direction or magnitude

can be associated with corresponding changes in the orien-

tation of trabeculae struts or relative volume of trabecular

bone (e.g. [112,113]). Previous comparative studies show

that variation in trabecular structure in extant hominoid

(including humans) hand bones correlates well with differ-

ences in inferred joint posture and loading during

locomotion and manipulation [110]. Within this context,

Skinner et al. [21] recently analysed the trabecular structure

in several fossil hominin hand bones, and found that Nean-

dertals, early Homo sapiens and modern humans share a

distinct asymmetrical pattern in the distribution of trabecular

bone in the metacarpals consistent with forceful opposition of

the thumb and fingers that is not found in other extant apes

(including nut-cracking Taı̈ chimpanzees). Interestingly,

Au. africanus also shows the Neandertal- and human-like pat-

tern of trabecular bone, suggesting that this early hominin

was also habitually using forceful human-like opposition of

the thumb and fingers, such as in the precision and power

squeeze grips that are used during tool use and tool making

[21]. Although many have proposed that Au. africanus [64]

and earlier hominins [18–20,28,29] were potentially capable

of human-like precision grips, the trabecular structure provides

more direct evidence that Au. africanus was actually loading

its hand in a human-like way, despite not having a fully

human-like external hand morphology [21,114]. These results

provide morphological evidence of enhanced manipula-

tive ability in an australopith and additional support for

archaeological evidence of tool use [12] and tool making [13]

in pre-Homo hominins.
6. Conclusion
Darwin [115] first proposed that the advent of bipedalism

was directly linked to tool use as it freed the hands from

the constraints of locomotion. This view was maintained

with the earliest discoveries of stone tools and fossil hominin

remains in the 1950s and 1960s [1,116]. However, there was a

paradigm shift in the 1970s with the discovery of the small-

brained, bipedal Au. afarensis 1.5 Myr earlier than the appear-

ance of stone tools [8]. Further discoveries of earlier bipedal

hominins dating back to at least approximately 6 Ma [65]

only increased the gap between bipedalism and stone tools

[8]. Thus, tool-related behaviours have generally no longer

been thought to have a cause–effect relationship with the

origin of hominin bipedalism [50,117,118]. However, it may

be worthwhile to revisit Darwin’s original hypothesis. On

the one hand, recent discoveries are closing the chronological

gap between the origin of bipedalism and evidence for
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tool-related behaviours. Morphological evidence (albeit lim-

ited) suggests the potential for human-like precision grip

ability in some of the earliest hominins (Orrorin; [19]). Fur-

thermore, comparative extant primate evidence [22–24] and

the recognition of the enhanced manipulative and cognitive

abilities required for the production of Oldowan

[106,107,119] and, less so, Lomekwian stone tools [13],

together suggest that there was likely a long history of experi-

mental tool use and improvements to manual dexterity prior

to the first recognizable stone tool behaviours in the archaeo-

logical record [17,22]. On the other hand, morphological

evidence from relatively complete hand skeletons [9–11]

indicates that fossil hominins did not necessarily need to

‘free’ their hands from the functional requirements of loco-

motion to increase their dexterity. Together recent evidence

suggests that pre-Homo hominins were more dextrous than

has been traditionally assumed, that tool-related behaviours

have played a chronologically deeper and more prominent

role in our evolutionary history than previously considered,

and that the hands of these early hominins were capable of
combining the functional requirements of both arboreal

locomotion and enhanced manipulation.
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