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Optimal cue integration in ants

Antoine Wystrach†, Michael Mangan† and Barbara Webb

School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK

In situations with redundant or competing sensory information, humans

have been shown to perform cue integration, weighting different cues

according to their certainty in a quantifiably optimal manner. Ants have

been shown to merge the directional information available from their path

integration (PI) and visual memory, but as yet it is not clear that they do

so in a way that reflects the relative certainty of the cues. In this study, we

manipulate the variance of the PI home vector by allowing ants (Cataglyphis
velox) to run different distances and testing their directional choice when the

PI vector direction is put in competition with visual memory. Ants show

progressively stronger weighting of their PI direction as PI length increases.

The weighting is quantitatively predicted by modelling the expected direc-

tional variance of home vectors of different lengths and assuming optimal

cue integration. However, a subsequent experiment suggests ants may not

actually compute an internal estimate of the PI certainty, but are using the

PI home vector length as a proxy.
1. Introduction
All animals have to deal with multiple sensory cues that provide information of

varying consistency and reliability about the external world. An increasingly

popular explanation of how this is done is based on Bayesian reasoning: that

the degree to which different information sources contribute to judgements

should be weighted relative to their respective certainty. The view that

human brains operate in this way has been substantiated by studies of optimal

cue integration [1], in which a perceptual judgement or action depends on at

least two sensory inputs, both with some associated noise. Assuming normally

distributed noise and a uniform prior distribution, the optimal estimate under

Bayes rules is the same as the maximum-likelihood estimate and is obtained by

averaging the inputs weighted by the inverse of their relative variance.

Weighted averaging can be deduced from perceptual judgements that fall

between conflicting cues, and optimality tested by systematically altering the

variance of one of the cues, and looking for a corresponding alteration in the

judgement. For example, in a classic study by Ernst & Banks [2], the height

of an object could be judged using independently manipulated haptic and

visual depth cues. As increasing noise was introduced to the visual cue, the

height judgement shifted gradually from a visual to a haptic bias, to a degree

that was quantitatively predicted by the relative variance of the cues. Many sub-

sequent psychophysical studies in humans have produced comparable results

(reviewed in [3]) and the possibility that other animals, even insects, may

also perform optimal cue integration is discussed by Cheng et al. [4].

Navigating ants have a ‘toolkit’ for foraging [5]. One element is path inte-

gration (PI), which by constant integration of heading direction (derived from

the celestial compass) and distance walked (from a stride integrator and ventral

optic flow) maintains a PI home vector pointing to the origin of the path [6].

A second element is visual memory of the surrounding scenery, which can be

used independently of PI to determine an appropriate direction of travel

(reviewed by Collett et al. [7]). PI and visual memory can be set in conflict exper-

imentally by displacing ants [8–11], rotating the sky polarization pattern [12,13]

or rotating the visual scene [14,15]. Ants in these experiments tend to take a com-

promise direction between those indicated by their PI and visual memories.

Collett [9] found the intermediate directions were systematically altered by

the degree of discrepancy and argued that the weighting of the cues could
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approximate optimality, but did not attempt to directly manip-

ulate the relative certainty of the cues. Legge et al. [11] found that

ants took a compromise direction which was more biased

towards the PI direction when the visual scenery at the release

point was less familiar, and argued that this represents an opti-

mal strategy of reduced weighting of a less certain cue. However,

this experiment had only two levels of cue reliability, and no

clear means of quantifying their relative degree of certainty.

In human cue integration studies, the certainty of differ-

ent cues and the effects of manipulation (e.g. adding visual

blur) are measured directly by a large number of repeated

trials on individuals. This would be difficult for ants. Individ-

uals make insufficient foraging trips in their lifetime,

especially if estimates under several different conditions are

needed; and recording the heading of ants under field

conditions introduces additional noise that could swamp

changes in variance due to the cue. However, for PI, the rela-
tive certainty of the PI home vector as distance walked

increases can, under very general assumptions, be directly

deduced [16] (see Material and methods). This provides an

elegant method to manipulate the relative certainty of the

PI cue: allow ants to run different distances before setting

the directions indicated by the PI and visual memory in con-

flict. We find the heading direction they take closely matches

the expected direction given by optimal integration of the

cues. In a further experiment, we attempt to manipulate

the directional uncertainty of the PI independently from the

home vector length to establish what information about

the uncertainty the ant actually uses to weight cues.
2. Material and methods
All experiments were conducted in June 2014, on a field site on

the outskirts of Seville, Spain (378200 N, 58590 W), using the

species Cataglyphis velox, a thermophilic ant. These ants are soli-

tary foragers and learn idiosyncratic routes using terrestrial and

celestial visual cues, rather than pheromones [17]. Two ant nests

located approximately 100 m apart were chosen for experimen-

tation. A route corridor approximately 1.5 m wide and 8 m

long, enclosed by a small plastic barrier (approx. 4 cm high),

was cleared around each nest, and cookie crumbs and meal

worm pieces were provided ad libitum 7 m away from the

nest. The corridors of the two nests pointed in different compass

directions (nest 1: NW; nest 2: SW).

(a) Experimental procedure
Ants were trained by allowing them to forage freely between the

nest and feeder for at least 1 day. In experiment 1, individuals

leaving the nest and running rapidly towards the feeder (i.e.

ants familiar with the route) were captured in a small opaque

tube at different locations along their outbound route: 0 m (i.e.

just after their departure from the nest), 1 m, 3 m or 7 m

(i.e. arriving at the feeder); capture locations were randomly

interleaved. To trigger homing motivation, captured ants were

provided with food before being released on a goniometer parti-

tioned into 58 bins, either at a visually familiar location 1.5 m

from the nest (1108 from the nest-to-feeder direction; see

figure 1a and electronic supplementary material, figure S1, for

views from nests and release points) or at a completely unfami-

liar location (see electronic supplementary material, figure S3).

Their heading direction was recorded by two observers as they

crossed a circle of 60 cm radius around the release point.

In the second experiment, outbound ants were always cap-

tured 3 m away from the nest. Control ants were given a food

item and immediately released on the goniometer at either the
familiar or unfamiliar release points, as for experiment 1. For the

experimental group, ants were confined for 5 min (without food)

in a circular, opaque, fluon-lined pot (diameter: 10.5 cm; height:

8.5 cm) with a clear view of the sky but all terrestrial cues

obscured. Video recording reveals the total distance walked

within the pot was around 10 m. They thus should have accumu-

lated additional noise in PI without increasing the length of the

home vector. They were subsequently given a food item and

released at either the familiar or unfamiliar release point.

(b) Estimating uncertainty
To estimate the expected variance in the home vector for ants that

have travelled different distances, their outbound path can be

modelled as an allothetic directed walk [16]: at each time-step,

the ant takes a step of equal length (L) in the same direction,

from its nest towards the food. Noise can be considered equiva-

lently as arising in the motor system (i.e. variance in the ant’s

actual location after a series of steps) or sensory system (i.e. var-

iance in the ant’s estimate of its location after a series of steps) or

both. Because the ant has an external celestial compass, the angu-

lar error on each step is independent. Following [16], if we denote

the noisy step lengths as L1, L2. . ., and the noisy angles as

D1, D2. . ., and take the X-axis as the direction of intended travel,

then for the ant’s position perpendicular to the direction of

intended travel, Y, the expected variance after n steps is given by

V(Ytotal) ¼
Xn

j¼1

VðYjÞ ¼
Xn

j¼1

VðLjsinDjÞ ¼ n½EðL2sinD2Þ�, ð2:1Þ

where E denotes the expected value. Thus, variance increases pro-

portionally to the number of steps taken, n, or equivalently for

steps of equal length, the distance travelled (dT) (figure 1b). The

directional variance (i.e. the variance in the heading direction indi-

cated by the home vector) is given by the angle u ¼ arctan(y/dH),

where dH is the direct distance home. As arctan(y/dH) � y/dH for

y� dH, the directional variance is given by

VðuÞ � V
y

dH

� �
¼ 1

d2
H

VðyÞ/ dT

d2
H

: ð2:2Þ

For an ant moving in a relatively straight line (e.g. on a

learned route from nest to feeder), dT � dH, and thus, perhaps

surprisingly, V(u) will decrease with distance, proportionally to

1/dH. This analysis was confirmed using a particle filter simu-

lation (electronic supplemental material, S4).

For experiment 2, if we assume the ant has travelled 13 m

while the distance home remains 3 m, the directional variance

should be

VðuÞ � dT

d2
H

/
13

32
� 1:4: ð2:3Þ

This means the variance would be equivalent to the variance

of straight run of less than 1 m (V(u) proportional to 1/dH ¼ 1.4,

hence dH ¼ 0.71). This estimate was also confirmed using the

particle filter simulation.

To compare the model to our data, we assume the ant is using

a weighted sum of the directions given by its view towards the

nest and its PI system. According to maximum-likelihood esti-

mation, the optimal weighting should be inversely proportional

to the variance, or equivalently

PIweight ¼
s2

view

s2
view þ s2

PI

ð2:4Þ

and

viewweight ¼ 1� PIweight: ð2:5Þ

The same optimal estimate can be derived from Bayes’s theorem

if we assume a uniform prior. Ants with no view or PI informa-

tion appeared to head equally often in every direction (electronic
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Figure 1. Experimental protocol and modelling uncertainty. (a) Ants were trained to forage from their nest (N) along a straight route to a feeder (F) 7 m away.
Experienced foragers were captured on their outward journey at either 0, 1, 3 or 7 m, provided with food, and released on a goniometer 1.5 m from the nest, and
their direction of travel recorded 60 cm from the release point. In experiment 2, some 3 m ants were made to run for an additional 5 min in a pot before testing.
(b) Ants will accumulate uncertainty during PI, so the positional variance of their estimate will increase (larger scatter of dots, yellow distributions) with distance.
However, as the increase is proportional to distance, the angular error of the estimate (red angles and red distributions) will decrease inversely to distance (see
Material and methods). For the pot condition in experiment 2, the additional accumulation of uncertainty should lead to a larger angular error for the same home
vector length. The illustrated scatter was produced using a particle filter model (see the electronic supplementary material). (Online version in colour.)
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supplementary material, figure S1). Ants could have acquired a

prior that coincides with the PI direction, due to repeated travel

back from the food. However, in our experiment, this would not

be distinguishable from a reduced relative weighting of the view,

and hence would make no difference to the fit.

We compare the fit with optimal weighting based either on the

positional variance (i.e. variance is proportional to distance) or the

directional variance (i.e. direction is proportional to 1/distance);

these fits have one free parameter, the variance of the view. We

also look at the fit of a simple (non-optimal) linear weighting by dis-

tance: PIweight ¼ a� distance, which also has one free parameter; or

a linear weighting by distance with an upper threshold beyond

which the weight is 1: PIweight ¼ 1, if distance . b, which has

two free parameters. We compare the fit of these four models

using the Akaike information criterion [18].
3. Results
(a) Experiment 1
By capturing ants on their route to a feeder and releasing

them with food at a novel location, we set into conflict the

directional information provided by the view (release-point-

to-nest direction) with the direction indicated by their PI

system (feeder-to-nest direction): a difference of 1108 in our

experimental configuration (figure 1a). By capturing the out-

bound ants at different distances (0, 1, 3 and 7 m), the relative

certainty of their PI should be altered, as described in the

Material and methods section.
The procedure for the two nests was identical and no signifi-

cant differences between them were observed, so they were

grouped for analysis using circular statistics [19]. All groups

showed oriented distributions (Rayleigh test p-values , 0.0008;

z-values . 6.84), but the groups headed in significantly different

directions from each other (Mann–Whitney U: p , 0.0001,

x2 ¼ 42:28). The further ants had travelled before capture, the

closer the mean direction to the PI direction. On average,

the 0 m group headed towards the nest (i.e. in accordance with

the view), 1 and 3 m groups moved in intermediate directions,

and the 7 m group followed the feeder-to-nest direction (PI)

(figure 2a). The 1 and 3 m heading distributions show no signs

of bimodality. Figure 2c shows the data described above with

the heading direction relative to the nest chosen by each ant

plotted against the distance travelled before capture. Both nests

show the same pattern of results (compare grey and white

dots), with increased weighting of the PI direction as distance

increases. As described in the Material and methods section,

we examined the fit of four different models to this data. The

best fit (table 1) is given by assuming optimal weighting of the

cues based on the directional variance of PI, which decreases pro-

portionally with increasing distance. This fit has only one free

parameter, the assumed (relative) variance of the view, and the

best fit is obtained when this is set as equivalent to PI at 0.95 m.

The headings also show significant difference in scatter

around the mean (O’Brien test: p ¼ 0.0178, F ¼ 3.52), with

variability reduced as the PI vector length increases. Note

that this inter-individual variability should not be taken to
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Figure 2. Ants integrate sensory cues using uncertainty. (a,b) Circular histograms show the orientations taken by ants with various PI lengths (a), and for the 3 m
control and 3 m ‘pot’ groups (b). Black and white arrowheads indicate view direction (nestwards) and PI direction, respectively. Red arrows indicate the mean directions
and blue circles the 90% CI. (c,d ) The headings at the familiar release point are replotted linearly. Left axis shows the angle from the nestward heading with PI direction
at 1108, and the right axis shows the weighting given to PI. Overlaid are the best fits of the various models. (c) Ants’ headings with various PI lengths for nest 1 (grey)
and nest 2 (white). Mean headings (black) match best weightings predicted by optimal integration based on PI directional uncertainty (red curve). (d ) Ants’ headings for
the 3 m (grey) and 3 m ‘pot’ (blue) groups. Red dot shows the weighting predicted by PI directional uncertainty for 3 m ‘pot’ group. Instead, mean headings of both
groups (white dots) closely match previous data (black dots), suggesting that ants use the vector length to weigh PI. (Online version in colour.)
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reflect individual variability, but rather this change in scatter

is also consistent with increased weighting of PI with

increasing vector length, as previous results have shown

larger inter-individual variability in use of learnt views

than PI [20], with the former affected by individual foraging

history, whereas use of PI is not [21,22].
(b) Experiment 2
In our second experiment, we decoupled distance walked

and PI vector length by capturing outbound ants 3 m from

the nest and making them spend 5 min walking in a pot.

Video analysis of nine ants showed they walked on average

10 m in the pot (min. 8 m, max. 15 m). Assuming ants are

still performing PI during this time, we predicted their

directional uncertainty should increase, to around the same

variance as 1 m ants in experiment 1 (see Material and

methods and figure 1b) and hence (assuming optimal weight-

ing) they should make a similar directional choice. We used a

higher n (¼ 40) to ensure experiment 2 should have power to

detect the predicted difference.

Figure 2c shows the heading directions of control (3 m) ants

and ‘pot’ (3 m þ 10 m) ants. Both groups headed in the same

intermediate direction (WWtest: p ¼ 0.8485; F ¼ 0.0367). This

suggests the two cues are combined with a weighting that

depends on the home vector distance, not the directional uncer-

tainty; that is, it is highly consistent for all groups with a PI

length of 3 m, irrespective of total distance covered (or time

spent), and different to groups with a different PI length

(experiment 1). It is possible that ants in the pot stopped inte-

grating their paths, or that for some reason the expected

accumulation of error in their PI estimate did not occur.

Below we propose instead that ants do not maintain an internal
estimate of their PI uncertainty, but weight cues optimally

based on a proxy for uncertainty: the length of their PI.
4. Discussion
A number of ant species have been shown to combine infor-

mation from PI and their visual memory so as to head in

intermediate directions when these cues are set in conflict

[9–11,13,23]. Here, we tested whether this cue combination

is optimal by varying the relative certainty of the PI cue.

(a) Assessing optimality without measuring individual
variance

Quantifying the variance associated with different cues, and

with manipulation of those cues, usually requires estimation

based on multiple trials for individuals [4]. It is crucial to note

that although we use only single measurements on individual

ants in this experiment, we can nevertheless obtain from first

principles a quantitative expression for how the individual

directional variance should change relative to distance tra-

velled. This depends only on the well-justified assumption

that ants are performing PI using an external compass refer-

ence [6], which means variance perpendicular to the home

direction increases proportionally to distance [24]; from

basic trigonometry, it follows that the variance of the angle

subtended with the home position decreases inversely with

distance. This allows us to determine, for a given certainty

of a directional visual memory cue, how the relative weight-

ing of the directional PI cue should change with distance, and

hence predict the intermediate direction that ants should take

when these are in conflict.



Table 1. Comparing models of PI weighting, ordered by lower AIC ¼ nlog(error) þ 2K, where K is the number of free parameters for each model. A difference
of more than 3 between the first and subsequent models suggests they have considerably less support. Performance of models to explain how directional
dictate of PI is weighted. The smaller the AIC the better the fit.

model equation best fit
no. free
parameters

residual
error AIC

directional uncertainty

s2
PIdirection / 1=distance

PIweight ¼ s2
view=s

2
view þ s2

PIdirection s2
view ¼ s2

PIdirection

at 0.95 m

1 0.0686 26.0366

distance and threshold PIweightðdist , bÞ ¼ a� distance

PIweightðdist . bÞ ¼ 1

a ¼ 0.2717

b ¼ 3.5

2 0.1050 22.7600

distance PIweight ¼ a� distance a ¼ 0.1731 1 0.2364 22.3266

positional uncertainty

s2
PIposition / distance

PIweight ¼ s2
view=s

2
view þ s2

PIposition s2
view ¼ s2

PIposition

at � 10 m

1 0.4583 20.3406
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It could be argued that the use of group data is not suffi-

cient to demonstrate that individual ants are altering their

weighting of the two cues (optimally or otherwise). However,

the absence of bimodality in the distributions suggests we are

not simply seeing the group average of single cue choices by

individuals; individual ants took compromise directions.

Although the precise weighting (and possible influence of

other factors) varies across individuals, the population stat-

istic can be estimated with the mean. All ants received

similar training and were randomly assigned to one of the

four groups, so the only factor that could explain the signifi-

cant group differences in the mean heading direction is their

differing PI state.
(b) Combining multiple strategies
Previous work [11] suggests that ants can also modulate the

weight attributed to their visual memory. At locations where

the view is more familiar, the directional choice appears more

strongly biased to the view. There may also be innate species

differences, or environmental influences on the certainty of

visual memory. Assuming optimal integration, we can predict

how the relative weighting should vary with PI vector length

for different levels of visual certainty (electronic supplementary

material, figure S2). At strongly familiar locations, visual mem-

ories could be favoured even for large PI vector length, and this

has been observed in ants [17,25–27]. Conversely, PI should

dominate behaviour at visually unfamiliar locations, consistent

with present (electronic supplementary material, figure S3) and

previous data [10,11,23,28]. Although we only consider the

initial bearing of ants in our experiment, note that movement

towards home will alter the relative certainty of the cues, and

thus a changing path direction (see for instance fig. 8 of [29])

could still be consistent with optimal integration.
(c) Do ants weight path integration optimally?
Cataglyphis velox ants show increasing bias towards the

PI direction as home vector length increases (figure 2a,c) in

a manner quantitatively predicted by optimal cue integration

based on the decrease in PI directional uncertainty (figure 2c).

We examined several alternative models of how the PI state

might have affected directional choice (table 1) but none pro-

vide as close a fit to the data as the assumption that the cues

are weighted inversely to the predicted directional variance

of PI. We thus have equivalent evidence of optimal cue
combination in ants such as has been provided in many

psychophysical studies in humans [3].

However, the results of our second experiment suggest

that ants may not compute the actual directional certainty of

their PI. Ants that should have accrued substantially more

uncertainty (figure 1b, ‘3 m þ 10 m pot’) gave equivalent

weighting to the PI cue as ants with the same PI length

(figure 2b,d), contrary to the prediction of optimal integration.

One potential explanation of this result is that ants did not

update their PI during the extra walking time spent in the pot,

and the observed behaviour is still optimal, as the PI directional

uncertainty is unchanged. Indeed, ants may well be aware that

they are trapped in a pot, although previous studies suggest that

PI is continuously running when ants are constrained by narrow

channels or forced into making a detour [30]. A second expla-

nation is that ants do not explicitly maintain an estimate of PI

certainty, but use PI home vector length as a proxy for certainty

when weighting PI with other cues. The use of such a proxy

would spare the need for their small brains to support the rep-

resentation of, or calculation with, the actual uncertainty of PI.

Supporting this view, we note that the ‘uncertainty’ revealed

by nest search distributions in ants [31], in a study where the

outward path was unconstrained, also appears to be dependent

on PI home vector length rather than absolute path length, even

though the latter modifies the actual uncertainty of PI.

Nevertheless, the correct weight to associate with this

proxy cue to obtain optimal integration is not trivial: as we

have shown, the ant does not simply use a linear weighting

(figure 2c). We think it is unlikely that individual ants in our

experiment could have acquired the correct tuning of the

weighting from individual experience, as their foraging experi-

ence consisted of a small number of trips within a cleared

corridor, which would seem insufficient to collect meaningful

measures of PI variance. We suggest that evolution has come

up with an optimal weighting rule that reflects long-term aver-

age levels of certainty, encompassing the sensory-motor noise

and typical meander of natural paths in a short-cut estimate.

Different species might thus have evolved different tunings

reflecting the reliability of their sensory-motor systems in

their natural environments [32]. It remains possible that a

pre-wired weighting rule could be further tuned by experience.

If optimal weighting in ants is due to use of a proxy rather

than explicit measure of uncertainty, this raises the question of

whether the same could be the case in at least some vertebrate

and human examples of cue integration. Many studies assume

that perceptual judgements that fit the predictions of optimal
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integration necessitate probabilistic processing. Ma [33] suggests

that strong evidence for Bayesian processing dependent on expli-

cit representation of uncertainty is provided by experiments in

which unpredictable changes in the level of uncertainty on indi-

vidual trials produces appropriate alterations in the weighting.

However, if the estimate of uncertainty for a single trial can be

based on some aspect of the cue that covaries with cue uncer-

tainty in a consistent manner (a proxy or ‘valid cue’ [34]) then

it is possible that an appropriate mapping to the ‘optimal’

weighting could have been learnt or evolved. However, it is

notable that both here and in previous studies [11,23], ants

appear to combine cues even when they indicate very discrepant
directions. That is, ants do not appear to be making a ‘meta-

Bayesian’ computation to determine the likelihood that the

cues come from a single source versus independent sources

[16]. This may reflect a significant difference in the flexibility of

cue integration in the invertebrate and vertebrate brain.
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