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T-cell intracellular antigen 1 (TIA1) and TIA1-related/like
protein (TIAR/TIAL1) are 2 proteins discovered in 1991 as
components of cytotoxic T lymphocyte granules. They act in
the nucleus as regulators of transcription and pre-mRNA
splicing. In the cytoplasm, TIA1 and TIAR regulate and/or
modulate the location, stability and/or translation of mRNAs.
As knowledge of the different genes regulated by these
proteins and the cellular/biological programs in which they
are involved increases, it is evident that these antigens are
key players in human physiology and pathology. This review
will discuss the latest developments in the field, with
physiopathological relevance, that point to novel roles for
these regulators in the molecular and cell biology of higher
eukaryotes.

From Gene to Protein

TIA1 and TIAR possess a modular design characteristic of the
classical view of RNA-binding protein (RBP) architecture.1,2

This structure consists of 3 RNA recognition motifs (RRM) of
around 100 amino acids each, and a domain that is rich in gluta-
mine and asparagine, of around 90 amino acids located at the
C-terminal region (Q-rich domain). Two short peptide domains
formed by an amino acid hexamer and octamer, named RNP2
and RNP1, respectively, are conserved in the RRM regions1,2

(Fig. 1).
The human TIA1 gene is located in the chromosomal region

2p13 and contains 13 exons. Exons 1–4, 5–8 and 9–11 encode
the RRM1, 2 and 3 domains, respectively. Exons 12 and 13
encode the Q-rich domain (Fig. 1A). The human TIAR gene
locates in the chromosomal region 10q and consists of 12 exons.
Exons 1–4, 5–7 and 8–10 encode the RRM1, 2 and 3 domains,
respectively. Exons 11 and 12 encode the carboxyl-terminal
‘helper’ domain (Fig. 1B).3 Two isoforms of both TIA1 and
TIAR exist, generated by the alternative splicing of the pre-
mRNAs. The TIA1a isoform (43 kDa) differs from isoform
TIA1b (40 kDa) by inclusion of an 11 amino acid residue
sequence at the beginning of the RRM2 motif, encoded by exon
5 (Fig. 1A).1,2 Also, isoform TIARa (50 kDa) differs from iso-
form TIARb (42 kDa) in that it contains a sequence of 17 amino
acids between the RNP2 and RNP1 motifs in RRM1, encoded

by the last 51 nucleotides of exon 3 (Fig. 1B).3,4 Particular resi-
dues contained in isoforms TIA1a and TIARa determine the
specificity of their binding to RNA and/or the interaction with
other proteins, which expands their regulatory capacity.6 In
mice, the TIA1 and TIAR genes are located in the chromosome
regions 6D2 and 7F4, respectively. The exon-intron organization
is conserved between the murine and human genes, and there is
also a high degree of identity between the primary amino acid
sequences.4,7

TIA1 and TIAR share 80% identity in their amino acid
sequence.2,4 The presence of structural and functional orthologs
in different eukaryotic taxonomic groups highlights the biological
importance of these proteins in cells, given that they are highly
conserved since the first ancestors.8 In fact, the RRM2 domain is
highly conserved in all of the reported structural and/or func-
tional orthologs and is the major domain responsible for protein-
RNA/DNA binding, which implies a high degree of functional
conservation in the mechanism of action of these proteins.9-14

The RRM is a very well characterized domain and a significant
amount of structural information exists. Indeed, the structural
topology and functional contribution of each of the 3 RRM
domains in both TIA1 and TIAR proteins has been the subject
of investigations by several laboratories.9-14 Consequently, a
detailed text summarizing all important aspects has been recently
published by Wilce and coworkers.15 However, no high resolu-
tion structure of TIA protein RRM domain in complex with oli-
gonucleotide has yet been reported. Until such data is available,
the precise structural basis for the RNA binding specificity of
TIA proteins will remain elusive.15

Regulators and/or Modulators of Gene Expression

Gene expression in eukaryotic cells is a vectorial process that
encompasses DNA-dependent transcription and post-transcrip-
tional processes such as pre-mRNA processing/splicing, trans-
port, location, stability and/or translation of mature mRNAs.
Transcriptional and post-transcriptional regulatory mechanisms
occur to orchestrate cellular programs and decisions via modulat-
ing the function, half-life and fate of the RNAs and/or proteins
inside the cell in a developmental, spatio-temporal and/or envi-
ronmental-dependent manner. For example, a comprehensive
study on the transcriptome of HeLa cells using microarray
approaches, where expression of TIA1, TIAR, or both was tran-
siently knocked down, permitted the identification of a large
number of mRNAs associated with the processes of inflamma-
tion, cellular signaling, immune response, angiogenesis,
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apoptosis, metabolism and cell proliferation.16 Similar results
have been obtained recently in the study of the transcriptome of
neural tissues –spinal cord and cerebellum- from an adult mouse
lacking TIA1.17 Thus, given their interaction properties with
DNA, RNA and other proteins in the cell, TIA proteins, partici-
pate in the regulation and/or modulation of many of these pro-
cesses and networks, via impacting prevalently the pleiotropic
roles of specific RNAs and proteins in cell physiology, defining
their fates into ribonucleoprotein complexes such as speckles,
paraspeckles, messenger ribonucleo/cytoplasmic RNA-protein
complexes, processing bodies and/or stress granules (Fig. 2).9-15

Transcription
The first evidence for the involvement of TIA proteins in tran-

scriptional regulation came from the functional capacity of TIA
proteins to bind DNA and the carboxyl-terminal domain of
RNA polymerase II.18-21 In the case of TIA1, it has been shown
that RRM1 binds to T-rich ssDNA.19 Further, RRM1 and
RRM2 of TIAR are able to interact with DNA with micromolar

affinity21 and T-rich DNA,11,21 respectively. Thus, this repre-
sents an unusual case of an RRM preferentially binding DNA
over RNA.15 These interactions suggest a putative co-regulation
of the transcription and splicing of pre-mRNAs in the cellular
nucleus during early biogenesis of RNAs.15 This process might
be facilitating a slowdown in the speed of RNA polymerase II
and the coupling of the transcription and the final 30 processing
(Fig. 2).18-22 Some genes, such as Procollagen, type II
(COL2A1),20 Insulin-like growth factor binding protein-3
(IGFBP-3)23 and Pituitary adenylate cyclase-activating polypeptide
(PACAP)24 could be preferentially regulated by this TIA-depen-
dent pathway.

Pre-mRNA splicing
The first 2 identified events of TIA protein-dependent splicing

involved the pre-mRNAs of Fibroblast growth factor receptor 2
(FGFR2)25 and Fas cell death surface death receptor (FAS/CD95/
APO-1)26. In both cases, TIA proteins facilitated the recognition
between weak 50 splice-acceptor sites and degenerate sequences

Figure 1. Diagrams of genes and proteins of TIA1 and TIAR in human and mouse. (A and B) Organization of exons and introns of TIA1 and TIAR genes,
the major isoforms a and b generated by alternative pre-mRNA splicing, and functional domains of TIA1 (A) and TIAR (B) proteins. Both proteins contain
3 RNA-recognition motives (RRM) and an auxiliary domain in rich-asparagine and glutamine residues (Q-rich domain). The different amino acid sequen-
ces between the isoforms are shown in red for TIA1 and TIAR proteins, respectively.
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for the hybridization of the
RNA complementary to U1
snRNP.25-27 In this process, the
recognition motif RRM2 in the
TIA protein, facilitated by
RRM3, attaches to the uridine-
rich regions proximal to the
intron’s 50 splice site, and the Q-
rich domain binds to the N-termi-
nal region of the subunit U1-C in
U1 snRNP through a process
facilitated by RRM1.11,15,27-29

There are also some studies that
point to the participation of TIA
proteins in the recruitment of U6
snRNP.30,31 The cellular relevance
of TIA proteins in the regulation
of constitutive and alternative
splicing was confirmed by map-
ping the binding of these regula-
tors to RNA using an
experimental approach in HeLa
cells consisting of in vivo irradia-
tion of the cells with UV light
and subsequent immunoprecipita-
tion of the RNA-protein com-
plexes.32 These approaches
demonstrated that TIA1 and TIAR preferentially bind to sequen-
ces rich in uridine and adenosine pentamers, UUUUA or
AUUUU, proximal to the 50 splice-acceptor sites in the introns,
to facilitate the recruitment of U1 snRNP and the inclusion of
the adjacent exon, enabling also the selection of distant 30 splice-
acceptor sites. Thus, they facilitate splicing of pre-mRNAs via
improving the selection of constitutive and atypical 50 splice sites
through shortening the time available for definition of an exon
by enhancing recognition of the 50 splice sites.32 From these stud-
ies, it has been estimated that TIA proteins regulate 10% of the
constitutive and alternative splicing events in the human genome,
whereas »20% was initially estimated by an in silico approach.33

Translation of mRNAs
TIA antigens have the ability to regulate and/or modulate the

process of cellular translation by limiting the availability of the
ribosomal machinery and also the translational efficiency of spe-
cific cellular mRNAs, either in stress conditions, to guarantee cell
viability, or in conditions of cellular homeostasis (Fig. 2). Under
conditions of stress, the a subunit of the translation initiation
factor Eukaryotic translation initiation factor 2 (eIF2) is phosphor-
ylated, principally at serine 51, by a family of kinases that
includes Eukaryotic translation initiation factor 2-a kinase 1
(HRI), Eukaryotic translation initiation factor 2-a kinase 2
(PKR), Eukaryotic translation initiation factor 2-a kinase 3
(PERK) and Eukaryotic translation initiation factor 2-a kinase 4
(GCN2), depending of the types of stresses and cellular lines
involved.34-42 This phosphorylation abolishes the ability of
eIF2B to exchange GDP for GTP, which results in a decrease in

the levels of eIF2-GTP-tRNAMet ternary complex. In turn, this
leads to incorrect formation of the translation pre-initiation com-
plexes. It is at this moment when TIA1 and TIAR play a role,
associating with the complex formed by several canonical transla-
tional initiation factors such as, eIF4E, eIF4G, eIF4A, eIF4B and
eIF3 together with the small ribosomal subunit, in an anomalous
48S complex lacking eIF2 and eIF5.34,35 These inactive transla-
tion pre-initiation complexes associated with mRNAs accumulate
in the cytoplasm and, due to the aggregation properties of the Q
domain of TIA and Poly (AC) binding protein (PABP) proteins,
bind among themselves (self-aggregate), creating large foci of
mRNA and protein known as stress granules (SG).36-37 SG for-
mation favors cell survival in stress conditions, such as starvation
or limitations in amino acid availability, oxidative or osmotic
stress, etc., as well as pathophysiological situations, as for instance
viral infection37 and Alzheimer disease.38 In these adverse condi-
tions, the cell enters a cellular biology resting state, inhibiting
translation in general and allowing energy to be saved for repair
of the damage caused by the stressful insult.39-42 Although the
appearance of SG is that of stable and poorly-dynamics inactive
structures, their size is variable and the majority of their compo-
nents are in a constant exchange or a dynamic flux of assembly/
disassembly.35-43 They appear approximately 15 minutes after
the onset of the stressing stimulus and their formation is revers-
ible, disappearing a few hours -between 2 to 6- after the stimulus
ends depending on cell type, provided that the stimulus is not
lethal.34,35,41-46 It is important to note that controversy exists
regarding the process of SG formation mediated by TIA1 and/or
TIAR. Indeed, some studies suggest that TIAR cannot form SG

Figure 2. The multifunctional regulatory roles of TIA proteins in the gene expression layers and physio(patho)
logical-associated events.
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without the aid of TIA1.45 However, other results show that only
one of the 2 proteins is sufficient for SG formation.47 In addi-
tion, recent studies suggest that perhaps the role of these pro-
teins/antigens, including TIA proteins, would not be to facilitate
SG formation, but rather the disintegration of these transient
structures.48 Further, it has been described that TIA1 and other
proteins containing Q-rich domains can form porous hydrogel-
nature structures,49 which suggest a model of SG organization
whereby SG-proteins and RNA are able to diffuse in and become
associated with the hydrogel matrix.15 Given these controversies,
we are facing a very interesting challenge with significant implica-
tions for cell biology, which requires new experimental
approaches to be fully understood. A comprehensive analysis of
these possibilities awaits further study.

Immunoprecipitation studies on RNA-protein complexes and
identification of immunoprecipitated mRNAs using microarray
analysis have permitted the identification of approximately 2
hundred mRNAs associated with TIA1 and/or TIAR.44,47,50

These studies revealed the binding of TIA proteins to motifs rich
in uridine, adenosine and cytidine in the 50 and/or 30-UTRs of
several cellular mRNAs. Also, the participation of TIA proteins
in the translational regulation of different mRNAs, such as
Tumor necrosis factor a (TNFa),51 pro-inflammatory cyto-
kines,52,53 Cyclooxygenase-2 (COX-2),54 mitochondrial cyto-
chrome c,55 C-MYC oncogene,56 Hypoxia inducible factor 1, a
subunit (HIF-1a),57 b-actin subunit,58 some isotype of tubu-
lin,59 some mRNAs implicated in the cell-cycle G2/M transition
and DNA repair60 as well as tumor suppressors Breast cancer 1
(BRCA1)61 and Programmed cell death 4 (PDCD4),62 have
been suggested.

mRNA stability
mRNA turnover is the process by which an mRNA is

degraded before or after translation. This can occur at the 50 or
the 30 end of the mRNA. Degradation from the 50 end requires
the activity of Dipeptidyl carboxypeptidase 1 (DCP1) and Dipep-
tidyl carboxypeptidase 2 (DCP2) enzymes, which promote the
removal of 7-methyl-guanosine (50 decapping), and the activity
of 50-30 exoribonuclease 1 (XRN1) exonuclease.63 Degradation
from the 30 end is mediated by the exosome and is produced by
the shortening or deadenylation of the poly(AC) tail of the
mRNA and the subsequent recruitment of exonucleases.64 The
mRNA regions implicated in this process are sequences rich in
adenosine and uridine (ARE sequences) situated in the 30-UTR,
which favor the binding of proteins such as TIA, AU-rich element
(ARE) RNA-binding protein 1 (AUF1), KH-type splicing regulatory
protein (KSRP) and Tristetrapolin (TTP) and, consequently, the
recruitment of proteins associated with the degradation process.
Binding of TIA proteins to these regions facilitates the deadenyla-
tion of the mRNA and also stimulates cap removal at the 50 end.
In contrast, proteins such as HuR stabilize mRNA, likely due to
its inability to recruit exosomes.65,66

microRNAs
A further means to regulate mRNA translation and stability is

through binding to micro(mi)RNAs, which leads to their

translational repression and/or degradation. miRNAs are small
RNA fragments, 19–24 nucleotides in length, that regulate gene
expression through base-pairing with complementary sequences,
usually in the 30-UTR regions of mRNAs. The interaction of
miRNA with mRNA leads to the recruitment of the RNA-
induced silencing complex (RISC) and, subsequently, to mRNA
degradation. Several studies suggest that around 20–30% of gene
expression is regulated by miRNAs.67 A high-throughput study
using microarray analysis revealed an overexpression of 29 miR-
NAs after transient silencing of TIA1 and TIAR protein expres-
sion by RNA interference in HeLa cells. This result was
interpreted as a response to counteract the differential expression
and phenotypes associated with the short-term reduction of TIA
proteins.68 Another study showed that miRNA-579 and
miRNA-125b interact with TIAR in the 30-UTR of TNFa
mRNA, leading to its degradation and a decrease in its transla-
tion.69 Also, in cellular microvesicles that abundantly express
TIA1 and TIAR, which constitutes a mechanism for cell commu-
nication in stem cells, 365 miRNAs have been identified whose
target mRNAs are related to organ development, survival and dif-
ferentiation, and also with the regulation of immune responses.70

These observations suggest that TIA proteins are able to regulate/
modulate miRNA expression by still unknown mechanisms.
Finally, it is important to note that miRNA-15a and miRNA-
16–1 have been identified as silencers of TIA1 and TIAR expres-
sion,71,72 and adenovirus VA RNA-derived miRNAI-138 targets
TIA1.73 These findings indicate that the regulator/modulator
can be also regulated/modulated and suggest the existence of
autoregulatory loops that could serve to amplify/inhibit complex
cellular responses.

TIA1 and TIAR: Biological Processes, Embryonic
Development and Physiopathology

The multifunctional capacity of TIA proteins to regulate/
modulate gene expression points to a relevant role for these regu-
lators/modulators in cellular homeostasis, and also in the regula-
tion of several biological and physiopathological processes
(Fig. 3).

Cell death: apoptosis and autophagy
The first experimental evidence for the participation of these

proteins in the regulation of the cell death program came from
the observation that incubation of (permeabilized) cellular targets
of cytotoxic T lymphocytes with TIA1 and TIAR proteins trig-
gered nuclear DNA fragmentation (Fig. 3).1,2 Later, it was dem-
onstrated that TIA proteins regulate the gene expression of
several components of the cell death pathways.16,17,24-74-76 How-
ever, there are other routes through which TIA proteins could
modulate cell death, for example by scavenging of Ribosomal pro-
tein S6 kinase, 90 kDa, polypeptide 3 (RSK2) in the SG, facilitat-
ing cell survival,77 or activating/repressing the synthesis of other
proteins involved in the processes of cellular death/survival.16,17

Recently, we have reported that an increased expression of TIA1
or TIAR in HEK293 cells results in diminished rates of cell
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proliferation and growth. This is accompanied by cell-cycle arrest
at G1/S and cell death through caspase-dependent apoptosis and
autophagy. Genome-wide profiling analysis suggest a specific
upregulation of p53 signaling pathway-related genes.78 In the
same vein, a role for TIA1 in autophagy via interaction with
annexin A7 has been described in vascular endothelial cells.79-81

Cell proliferation
TIA1 and TIAR proteins modulate cell proliferation by favor-

ing or inhibiting cell growth. For example, it has been described
that decreasing the expression of TIA proteins in the chicken cell
line DT40 -lymphoma- promotes a decline in their growth rela-
tive to control cells (Fig. 3).82 However, in human tumor cell
lines, such as HeLa cells, short- or long-term reduction in TIA1
or TIAR expression, or both, leads to an increase in cell prolifera-
tion associated with a tumorigenic phenotype.16,17,83-85 This
behavior has also been reported in other human cell lines includ-
ing K562 (myeloma),56 HCT116 (colorectal carcinoma),83

HEK293 (adenotransformed embryonic kidney cells),78 A549
(lung adenocarcinoma)57 and LS174t colon cancer cells.86 The
roles of TIA proteins associated with the cell proliferation could
be prevalently linked to the coordinated control of global and
specific translational rates.47,53-62,78,85 Taken together, these

observations are possibly consistent with the relevance of the
genetic background for the expression of the TIA proteins, which
determines their functionality in an environmental-dependent
way.

Embryonic development
The importance of TIA proteins during embryogenesis was

addressed in vivo by studying genetically-modified mice deficient
in TIA1 and/or TIAR (Fig. 3).51,87,88 Homozygous mice lacking
TIA1 and TIAR died before embryonic day 7 (E7). Experiments
performed in several mouse strains revealed that, in the absence
of TIA1, 46% of the mice died between E16.5 and 3 weeks after
birth. The surviving mice did not show any apparent abnormali-
ties until the end of their lifespan (2 years), which was character-
ized by a phenotype associated with arthritis51 and a higher
sensitivity to dust produced by an exacerbated allergic reaction
accompanied by pulmonary inflammation and an increase in
Th2/Th17 cytokines in the lymph nodes.89 However, mice lack-
ing TIAR presented different phenotypes that were dependent
on the mouse strain studied.88 Thus, in BALB/c mice, the
absence of TIAR expression was embryonic lethal in 100% of off-
spring, whereas in C57BL/6 mice, the lack of TIAR led to death
in 90% of the embryos. Intercrosses of BALB/c TIARC/¡ with

Figure 3. Scientific milestones related to the biological processes regulated/modulated by TIA proteins.
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C57BL/6 TIARC/¡ resulted in 60% embryonic lethality. Of the
remaining mice, half of them survived until adulthood, although
they were sterile –mice showed abnormalities in the spermato-
genesis and oogenesis processes, and also in the gonad architec-
ture-, obese –despite being born with less body mass- and with
neurological disorders –abnormal behavior-. These mice also
develop cervical tumors.88 Further, an essential role for TIAR has
been described in self-renewal and/or differentiation of mouse
embryonic stem cells.90 Additionally, in a transgenic mouse
model overexpressing TIAR, 77% of the embryos showed abnor-
malities at day E7.5.91 This myriad of phenotypes suggests that
the equilibrium in the expression of TIA1 and/or TIAR proteins
is important, spatially and temporally, for early mouse develop-
ment.51,88,90-92

Physiopathological implications
The ability of TIA proteins to regulate/modulate gene expres-

sion confer on them an important functional role in human
pathology given their participation in antiviral, inflammatory,
immune, and possibly oncogenic and aging-associated responses,
among others (Fig. 3).

Viral infections
Several studies suggest a relevant functional role of TIA pro-

teins during viral infections. When viral infection occurs, PKR
kinase is activated and phosphorylates eIF2a, inhibiting the
translation of cellular and viral proteins by directing the mRNAs
to SG, and increasing the expression of proteins involved in the
innate immune response to guarantee cell viability.34,35 This is
the case in infections caused by Vesicular stomatitis virus (VSV)93

or Transmissible gastroenteritis coronavirus (TGEV).94 Evolution
has resulted in many viruses developing mechanisms to evade
this response in favor of their own survival.95-97 Indeed, some
viruses benefit from TIA proteins to favor their own biology, for
example West nile virus (WNV) uses TIA proteins as transcrip-
tion factors to synthesize its own RNA98,99; Hepatitis C virus
(HCV) uses TIA proteins for the replication of the viral genome,
assembly and delivery of viral particles100; and Minute virus of
mice (MVM) and Human papillomavirus (HPV) use TIA pro-
teins as splicing factors for the synthesis of their own pro-
teins.101,102 Nevertheless, TIA proteins can also act as potent
antiviral agents independently of SG formation. Thus, TIA1 can
directly bind to the PRE regulatory element in Hepatitis B virus
(HBV) and inhibit its function.103 It has been described that in
the early stages of hepatitis C infection in chimpanzees, several
gene expression changes take place including an increase in
TIA1, which allows removal of the virus before chronic infection
develops. This constitutes a primary response to eliminate
infected hepatocytes.104

Inflammation and immune processes
Regarding the inflammatory processes, TIA1 and TIAR func-

tion as gene suppressors in arthritis.105 Consequently, TIA-defi-
cient mice develop arthritis.51 It is important to note that
infliximab –a potent anti-inflammatory drug- therapy increases
the ratio of TIA1:HuR.106 In fact, TIA proteins can regulate/

modulate the expression of inflammatory proteins such as
TNFa, IL-1, IL-6, MMP13 or COX-2.5,16,51,52,54,107-109 For
example, in women with endometriosis, TIA1 expression in
eutopic and ectopic endometrium was reduced compared with
TIA1 expression in eutopic endometrium of unaffected control
women. Lipopolysaccharide and TNF-a increased TIA1 expres-
sion in human endometrial stromal cells (HESCs) in vitro,
whereas IL-6 or steroid hormones had no effect. In primary cul-
tured HESCs, down-regulation of TIA-1 resulted in elevated IL-
6 and TNF-a expression, whereas TIA-1 overexpression resulted
in decreased IL-6 and TNF-a expression. Thus, endometrial
TIA1 is regulated throughout the menstrual cycle, TIA1 modu-
lates the expression of immune factors in endometrial cells, and
downregulation of TIA1 may contribute to the pathogenesis of
endometriosis.109

Regarding cytotoxicity mediated by TIA proteins and, in par-
ticular, TIA1 as a component of cytotoxic T lymphocyte gran-
ules, there are several reports describing that apoptosis mediated
by cytotoxic T-lymphocytes provokes the onset of a series of reac-
tions that are uncomfortable for the patient such as, for example,
organ transplant rejection,110,111 food allergy,112 Crohn’s disease
and ulcerative colitis,113 aplastic anemia114 or platelet inhibi-
tion.115 However, an increase in cytotoxic T-lymphocytes is not
always negative; it has been demonstrated that a higher percent-
age of infiltrated CD8C T cells is associated with better progno-
sis in cancer patients, suggesting a role for CD8C T lymphocytes
in the anti-tumoral response.116-120

Tumor suppressor genes
The IntOGen-mutations platform (www.intogen.org/muta-

tions) summarizes somatic mutations, genes and pathways
involved in tumorigenesis.121 Analysis of this database provides
support to link human cancers with somatic mutations in TIA1
and/or TIAR/TIAL1 genes. Accordingly, mutated TIA1 has been
found in corpus uteri, kidney, brain, lung, stomach, and breast
tumors; while mutated TIAR/TIAL1 has been identified in oro-
pharynx, stomach, liver, lung, breast, corpus uteri, ovary and brain
tumors. These cancer mutations associated with TIA1 and TIAR
proteins show a heterogeneous distribution across the primary
structure of TIA proteins and they are preferentially located on
RRMs domains, suggesting a loss-of-function of TIA proteins as
DNA/RNA-binding proteins.121 TIA proteins regulate, modulate
and/or interact with a large number of mRNAs involved in cell
proliferation control, apoptosis, angiogenesis, inflammation, inva-
siveness and metastasis capacity of tumor cells, and in immune
evasion, which suggests a putative role for TIA proteins in pre-
venting tumorigenic processes16,17,25,31,42,51,55-58,60-62,85,86,116-123

(Fig. 3). Thus, TIA proteins can regulate the translation of the C-
MYC oncogene32,56 and tumor suppressor gene BRCA1,61 the
splicing of FGFR2,25 FAS26,27 or the tumor suppressor genes
Neurofibromatosis-1 (NF1)31 and Wilms’ tumor suppressor
(WT1),122 mRNA stability of tumor suppressor gene PDCD462

or Growth arrest and DNA-damage-inducible protein 45a
(GADD45a),124 as well as the expression of inflammatory or
angiogenic factors, such as TNFa, COX-2, VEGF, IL-8 or
HIF1a 16,51,52,54,57,86 and metastatic factors including MMP13.5
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Accordingly, TIA1 and/or TIAR reduction in HeLa cells resulted
in an increase in cell proliferation and both anchorage-dependent
and independent growth, and also in greater cell migration capac-
ity, facilitating the ability to generate xenotumors in immuno-
compromised mice. Moreover, studies of TIA1 and/or TIAR
expression in a cohort of human epithelial tumors showed a sig-
nificant reduction in these proteins, pointing to a putative role for
TIA1 and/or TIAR as tumor suppressors.57,85,86,123 Remarkably,
nude mice injected with doxycycline-inducibe cells expressing
TIA1 or TIAR delay, or even abolish, growth of xenotumors. Fur-
ther, low expressions of TIA1 and TIAR correlate with poor prog-
nosis in patients with lung squamous cell carcinoma.78,123

Collectively, these findings strongly suggest that TIA proteins can
act as tumor suppressor genes and cellular gatekeepers.

Welander distal myopathy
The distal myopathies comprise a group of inherited disorders

with shared clinical expression involving mainly the functionality
of the hands and feet of patients.125,126 To date 20 different dis-
tal myopathies have been described and at least 14 of them have
a genetic cause.126 Welander Distal Myopathy (WDM; MIM
#604454) was one of the first described with such a clinical
pathology in the distal myopathies127 group. It is a distal muscu-
lar dystrophy, autosomal, dominant and late. This disease mani-
fests itself around 40–50 years.126 A homozygous mutations is
associated with a more severe phenotype.

The symptoms usually begin with weakness of the extender
of the index fingers, leading to problems in precision move-
ments, progressing to other fingers. This is usually accompanied
by weakness in distal areas of the lower extremities, involving
the tibialis anterior and the extensor muscles and feet that
involve walking difficulties and leads to an equine gait. The
pendulum foot movement is also found in patients with sclero-
sis amyotrophic lateral, multiple sclerosis and Parkinson disease.
The disease is more common in the Middle East of Sweden,
with a high incidence of 1/100 in local areas, as well as in areas
of Finland.129,130 The defect has been associated with a single
mutation in WDM supported by a common haplotype in chro-
mosome 2p13 in all the patients of Swedish and Finnish ori-
gin.131,132 The haplotype was extended to more than 60
candidate genes, as well as the search for genomic rearrange-
ments, which initially did not result in the identification of the
causative mutation. In the first study where a mutation was
associated was the genetic analysis of 43 patients of 35 families
with clinical and histopathological findings compatible with
WDM. In this study the WDM associated 2p13 chromosome
haplotype was restricted, and within this region a heterozygote
mutation in origin was identified (c.1362G > A; p.E384K) in
the gene that encodes TIA1.133 Independently, another study
found in a fragment of <806 kb on chromosome 2p13 a single
point mutation, G > A (p.E384K) affecting the same gene.134

In the first study, the TIA1 mutation in WDM was associated
with alterations in the alternative pre-mRNA splicing of
SMN2133 and in the second study with the dynamics of the for-
mation of stress granules.134

The Emerging Picture

In this review, we have addressed how TIA proteins, together
with their surrounding regulatory environment regulate/modu-
late gene expression in eukaryotic cells. We have dissected the
multitude of molecular and biological events by which these
regulators/modulators contribute to cell physio(patho)logy and
discussed how this knowledge can be integrated into cellular
decisions, which may represent some therapeutic opportunities.
Thus, some progress has been made in studies on the regulatory
and functional properties of TIA proteins. Recent technical
advances will help to provide reference meta-analyses involving
transcriptomes, translatomes, proteomes, ribosomal profiling
and/or interactomes for cells, tissues, organisms and individu-
als, including qualitative and quantitative information about
regulatory/modulatory events associated with TIA1 and TIAR
proteins and other RNA-binding proteins in different biologi-
cal situations or pathophysiological conditions. The detailed
description of these regulatory phenomena and their cellular
and molecular basis will provide important insights in our
understanding of many biological processes and networks. For
example, the mechanistic nature and molecular events by which
components of the p53 pathway and DNA damage response
induce cell-cycle arrest and/or cell death during TIA1 or TIAR
expression await further exploration. Future studies will eluci-
date the regulatory characteristics that occur in loss- and gain-
of-function models of TIA proteins in genotoxic stresses and
under conditions of genomic instability. On the other hand,
data from murine models and observations from cancer patients
suggest that it may be advantageous for tumors to lose or down-
regulate TIA expression, since this reduction could play a role
in cancer progression by activating genes involved in neoplastic
and malignant transformation, evading the immune system and
enhancing the growth and survival of cancer cells. These obser-
vations suggest that TIA proteins could be good biomarkers of
some cancer types. These proteins could be used to: (i) identify
individuals at high risk for metastasis, (ii) differentially diag-
nose early-late cancer and (iii) assess the efficacy of therapy and
chemopreventive agents. Thus, TIA biomarkers may have sur-
vival value. However, more studies, for example, cell/tissue spe-
cific-conditional TIA1 or TIAR expression, are required to
draw firm conclusions about the tumor-suppressive functions
of TIA proteins that might be context dependent. Future
research should elucidate the specific environmental settings
under which TIA proteins act as barrier, i.e. as cellular gate-
keepers, to cancer development and/or progression. Indeed, a
clearer understanding of the mechanisms controlling cell fate
determination by TIA proteins may lead to the identification of
novel molecular targets, which could selectively sensitize cancer
cells to cell death.

Additionally, many exciting questions remain: How do
TIA proteins function as epigenetic regulators/modulators,
for example, transcription and/or splicing enhancers, transla-
tional repressors and/or stabilizer activators? What are TIA-
associated epigenetic and/or post-translational modifications?
Can TIA proteins be found that control biomedical relevant
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regulatory events with sufficient specificity? Will mutated TIA
proteins be sufficient to circumvent functional reprogram-
ming linked to cellular transformation, Welander distal
myopathy, or aging and other related diseases? What fraction
of TIA1 and/or TIAR regulatory events and layers contributes
to phenotypic differences relevant for conserved or prevalent
changes between cells, tissues and/or species? We are still far
from understanding the regulatory message associated with
the TIA proteins, but their secrets and potential constantly
invites us to try.
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