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Zinc finger E-box binding homeobox
1 (ZEB1) is a transcription factor

that promotes tumor invasion and metas-
tasis by inducing epithelial-mesenchymal
transition (EMT) in carcinoma cells.
EMT not only plays an important role in
embryonic development and malignant
progression, but is also implicated in can-
cer therapy resistance. It has been
hypothesized that carcinoma cells that
have undergone EMT acquire cancer
stem cell properties including self-
renewal, chemoresistance and radioresist-
ance. However, our recent data indicate
that ZEB1 regulates radioresistance in
breast cancer cells through an EMT-inde-
pendent mechanism. In this Perspective,
we review different mechanisms by
which ZEB1 regulates tumor progression
and treatment resistance. Based on stud-
ies by us and others, we propose that it is
specific EMT inducers like ZEB1, but
not the epithelial or mesenchymal state
itself, that dictate cancer stem cell
properties.

Introduction

Epithelial-mesenchymal transition
(EMT), originally observed during
embryogenesis,1 plays important roles in
early developmental processes, including
neural crest development, heart valve
development, mesoderm formation and
secondary palate formation.2-4 It has been
recognized that the EMT program can be
resurrected in adult tissues under several
disease conditions, including wound heal-
ing, fibrosis and cancer.2-4 EMT and its
reverse process, mesenchymal-epithelial

transition (MET), are involved in differ-
ent stages of metastasis. The induction of
EMT in epithelial cancer cells promotes
migration, invasion and dissemination,
whereas MET facilitates metastatic coloni-
zation of distant sites by disseminated
tumor cells.5-7 Recently, mesenchymal-
like tumor cells generated by EMT have
been shown to exhibit characteristics of
cancer stem cells, including self-renewal,
radioresistance and drug resistance.8-12

Thus, research on EMT and MET will
not only advance our understanding of
tumor progression, but also shed light on
improving cancer treatment.

Over the past decade, extensive stud-
ies have been performed to investigate
the role and regulation of EMT and
MET in tumor progression.5-7,13 A
growing list of EMT regulators has been
identified, including extracellular factors
(such as TGF-b, HGF, FGF, IGF and
Notch ligands), transcription factors
(such as Twist, Snail, Slug and ZEB1),
microRNAs (such as the miR-200 fam-
ily, miR-205 and miR-9) and microenvi-
ronment.5,13-15 Although the association
between EMT and cancer stem cell prop-
erties has been recognized by many
recent studies, new evidence suggests that
EMT-independent mechanisms exist and
that all EMT inducers are not equal.16,17

For instance, while the transcription fac-
tor ZEB1 can promote migration and
invasion by inducing EMT, this protein
enhances tumor radioresistance indepen-
dent of EMT.16 In this article, we review
EMT-dependent and EMT-independent
mechanisms by which ZEB1 regulates
development, tumor progression and
therapy resistance.
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ZEB1 Protein and Its
Physiological Functions

Expression of ZEB1 (also named
TCF8 or DeltaEF1) is regulated by multi-
ple signaling pathways, such as WNT,18

NF-kB,19 TGF-b,20 COX2,21 HIF sig-
naling22 and microRNAs.23-25 ZEB1
belongs to the ZEB family of transcription
factors characterized by the presence of 2
zinc finger clusters, which are responsible
for DNA binding, and a centrally located
homeodomain. In addition, ZEB1 con-
tains other protein binding domains
including the Smad interaction domain
(SID), CtBP interaction domain (CID)
and p300-P/CAF binding domain
(CBD)26-29 (Fig. 1A). Through zinc fin-
ger clusters, ZEB1 can bind to specific
DNA sequences named E-boxes.28 By
recruiting co-suppressors or co-activators
through CID, SID or CBD, ZEB1 can
either downregulate or upregulate the
expression of its target genes.27,30 For
instance, ZEB1 directly binds to the E-
box located in the promoter of CDH1, the
gene encoding E-cadherin,30 and recruits
the CtBP transcriptional co-repressors31

and/or the SWI/SNF chromatin-remodel-
ing protein BRG1,32 leading to repression
of CDH1 transcription and induction of
EMT. On the other hand, by recruiting
p300-P/CAF and Smad proteins,
ZEB1 can activate the transcription of
TGF-b-responsive genes and promote
osteoblastic differentiation.26,27 In MDA-
MB-231 human breast cancer cells,
knockdown of ZEB1 resulted in upregula-
tion of »200 genes and downregulation
of »30 genes, most of which are determi-
nants of epithelial differentiation and cell-
cell adhesion.

When Zeb1 was first identified as a
repressor of d1-crystallin enhancer in the
chicken embryo in early 1990s, it was
thought to be involved in embryogenesis
because Zeb1 is specifically expressed in
mesodermal tissues, the nerve system and
the lens in the chicken embryo.34 Later,
mouse models with Zeb1 deletion revealed
the role of Zeb1 in mammalian develop-
ment. While heterozygous Zeb1 mouse
mutants are viable and fertile, Zeb1 null
mice die perinatally exhibiting respiratory
failure, severe T cell deficiency of the thy-
mus, and various skeletal defects including

craniofacial abnormalities, limb and ster-
num defects, and malformed ribs.35 Inter-
estingly, these developmental defects are
associated with a mesenchymal-epithelial
transition, as evidenced by re-expression
of E-cadherin and loss of vimentin in sev-
eral embryonic tissues (including the pal-
ate and nasal mesenchyme, the
perichondrial region of forming cartilage,
the embryonic eye and the ventricular
zone of the brain) and in embryonic fibro-
blasts.36 This finding underscores the crit-
ical role of Zeb1 in developmental EMT.
In addition, either heterozygous or homo-
zygous inactivation of Zeb1 in mouse
embryos results in corneal defects, which
mimics human posterior polymorphous
corneal dystrophy.37 In humans, ZEB1
mRNA expression levels vary significantly
among different adult tissues, from barely
detectable expression in the pancreas and
liver, to moderate expression in the mam-
mary gland and ovary, and to high expres-
sion in the bladder and uterus.38

However, the function of ZEB1 in adult
tissues is still largely unknown. Therefore,
mouse models with conditional Zeb1 dele-
tion or overexpression will not only shed
light on the physiological functions of
Zeb1 in adult tissues, but also provide
tools to investigate the role of Zeb1 in
cancer and other diseases.

ZEB1 in Tumor Progression
and Metastasis

E-cadherin, a major cell-cell adhesion
molecule, has long been recognized as a
tumor suppressor protein.39 Loss of E-
cadherin leads to tumor cell dissociation
and enhanced ability to migrate, invade
and metastasize, which is associated with
poor prognosis in human cancer
patients.5,40-42 Due to the pivotal role of
ZEB1 in the downregulation of E-cad-
herin, ZEB1 acts as a driver of EMT and
cancer progression.16,28,33,34,44 Aberrant
expression of ZEB1 has been observed in
many human cancers, such as uterine can-
cer,45 pancreatic cancer,29,46 osteosar-
coma,47 lung cancer,48,49 liver cancer,50

gastric cancer,51,52 colon cancer53 and
breast cancer.30 In these tumors, ZEB1
expression correlates with loss of E-cad-
herin and is associated with advanced

diseases or metastasis, which indicates the
relevance of ZEB1 induction of EMT and
tumor progression in clinical cancers. This
notion is further supported by functional
studies using human cancer cell lines, in
which overexpression of ZEB1 can induce
EMT and promote metastasis in multiple
cell lines, such as breast cancer,30 colon
cancer43 and lung cancer54 cell lines.

In addition to repressing E-cadherin
expression, ZEB1 also regulates other tar-
get genes involved in tumor progression
(Fig. 1B). For example, ZEB1 binds to
the promoters of epithelial polarity genes
including Crumbs3, HUGL2 and PATJ
(Pals1-associated tight junction) and
represses their transcription, leading to
reduced adhesion and increased invasive-
ness of breast cancer cells.33 In colorectal
cancer cells, ZEB1 promotes metastasis
and loss of cell polarity by repressing the
expression of Lgl2 (lethal giant larvae
homolog 2),43 a cell polarity factor. More-
over, ZEB1 enhances the tumorigenicity
of pancreatic cancer cells by inhibiting the
expression of stemness-repressing micro-
RNAs, including miR-203 and the miR-
200 family.55 It is not clear, however,
what relationship these various ZEB1 tar-
get genes have: synergistic, additive or
independent?

ZEB1 in Cancer Therapy
Resistance

Cancer therapeutic resistance, includ-
ing radioresistance and drug resistance, is
a major challenge in cancer research and
treatment.9,56 Drug resistance has become
a key obstacle in developing targeted ther-
apies and limited the efficacy of these ther-
apies in treating cancer patients.56-58

Cancer stem cells, a small subpopulation
of cancer cells with tumor-seeding and
self-renewing ability, have been found to
contribute to therapy resistance in differ-
ent cancer types through preferential acti-
vation of the DNA damage checkpoint
response and repair, thereby protecting
cells from DNA damage, cleaning reactive
oxygen species (ROS) and activating the
cell survival signaling pathways.9,56,59

Since tumor cells that have gone EMT
can acquire cancer stem cell properties,8

the EMT program has been implicated in
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therapy resistance in cancer, including
radioresistance, chemoresistance, HER2,
EGFR, endocrine and other targeted ther-
apy resistance.11,12,44,60-64 A provocative

study by Weinberg and colleagues demon-
strated that basal, but not luminal breast
cancer cells can readily convert from non-
cancer stem cell state to cancer stem cell

state in response to microenvironmental
stimuli such as TGF-b; such conversion is
driven by activated expression of ZEB1.65

Interestingly, ZEB1 overexpression is

Figure 1. ZEB1 protein domains and mechanisms of action. (A) Schematic representation of ZEB1 protein. CBD: coactivator p300 and P/CAF binding
domain; ZFD: zinc finger domain; SID: Smad interaction domain; HD: homeodomain; CID: CtBP interaction domain. (B) The working model of regulation
of EMT, metastasis and therapy resistance by ZEB1. (i) Upon ionizing radiation (IR), ZEB1 is phosphorylated and stabilized by activated ATM kinase, and
ZEB1 in turn recruits USP7 which deubiquitinates and stabilizes CHK1, leading to induction of DNA repair, cell survival and radioresistance. In parallel,
ZEB1 represses its own negative regulator, miR-205. (ii) Microenvironmental stimuli such as TGF-b upregulate ZEB1 expression, and ZEB1 can promote
cancer metastasis by repressing E-cadherin expression and inducing EMT, or by repressing other target genes (such as Lgl2, PATJ, HUGL2 and Crumbs3).
In addition, ZEB1 can promote drug resistance through EMT-dependent and EMT-independent mechanisms. Gray color indicates ZEB1’s transcriptional
targets.
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frequently observed in mesenchymal-like
carcinoma cells. These findings underscore
the importance of elucidating the func-
tional role that ZEB1 plays in the acquisi-
tion of cancer stem cell properties.
Moreover, what is the mechanism by
which these mesenchymal-like carcinoma
cells acquire treatment resistance: EMT-
dependent or EMT-independent?

ZEB1 regulates radioresistance
through an ATM¡ZEB1¡CHK1
signaling axis

Recently, we and others reported that
ZEB1 plays a critical role in regulating
tumor radiosensitivity.16,66 Knockdown
of ZEB1 in SUM159-P2 (a radioresistant
subline of the SUM159 breast cancer cells
derived from ionizing radiation), U2OS
(osteosarcoma), H460 (non-small cell
lung cancer) and H1299 (non-small cell
lung cancer) cell lines increased radiosensi-
tivity, while ectopic expression of ZEB1 in
radiosensitive mammary epithelial cell
lines, HMLE and MCF7, led to elevated
radioresistance.16,66 Since ZEB1 is a well-
established EMT-inducing transcription
factor, we were led to question whether
ZEB1 regulates radiosensitivity through
EMT. First, we overexpressed Snail, Twist
or ZEB1 in HMLE cells. Each of these
transcription factors induced EMT and
increased radioresistance, and in each case,
expression of Snail, Twist and ZEB1 was
upregulated, regardless of which factor
was used to induce EMT.16 These find-
ings demonstrate an association between
EMT and radioresistance, but do not
reveal whether it is EMT itself or a specific
EMT inducer that causes radioresistance.
When we silenced each of the 3 transcrip-
tion factors in HMLE cells overexpressing
Snail, Twist or ZEB1, it did not cause
reversal of EMT. Notably, only knock-
down of ZEB1 increased radiosensitiv-
ity.16 We also overexpressed these 3
transcription factors in the MCF7 human
breast cancer cell line, and none of them
induced EMT due to the expression of
intact p53 protein, a barrier to EMT
induction. Interestingly, only ZEB1, but
not Snail or Twist, conferred radioresist-
ance on MCF7 cells even without induc-
ing EMT.16 These results suggest that it is
a specific EMT regulator, ZEB1, but not
EMT itself, that induces radioresistance.

Mechanistically, ZEB1 regulates radio-
sensitivity in cancer cells by promoting
homologous recombination (HR)-medi-
ated DNA damage repair and the clear-
ance of DNA breaks (Fig. 1B).16 CHK1
(but not CHK2) mediates, at least in part,
the effect of ZEB1 on DNA damage repair
and radioresistance. Interestingly, ZEB1
regulates CHK1 levels by interacting with
the deubiquitinase USP7. This interaction
promotes USP7’s ability to deubiquitinate
and stabilize CHK1 protein without
affecting CHK1 gene transcription.16

Upon ionizing radiation, ZEB1, but
not Twist and Snail, is upregulated in
SUM159 cells.16 Radiation causes DNA
damage which leads to activation of ATM
and ATR kinases. Activated ATM, but
not ATR, phosphorylates ZEB1 at serine
585 and stabilizes ZEB1, resulting in ele-
vated ZEB1 protein levels.16 How ATM-
mediated phosphorylation of ZEB1 leads
to ZEB1 stabilization remains to be deter-
mined. Similarly, others also reported that
radiation causes upregulation of ZEB1 in
the A549 lung cancer cell line67 and in the
CNE1 and CNE2 nasopharyngeal cancer
cell lines.68 Taken together, these findings
by us and others suggest that radiation
treatment can give rise to increased ZEB1
levels and therapy-induced radioresist-
ance. Cancer cells with treatment resis-
tance including radioresistance are most
likely to be the source of local and distant
recurrence. Indeed, in a cohort of 286
human breast cancer patients (87% of
them received radiotherapy), patients with
high ZEB1 expression in their mammary
tumors had much worse distant relapse-
free survival compared with those with
low ZEB1 expression.16

Since silencing ZEB1 expression in
cancer cells leads to increased tumor
radiosensitivity in vitro and in vivo,16,66

microRNAs targeting ZEB1, such as miR-
205 and the miR-200 family, have the
potential to be used as radiosensitizers in
cancer treatment. Recently, we found that
miR-205 can radiosensitize SUM159-P2
(breast cancer), MDA-MB-231 (breast
cancer), A549 (lung cancer) and U2OS
(osteosarcoma) cells by targeting ZEB1
and Ubc13, leading to inhibition of DNA
damage repair; we also demonstrated the
therapeutic utility of nanoparticle-encap-
sulated miR-205 mimics as a tumor

radiosensitizer in a preclinical model.69

Similarly, another group reported that
therapeutic delivery of a miR-200 family
member, miR-200c, can sensitize lung
cancer cells to radiation in xenograft mod-
els.66 Therefore, ZEB1-targeting agents
like miR-205 and miR-200c microRNAs
represent a new class of radiosensitizers.

ZEB1 regulates drug resistance: EMT-
dependent or EMT-independent?

Over the past few years, emerging evi-
dence has implicated ZEB1 in drug resis-
tance in multiple cancers, but it remains
unclear whether ZEB1-induced drug resis-
tance is EMT-dependent or EMT-inde-
pendent. In glioblastoma (GBM), ZEB1
is preferentially expressed at the invasion
front of xenografts generated by cell lines
derived from primary GBM specimens.
Silencing ZEB1 expression in these cell
lines reduced both invasion and the resis-
tance to temozolomide (TMZ), a standard
of care chemotherapeutic drug for glio-
blastoma.63 Mechanistically, ZEB1 regu-
lates the expression of MGMT, a gene
promoting TMZ resistance, through a
ZEB1¡miR-200c¡c-MYB loop.63 In
pancreatic cells, the EMT status (gauged
by E-cadherin and vimentin expression
levels) and the expression level of ZEB1
correlate with the resistance to chemother-
apeutic agents including gemcitabine,
5-fluorouracil (5-FU) and cisplatin.61

Interestingly, knockdown of ZEB1 in
mesenchymal-like pancreatic cancer cell
lines not only reversed the EMT pheno-
type, but also sensitized these cells to gem-
citabine, 5-FU and cisplatin treatment.61

Similarly, ZEB1, but not other EMT-
inducing transcription factors including
Snail, Slug and Twist, is upregulated in
docetaxel-resistant human lung adenocar-
cinoma cells.44 Ectopic expression of
ZEB1 conferred docetaxel resistance on
the SPC-A1 human lung adenocarcinoma
cell line, while silencing ZEB1 in SPC-
A1/DTX cells, which are mesenchymal-
like and docetaxel-resistant cells, reversed
EMT and chemoresistance.44 These stud-
ies led the authors to conclude that ZEB1-
induced EMT contributes to drug
resistance. However, an alternative inter-
pretation is that ZEB1 induces EMT and
treatment resistance separately. Despite
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the association, it may not be the EMT
status itself that dictates drug sensitivity.

Additional studies provided further
insight into ZEB1-induced drug resis-
tance. In a Kras/p53-mutant lung adeno-
carcinoma mouse model, high expression
of ZEB1 drives metastasis which can be
suppressed by a PI3K inhibitor.70 Mecha-
nistically, ZEB1 activates PI3K by dere-
pressing miR-200 and miR-183 targets,
including amphiregulin (AREG), betacel-
lulin (BTC), the transcription factor
GATA6 and friend of GATA 2
(FOG2).70 FOG2 mediates ZEB1-
induced expression of the p110a catalytic
subunit of PI3K, but surprisingly, FOG2
is not required for ZEB1-induced EMT,70

suggesting that ZEB1-mediated activation
of PI3K and sensitization to the PI3K
inhibitor is independent of EMT. On the
other hand, knockdown of ZEB1 in erlo-
tinib (an EGFR inhibitor)-resistant head
and neck squamous cell carcinoma cell
lines (1386LN and UMSCC1) increased
erlotinib sensitivity in an E-cadherin-
dependent manner,64 indicating that
ZEB1’s effect on erlotinib resistance may
be EMT-dependent.

Conclusions

As a driver of EMT, ZEB1 plays an
important role in tumor progression and
metastasis and correlates with poor clinical
outcomes in cancer patients. In addition,
ZEB1 is involved in therapy resistance in
multiple cancers through both EMT-
dependent and EMT-independent mecha-
nisms. We propose that ZEB1 employs
multiple different mechanisms to regulate
therapy resistance, depending on the spe-
cific cancer type and treatment type. This
can be mediated by distinct transcriptional
targets and different interacting proteins
of ZEB1. Therefore, the underlying mech-
anisms of therapy resistance should be
carefully examined in individual situa-
tions. Despite the apparent association
between EMT and therapy resistance, we
propose that it is not the epithelial or mes-
enchymal state itself that dictates cancer
stem properties such as radioresistance
and drug resistance; instead, it depends on
the functions and mechanisms of action of

specific EMT regulators. All EMT
inducers are not equal.
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