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The application of Next-Generation
Sequencing for studying the genet-

ics of papillary thyroid carcinomas
(PTC) has recently revealed new somatic
mutations and gene fusions as potential
new tumor-initiating events in patients
without any known driver lesion. Gene
and miRNA expression analyses defined
clinically relevant subclasses correlated to
tumor progression. In addition, it has
been shown that tumor driver mutations
in BRAF, and RET rearrangements - alto-
gether termed “BRAF-like” carcinomas -
have a very similar expression pattern
and constitute a distinct category. Con-
versely, “RAS-like” carcinomas have a
different genomic, epigenomic, and
proteomic profile. These findings justify
the need to reconsider PTC classification
schemes.

1

Thyroid carcinomas represent one of
the most common malignancies of the
endocrine system1 and the incidence has
increased 3-fold over the past 30 years.
The vast majority of thyroid cancer (more
than 95%) derives from follicular cells.2-4

Well-differentiated tumors of this gland
include papillary (PTC) and follicular
(FTC) histotypes.2-4 The former accounts
for about 90% of all thyroid carcinomas.
Conversely, anaplastic carcinomas (ATC)
are undifferentiated and very rare (2–5%
of cases). The ATC are extremely aggres-
sive and insensitive to conventional radio-
therapy and chemotherapy.5,6 The major
risk factor for PTC is the exposure to ion-
izing radiations. Indeed, Hiroshima and
Nagasaki survivors, patients treated in the
1950’s with head and neck irradiation to

cure thymic hyperplasia or mycotic infec-
tions, as well as children in Belarus and
Ukraine (after the nuclear disaster of
Chernobyl in 1986), exhibited an
increased PTC incidence.7 Genetic fac-
tors, other than the environmental ones,
play a key role in thyroid carcinogenesis.
Familial forms of thyroid neoplasia associ-
ated with tumor syndromes are caused by
known germline mutations.8 In addition,
common variants in FOXE1 and NKX2
genes have been recently associated to an
increased risk (5.7-fold) of both PTC and
FTC.9 Non-familial PTC forms are
caused by mutations and rearrangements
in oncogenes. In particular, mutually
exclusive mutations in genes belonging to
the mitogen-activated protein kinase
(MAPK), such as RET, TRK, RAS and
BRAF, have been found in about 70% of
PTC cases.10-12 Rearrangements of RET
proto-oncogene - with the fusion of its
tyrosine kinase (TK) domain with other
genes resulting in its constitutive activa-
tion - have been found in about 30% of
PTCs.13 In the remaining PTC cases, spe-
cific point mutations in BRAF (V600E)
and RAS genes (K-RAS, H-RAS and N-
RAS) have been identified.10,11 Nonethe-
less, no oncogene mutations have been
reported in about 25–30% of PTCs
(defined as “dark matter”).

The introduction of Next-Generation
Sequencing (NGS) technologies has sig-
nificantly expanded our view about cancer
genetics.14,15 Recent NGS-based studies
have explored the mutational landscape
and gene expression profiles of PTCs.16-19

Smallridge and colleagues16 performed
RNA-Seq to identify genes differentially
expressed between BRAF- and not BRAF-
mutated PTCs. They found that about
10% of these genes (i.e., more than 50)
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were related to immune functions.
Through NGS they also identified 4 high-
confidence fusion transcripts in PTC
samples (i.e., CKLF3-CMTM4, ETV6-
NTRK3, MKRN1-BRAF and PPIP5K1-
CATSPER2). Notably, CKLF3-CMTM4,
ETV6-NTRK3, MKRN1-BRAF gene
fusions have been found in 3 different not
BRAF-mutated PTC samples, indicating
that these may potentially represent new
driver events, although with a very rare
occurrence.

Similarly, Leeman-Neill and col-
leagues18 carried out RNA-Seq to identify
new chromosomal rearrangements corre-
lated to ionizing radiations. They found
that ETV6-NTRK3, RET/PTC and
PAX8-PPARG rearrangements are signifi-
cantly more common than point muta-
tions in PTCs associated with exposure to
131I.

Recently, the seminal work of The
Cancer Genome Atlas (TCGA) Research
Network has explored more than 400
PTCs.17 In this study, the authors describe
a comprehensive multiplatform analysis of
the genetic landscape of PTC, performed
by SNP arrays, exomes, RNA-Seq,
miRNA-Seq, DNA methylation and tar-
geted sequencing. One of the most signifi-
cant advances was the identification of
somatic alterations (single nucleotide var-
iants, INDELSs and gene fusions) as
potential new tumor-initiating events - i.e.
the “dark matter” - in patients without
any known driver lesion. In particular, the
authors identified EIF1AX, PPM1D and
CHEK2 as new driver PTC genes, and
also discovered TERT promoter mutations
in a subset of aggressive and less-differen-
tiated PTCs, strongly correlated to a high
risk of recurrence. Gene and miRNA

expression analysis also allowed defining
clinically relevant subclasses potentially
correlated to loss of differentiation and
tumor progression (e.g. over-expressed
miR-21 in association with aggressive tall
cell variant of PTC). In addition, handling
information about the mutation status of
these samples, they could define their gene
expression signature, determining the dif-
ferential signaling consequences of BRAF
and RAS driver mutations on the activa-
tion of MAPK signaling (schematized in
Fig. 1). Through the combination of
multi-level molecular data, this study has
demonstrated that BRAF-like and RAS-
like PTCs differ in their genomic, epige-
nomic, and proteomic profiles, and that
RAS-like papillary carcinomas are more
similar to the follicular ones. These find-
ings justify the need to reconsider PTC
classification schemes.

Figure 1. Driver genetic lesions in papillary thyroid carcinoma. In both panels, colored and gray proteins indicate activated or non-activated proteins,
respectively. Line thickness is proportional to the extent of activation. (A) As depicted, BRAF exerts its activity via MEK1 and MEK2 proteins, which in turn
activate ERK1 and ERK2. Activated proteins translocate into the nucleus where activate distinct nuclear transcription factors, enhancing gene transcrip-
tion. BRAFV600E mutation, common in PTCs as well as other epithelial-derived tumors, leads to the constitutive activation of BRAF protein, which leads to
the hyper-activation of downstream effectors of the MAPK pathway, as well as to non-responsiveness to ERK inhibitory feedback on BRAF itself. PTC
patients with RET gene fusions (namely RET/PTC) show a phenotype - and a gene expression profile - that is similar to BRAFV600E PTCs. (B) RAS protein(s)
operates upstream the MAPK and phosphoinositide-3 kinase (PI3K) pathways. Specific somatic mutations in RAS genes (HRAS, KRAS and NRAS) maintain
RAS protein in a constitutive active state. Such hyper-activation mediates its cellular effects either by the activation of the MAPK cascade and the PI3K
pathway, while PAX8-PPARg gene fusion leads to the inhibition of the PTEN inhibitory effect and to the activation of PI3K signaling. Modified from
Pathway Central (Qiagen).

www.tandfonline.com 2019Cell Cycle



A more recently published paper has
confirmed, by RNA-Seq, that gene expres-
sion profiles of BRAF-mutated and RET/
PTC samples are very similar among
them, and that they significantly differ
from RAS-mutated PTCs.19 Based on
RNA-Seq data they could assign, by gene
expression profiles’ similarity, PTC sam-
ples without known genetic lesions to
RAS- and BRAF-like categories. Despite
the relatively small number of analyzed
PTC samples (n D 18), integrating RNA-
Seq expression data to known driver
events data (both mutations and gene rear-
rangements), they found that BRAF-like
gene expression levels correlate more with
the mutation pattern than with tumor
staging. Combining RNA-Seq and tar-
geted Sanger sequencing they also identi-
fied in PTC samples new missense
mutations in well-established cancer driver
genes as CBL, SMARCA4 and NOTCH1,
and new mutations in driver genes,
already described in other cancer type
(DICER1, MET and VHL). Notably, the
DICER1E1813G mutation affects the metal
binding site of RNase IIIb domain, which
is involved in miRNA strand cutting.
Even though somatic mutations in
DICER1 are rare in cancer patients, hot-
spot mutations in DICER1 have been
recently identified in a range of nonepithe-
lial ovarian cancers.20 Such missense varia-
tions, although do not abrogate DICER1
function, alter its functionality in specific
cell types, making this protein oncogenic.
In addition, the same authors describe the
identification of a new chimeric transcript
generated by the fusion between the exon
1 of WNK1 gene, that encodes a lysine
deficient protein kinase 1, and the exon 2
of B4GALNT3, encoding the b1,4-N-ace-
tylgalactosaminyltransferase III, an
enzyme that promotes the formation of
GalNAcb1,4GlcNAc (LacdiNAc).19 Such
genetic alteration appears to be a rare
event. Indeed, it was identified in one out
18 analyzed PTCs. Interestingly, this gene
fusion was not associated to any other
known genetic alteration typical of PTC
and its presence correlated with a signifi-
cant over-expression of B4GALNT3 gene.
Notably, B4GALNT3 overexpression has
been reported in more than 70% of colon
carcinomas compared with their normal
counterparts.21 Its over-expression

resulted in enhanced cell-extracellular
matrix adhesion, migration, anchorage-
independent cell growth, and invasion of
colon cancer cells. It also increased tumor
growth and metastasis and decreased sur-
vival of tumor-bearing nude mice, sug-
gesting that its up-regulation may
promote tumor malignancy through
integrin and MAPK signaling pathways.
Moreover, a recent study has confirmed
the oncogenic role of B4GALNT3 acting
through an altered EGFR glycosylation
and signaling.22

Therefore, it would be interesting to
assess whether this new rearrangement is
also present in other cancer types, such as
colon carcinoma. Of note, our prelimi-
nary results indicate that such a gene
fusion is present quite frequently in colon
carcinomas. Then, determining how such
a genetic alteration is early in this process
would be of crucial relevance. However,
we should also mention that, at odds
with the oncogenic activity of
B4GALNT3 in colon cancer, Hsu and
colleagues proposed this gene as tumor
suppressor in human neuroblastoma. Its
overexpression was correlated with favor-
able histologic profile and early clinical
staging, and predicted a more favorable
prognosis.23 In addition, the rescue of
B4GALNT3 in neuroblastoma cell lines
suppressed cell proliferation and migra-
tion by decreasing b1 integrin signaling
and leading to decreased phosphorylation
of focal adhesion kinase, Src, paxillin,
Akt and ERK1/2. The concomitant
expression of constitutively active Akt or
MEK reversed the B4GALNT3-mediated
suppression of cell migration and inva-
sion. Such apparent discrepancy in the
oncogenic or tumor suppressor ability
B4GALNT3 is likely to be associated to
the distinct origin of the affected tissues
and/or to the presence of other tissue-spe-
cific predisposing factors.

In conclusion, the above-mentioned
papers have provided increased knowledge
of the molecular pathogenesis of PTCs,
and propose a re-classification scheme that
more accurately reflects the genotypic and
phenotypic differences between (and
within) RAS-like and BRAF-like papillary
carcinomas. They also have highlighted
the presence of new mutations in PTC
samples, also indicating that some of them

may accumulate in patients with already
known driver genetic lesions. The proteins
encoded by these genes may potentially
represent good candidates for adjuvant
therapies in PTC treatment.
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