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Overcoming chemoresistance of pancreatic cancer (PCa) cells should significantly extend patient survival. The
current treatment modalities rely on a variety of DNA damaging agents including gemcitabine, FOLFIRINOX, and
Abraxane that activate cell cycle checkpoints, which allows cells to survive these drug treaments. Indeed, these
treatment regimens have only extended patient survival by a few months. The complex microenvironment of PCa
tumors has been shown to complicate drug delivery thus decreasing the sensitivity of PCa tumors to chemotherapy. In
this study, a genome-wide siRNA library was used to conduct a synthetic lethal screen of Panc1 cells that was treated
with gemcitabine. A sublethal dose (50 nM) of the drug was used to model situations of limiting drug availability to PCa
tumors in vivo. Twenty-seven validated sensitizer genes were identified from the screen including the Vitamin D
receptor (VDR). Gemcitabine sensitivity was shown to be VDR dependent in multiple PCa cell lines in clonogenic
survival assays. Sensitization was not achieved through checkpoint override but rather through disrupting DNA repair.
VDR knockdown disrupted the cells’ ability to form phospho-gH2AX and Rad51 foci in response to gemcitabine
treatment. Disruption of Rad51 foci formation, which compromises homologous recombination, was consistent with
increased sensitivity of PCa cells to the PARP inhibitor Rucaparib. Thus inhibition of VDR in PCa cells provides a new way
to enhance the efficacy of genotoxic drugs.

Introduction

Pancreatic cancer (PCa) is the 4th leading cause of cancer
fatality in the United States and has the lowest 5-year survival
rate of any major cancer (ACS). More than 70% of patients die
within the first year after being diagnosed. By year 2020, it is
anticipated that PCa will move to the 2nd leading cause of cancer
death (Pancreatic Cancer Action Network, 2012). At the time of
diagnosis, over 52% of the patients have distant disease and 26%
have regional spread (ACS). Only »15% of patients diagnosed
with pancreatic adenocarcinoma can have their tumors surgically
removed. Lack of early diagnosis, complex biology of the disease,
and limited treatment options contribute in making PCa such a
major killer.

Virtually all pancreatic tumors are adenocarcinomas of which
the vast majority expresses a mutant K-Ras.1-4 Over 2 decades of
PCa research suggest a model for disease progression where early,
low-grade pancreatic intraepithelial neoplasia (PanIN), is associ-
ated with KRAS2 mutations and telomere shortening.1,5 Inter-
mediate and late stages of the disease are characterized by loss of

p16/CDKN2A, SMAD4, p53, and BRCA2 respectively.6 Addi-
tionally, a massive effort to sequence the genomes of 24 indepen-
dently derived advanced pancreatic adenocarcinomas revealed a
remarkably complex pattern of genetic mutations.2 On average,
there were 63 genetic mutations in PCa. The majority (67%) of
the mutations could be classified into 12 partially overlapping
cellular signaling pathways.

PCas are notoriously insensitive to the backbone of cancer
chemo- and radiation therapy, all of which target processes essen-
tial for the integrity of the genome. Gemcitabine, a nucleoside
analog that blocks DNA replication, remains the first line therapy
for patients with advanced PCa.7,8 The efficacy of gemcitabine
over 5-fluorouracil, which had previously been the drug of
choice, was based on a very modest increase in medium survival
of less than 2 months.9 Although erlotinib (EGFR inhibitor) has
been approved by the FDA for PCa, it only increased survival by
less than a month, when used in combination with gemcita-
bine.10 Therefore, gemcitabine continues to be the backbone of
standard of care. FOLFIRINOX regimen consisting of multiple
drugs can extend survival, but because of toxicity issues this is not
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be a viable option for all patients11-13 since only patients with
high performance status are the only ones who qualify for FOL-
FIRINOX. Most recently, gemcitabine and Abraxane (Nab-pac-
litaxel) showed a modest survival benefit compared to
gemcitabine alone (median overall survival of 8.5 months vs 6.7
months) and has been approved by the FDA as a frontline com-
bination treatment for metastatic PCa.14

Several approaches have been adopted to improve treatment
strategies. One approach is to identify inhibitors that specifically
target mutated oncoproteins, which can be a highly effective
treatment strategy if tumor cells depend critically on oncogenic
pathways.15 However, PCas that harbor KRAS mutations do not
respond to farnesyl transferase inhibitors.16 Pancreatic tumors
have been shown to have abundant tumor stromal content.17

Therefore, the amount of drug actually reaching the tumor is
quite low. Studies in mice have shown that disrupting the stroma
with inhibitors of the hedgehog signaling pathway can improve
drug response.18 However, recent work from the same group has
shown that disrupting the PCa stromal microenvironment actu-
ally renders tumors more aggressive, and these tumors exhibit
increased vascularity and proliferation.19 The proposed reason
for this discrepancy was that the increased drug delivery benefit
was counteracted by increased angiogenesis, invasiveness, and
metastasis of PCa tumors.

Understanding the mechanisms of chemoresistance of PCa
will provide new targets that enhance cell killing by drugs such as
gemcitabine. Recently, several groups have advanced the under-
standing of gemcitabine resistance in cancer. Gemcitabine resis-
tant cancer cells have been shown to have undergone epithelial to
mesenchymal transition (EMT).20 3-bromopyruvate has been
shown to sensitize PCa cells to gemcitabine.21 In this study, we
used a genome-wide siRNA library to perform a synthetic lethal
screen to identify gemcitabine sensitizers in the Panc1 pancreatic
adenocarcinoma cell line. Synthetic lethality is based on genetic
studies in drosophila and yeast, where mutational disruption of 2
or more pathways is necessary to elucidate a biological process
that is specified by multiple or overlapping processes.22,23 This
method has been used on human cancers that harbor specific loss
of function mutations in pathways that are involved in cellular
sensitivity to cytotoxic stress.24-26

Our screen identified 27 genes that sensitized PCa cells to killing
by gemcitabine. We focused on the Vitamin D receptor (VDR)
because its role in chemoresistance of PCa has not previously been
studied. VDR is, a nuclear hormone receptor family member that
binds vitamin D (1a,25(OH)2D3) and regulates the expression of
genes that are essential for calcium homeostasis and bone minerali-
zation.27 Although VDR is not an essential gene, it is expressed in
most tissues and organs where it participates in diverse biological
processes that are important for detoxification, immune functions,
differentiation, and growth control.28–30 In fact, VDR is considered
a target for chemoprevention cancer therapy since 1a,25(OH)2D3

(VD3) has anti-proliferative activity against a variety of cancer cells
in vitro,31,32 in vivo, and in clinical trials.33–35 However, VD3 and
some of its analogs induced hypercalcemia in patients and thus lim-
its its usefulness as a chemopreventative agent.36 However, calcitriol
(1,25 di hydroxy vitamin D) that does not commonly induce

hypercalcemia has been shown to promote caspase-dependent apo-
ptosis and reduces tumor volume in combination with gemcitabine
in Capan-1 pancreatic adenocarcinoma cells and tumors.37 VDR
expression has also been shown to be induced by DNA damage in
the skin as a result UVB exposure.38 VDR expression is also
induced by p73 following DNA damage in human non-small lung
carcinoma cells.29 A positive feedback loop has been reported to
exist between the DNA damage checkpoint kinase ATM and VDR
following DNA damage.39 Studies of MEFs with damaged DNA
showed that VDR was phosphorylated by ATM which in turn pro-
moted VDR transactivation of the ATM gene.

In this study, we show that VDR is critical for the survival of
pancreatic cancer cells to gemcitabine treatment. We show that
drug response correlates with the levels of VDR expression in dif-
ferent PCa cells. Furthermore, gemcitabine survival depends on
ligand binding and dimerization domains within VDR. We dem-
onstrate that VDR is critical for gemcitabine treated cells to
recruit Rad51 and phospho-gH2AX to sites of DNA damage.
VDR does not appear to dictate foci formation by regulating the
expression of these genes. Instead, our data suggests that it acts
through epigenetic mechanisms that regulate foci formation by
Rad51. Rad51 is a critical component of the error-free homolo-
gous recombination (HR) pathway that is the major repair mech-
anism for stalled replication forks that is induced by gemcitabine.
We believe that gemcitabine sensitization of VDR depleted cells
is due to their reduced capacity to repair damaged DNA. This is
supported by the observation that cells with reduced VDR levels
are more sensitive to PARP inhibitors, which preferentially kill
cells deficient in HR.40

Results

A RNAi synthetic lethality screen to enhance gemcitabine
sensitivity

We performed a genome-wide siRNA screen to identify genes
and pathways in Panc1 pancreatic adenocarinoma cells that can
be targeted for gemcitabine sensitization. We used a sublethal
dose (IC20) of gemcitabine (50 nM) that was sufficient to induce
an S phase arrest and DNA damage as seen by gH2AX foci
(Figure S1). The low dose of gemcitabine (50 nM) may also be
clinically relevant as it has been reported that only a small per-
centage of a chemotherapeutic dose of drugs actually reaches the
PCa tumor because of its dense stromal microenvironment.18,41

Two days after siRNA transfection, gemcitabine or vehicle was
added to duplicate plates and cell viability was assessed 48 hours
later. Values were normalized to internal standards, as each plate
contained negative and positive controls, and comparisons made
between vehicle and gemcitabine treated samples. Statistical anal-
ysis of the data was used to rank the siRNAs according to their
ability to enhance gemcitabine killing. We determined the false
discovery rate (FDR) for each sample and used a cutoff of 0.2 to
identify125 primary candidates. Candidates were further vali-
dated for gemcitabine sensitization with a set of deconvolved siR-
NAs (4 individual siRNAs for each gene). Twenty-seven genes
were validated based on the ability of > 2 of 4 deconvolved
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siRNAs to enhance gemcitabine killing (Table S1). The validated
hits were subjected to pathway analysis using Ingenuity and
STRING databases to assess potential relationships with one
another (Figure S2A and B). Consistent with previous reports, a
major gemcitabine survival network consisted of various DNA
damage response genes involved in repair and checkpoint func-
tions (Chk1, Wee1, PIAS4, and 53BP1).42-46 This result vali-
dated our screen and gave us confidence to further evaluate
candidates not previously known to be involved in gemcitabine
response.

The vitamin D receptor (VDR) sensitizes pancreatic cancer
cells to gemcitabine

We focused on the Vitamin D Receptor (VDR) (Figure S2), a
member of the superfamily of nuclear hormone receptors, for a
number of reasons. VDR has been implicated as a biomarker for
lung cancer progression.47 and its expression in lung cancer cells
is increased in response to DNA damaging agents.29 In K-ras
mutated colon cancer cells, VDR suppression leads to cell death
mediated by p38 MAP kinase.48 p38 activation by constitutive
expression of its activator MKK6 or arsenite selectively induces
cell death in K-ras mutated HCT116 cells and not in K-ras
mutant disrupted HCT116-derived sublines. This selective cell
death is linked to VDR downregulation by an AP-1-dependent
mechanism as forced VDR expression in K-ras mutated cells ren-
der them resistant to p38 induced cell death, and inhibition of
endogenous VDR in K-ras mutant disrupted cells render them
sensitive. Although the role of VDR in drug sensitization has not
been documented, there have been reports that suggest a relation-
ship with DNA damage. A positive feedback loop has been
reported to exist between the DNA damage checkpoint kinase,
ATM, and VDR following DNA damage.39 Notably, ATM and
VDR expression were increased after DSB induction by N-
nitroso-N-methylurea through ATM phosphorylation of VDR
which in turn promoted VDR transactivation of the ATM gene.
In addition, Vitamin D3 (1a,25(OH)2D3) which is the major
ligand of VDR, has been shown to protect cells from genotoxic
stress by promoting DNA repair. Vitamin D3 (VD3) bound
VDR is responsible for clearing cyclobutane pyrimidine dimers
(CPDs) and pyrimidone photoproducts (6,4 PP) in mice that
were exposed to UVB.49 Moreover, topically applied VD3 pro-
tected skin from UV induced photodamage.50

We first compared the sensitization achieved with VDR
knockdown to that of Chk1 knockdown, a well known chemo-
sensitization target that overrides the DNA damage checkpoint
and promotes mitotic catastrophe.51-56 We conducted clonogenic
assays as this was more sensitive and reliable than the short term
viability assays. Panc1 cells transfected with control, VDR, and
Chk1 siRNA’s were treated with vehicle or 50 nM gemcitabine
for 24 hrs before drugs were washed out and cells seeded for clo-
nogenic assays (Fig. 1A). Colony formation did not differ signifi-
cantly in control siRNA samples treated with vehicle versus
gemcitabine. Compared to control samples treated with gemcita-
bine, only 8% and 3% of the gemcitabine treated VDR and
Chk1 siRNAs transfected cells survived, respectively. Colony for-
mation of 92% and 77% efficiency was seen for vehicle treated

VDR and Chk1 siRNAs transfected cells, respectively. We
extended these studies to establish gemcitabine kill curves follow-
ing control and VDR siRNA transfections of Panc1, BxPC3, and
CFPAC1 cells. All 3 PCa cell lines showed increased sensitivity
to gemcitabine after knockdown of VDR (Fig. 1B). BxPC3 cells
treated with control siRNA had a mean IC50 of »200 nM as
compared to the mean IC50 of »60 nM after transfection with
VDR siRNA (p value of 0.036). CFPAC1 cells treated with con-
trol siRNA had a mean IC50 of »45 nM while the IC50 of
VDR depleted cells was reduced to »20 nM (p D 0.083). Simi-
larly, the IC50 of control transfected Panc1 cells was reduced
from »30 nM to »18 nM after VDR knockdown.

To establish specificity of the VDR siRNA, we attempted to
rescue the sensitization by expressing RNAi resistant alleles of
WT-VDR in cells stably knocked down of VDR. We set out to
establish stable VDR knockdown cell lines by utilizing a lentiviral
shRNA delivery system. BxPC3, Panc1, and CFPAC1 cells were
infected with virus but only BXPC3 cells that were stably
knocked down of VDR were recovered. This suggests that VDR
maybe essential in Panc1 and CFPAC1 cells (see discussion).
Western blots showed that BxPC3 VDRkd cells had »10 fold
reduction of VDR protein compared to the parental BxPC3 cells
(Figure S3A). Vector and WT-VDR were transfected into the
BxPC3 VDRkd cells (Figure S3B) and tested for gemcitabine
sensitivity in clonogenic assays. As with the untransfected cells,
vector transfected cells had an IC50 of »50 nM gemcitabine.
However, cells transfected with WT-VDR showed increased
IC50 of »300 nM gemcitabine (p D 0.089) (Fig. 1C). To
extend these results, we next tested various VDR mutants that
are unable to activate transcription.57 Vitamin D3 is the major
ligand that binds to VDR to activate transcription. In addition,
transcription is usually mediated by a heterodimer of VDR and
RXR (retinoid acid X receptor). VDR mutants defective in ligand
binding and heterodimerization have been characterized exten-
sively.57 Mutations that disrupted ligand binding (C288G) and
heterodimerization (K246G) (L254G) were transfected into the
BxPC3 VDRkd cells but none of them rescued the gemcitabine
sensitivity as with WT-VDR (Fig. 1D). As a further test for
VDR specificity, we utilized 2 dominant negative mutants to
neutralize the ability of WT-VDR to restore gemcitabine resis-
tance to the BXPC3 VDRkd cells. The S237M mutation in
VDR prevents binding by vitamin D3 but unlike other ligand
mutants, it exerts a dominant negative effect by titrating away
essential binding partners from endogenous VDR.58 Addition-
ally, we utilized the AML1/ETO fusion oncogene that also
sequesters VDR from its binding partners, RXR and Runx2, thus
disrupting the formation of VDR transcriptional machinery.59,60

When WT-VDR was co-transfected with either the S237M
mutant or AML1/ETO into BxPC3 VDRkd cells, colony forma-
tion after gemcitabine treatment was reduced when compared to
just WT-VDR tranfected cells (Fig. 1D). The IC50 for WT-
VDR transfected cells was »260 nM while co-transfection of
S237M or AML1/ETO reduced the IC50s to »60 nM (p D
0.039) and »80 nM (p D 0.147) respectively, very similar to the
IC50 for the untransfected VDR knockdown cells. The com-
bined data establish that both the ligand-binding and
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Figure 1. For figure legend, see page 3843.
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heterodimerization domains are essential for VDR’s role in pro-
moting gemcitabine survival.

We next compared the levels of VDR protein in BxPC3,
CFPAC1, and Panc1 cells to see if the amount of expression
might correlate with gemcitabine sensitivity. Western blots
showed that the basal levels of VDR differed among the cell lines
such that BXPC3 had the highest amounts of VDR, followed by
CFPAC1, and then Panc1 cells (Fig. 1E). After overnight treat-
ment with gemcitabine, VDR levels increased in Panc1 and
CFPAC1 cells. No noticeable increase in VDR levels was seen in
BXPC3 perhaps due to its high basal level. Comparison of the
gemcitabine sensitivity showed that it negatively correlated with
VDR levels (Fig. 1E) such that BxPC3 cells with the highest lev-
els of VDR had a mean IC50 of »200 nM, while CFPAC1 and
Panc1 cells had IC50s of »45 nM and »30 nM, respectively.

We next used Panc1 cells for VDR overexpression experi-
ments to further test the relationship between VDR and gemcita-
bine sensitivity. Cells transfected with WT-VDR were
significantly more resistant to gemcitabine (IC50 »250 nM)
than cells transfected with vector (IC50 »25 nM) (Figs. 1F and
S4A). The VDR overexpression data supports the VDR knock-
down data in establishing that levels of VDR expression is a criti-
cal determinant for gemcitabine response in pancreatic cancer
cells.

VDR specifies a survival pathway that is distinct from the
DNA damage checkpoint pathway

Since VDR knockdown achieved the same degree of gemcita-
bine sensitization as Chk1 knockdown, we tested whether the
mechanism of VDR sensitization was due to checkpoint override.
We used time-lapse microscopy to track the fates of gemcitabine
treated Panc1 cells that stably expressed a H2B:gfp fusion protein
that labeled chromosomes. Cells were transfected with siRNAs,
treated with vehicle or gemcitabine and monitored every 10
minutes for 48 hours (Figs. 2, S4B, and S4C). Control, VDR,
or Chk1 siRNAs did not affect viability of vehicle treated cells as
their numbers increased at the end of 48 hours. Addition of gem-
citabine to control siRNA cells stopped proliferation as a result of
the checkpoint, but cells did not die during the span of the time-
lapse experiment. As shown previously, Chk1 knockdown abro-
gated the cell cycle arrest mediated by gemcitabine as cells were
observed to enter mitosis where many died or died shortly after
exit from mitosis.51,61,62 By contrast, cells transfected with VDR
siRNA never entered mitosis, but nevertheless died during the

span of the »48 hour timelapse. Gemcitabine sensitization after
VDR knockdown is therefore not due to override of the DNA
damage checkpoint pathway mediated by Chk1.

VDR knockdown impairs foci formation by DNA damage
response proteins gH2AX, 53BP1, and Rad51 following
gemcitabine treatment

We investigated if drug sensitization after VDR knockdown
might be due to defective DNA damage repair. Gemcitabine is a
nucleoside analog that acts as a chain terminator that will stall
replication forks. If the forks cannot restart, they collapse to form
DNA double strand breaks that can be detected by the formation
of phospho-gH2AX foci.63 Repair of stalled forks is mediated by
the error-free homologous recombination pathway (HR). Rad51,
an essential component of HR, has been implicated in promoting
gemcitabine resistance in non-small-cell lung cancer and pancre-
atic cancer.64,65 53BP1 on the other hand protects DSB ends
from resection (which is required for HR) to promote non-
homologous end–joining (NHEJ) which is an error-prone repair
pathway.66 We examined if these repair pathways were abrogated
after VDR knockdown by staining for foci formation by phos-
pho-gH2AX, Rad51, and 53BP1, and measuring intensities after
gemcitabine treatment (Figs. 3–5). BxPC3 (high VDR expres-
sion) and Panc1 (low VDR expression) cells were treated with
gemcitabine (50 nM) for 2, 4, 8, and 18 hours, and fixed and
stained for phospho-gH2AX, 53BP1, and Rad51. Foci quantita-
tion included counting of nuclei with > 5 foci and a separate
measurement of the sum intensities of foci that were averaged for
5 separate IF experiments. Thus, our foci counts do not reflect
their intensities, which were quantitated separately. Weak but
detectable phospho-gH2AX foci were visible within 4 hours of
gemcitabine treatment in BxPC3 cells while it took 18 hours for
foci to form in Panc1 cells (Fig. 3A). Similarly, Rad51 foci were
visible after 8 hours of gemcitabine treatment in BxPC3 cells
compared to 18 hours in Panc1 cells (Figs. 3A–5). The kinetics
of 53BP1 foci formation were comparable between the 2 cell
lines. Next, we tested whether VDR deficiency affected the kinet-
ics of foci formation in BxPC3 and Panc1 cells. We compared
the kinetics of foci formation in the BxPC3 VDRkd cells to the
foci formation observed in the parental cells. We utilized tran-
sient siRNA transfections to knockdown VDR in the Panc1 cells.
VDR knockdown delayed foci formation and reduced foci inten-
sities of phospho-gH2AX and Rad51 in both cell lines
(Figs. 3A–5). 53BP1 foci formation kinetics did not seem to be

Figure 1 (See previous page). Sensitization of pancreatic cancer cells to gemcitabine following VDR knockdown. (A) Colony formation assay comparing
gemcitabine sensitivity of Panc1 cells after control, VDR and Chk1 siRNA transfection. Cells were treated with 50nM gemcitabine for 24 hrs. and drug
removed before the asssay. Colony counts are presented beneath the image of a representative colony survival assay. (B) Gemcitabine kill curves from
clonogenic survival assays performed on BXPC3, Panc1 and CFPAC1 cells following control or VDR siRNA transfection (n D 5). p values: BxPC3 D 0.036,
Panc1 D 0.171, CFPAC1 D 0.083. (C) clonogenic survival assays of gemcitabine sensitivity of BxPC3 VDRkd cells transfected with the indicated VDR con-
structs (n D 5). p values: VDR-WT D 0.088, VDR-C288G D 0.671, VDR-K246G D 0.845, VDR-L254G D 0.148. (D) AML1/ETO and VDR-S237M neutralizes the
ability of WT-VDR to rescue gemcitabine resistance of BxPC3 VDRkd cells (n D 5). p values: AML1/ETO D 0.147, VDR-S237M D 0.039. (E) Western blot
showing VDR expression after 18 hour vehicle or gemcitabine (50 nM) treatment of PCa cell lines. 40mg of protein loaded. Lane 1 D Panc1 C Vehicle;
Lane 2 D Panc1 C gemcitabine; Lane3 D CFPAC1 C Vehicle; Lane 4 D CFPAC1 C gemcitabine; Lane 5 D BxPC3 C Vehicle; Lane 6 D BxPC3 C gemcita-
bine. The 55 kDa marker is labeled between lanes 2 and 3, and to the right of lane 6. (F) Increased resistance of Panc1 cells to gemcitabine following
VDR overexpression (n D 5). p valueD 0.008.
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affected by VDR knockdown in either cell line (Figs. 3A–5).
Phospho-gH2AX and Rad51 foci in BxPC3 VDRkd cells were
detected 8 and 18 hours, respectively, following addition of gem-
citabine as compared to 4 and 8 hours respectively, in the paren-
tal cells. Similarly, Panc1 cells transfected with VDR siRNA did
not exhibit phospho-gH2AX and Rad51 foci until 18 hours fol-
lowing gemcitabine addition as compared to »8 hours for Panc1
cells transfected with control. Importantly, the slower kinetics of
foci formation in Panc1 cells was accelerated by transient VDR
overexpression in Panc1 cells (Fig. 5).

Along with the delayed kinetics foci
formation and reduced intensities of
phospho-gH2AX and Rad51 after VDR
knockdown, we noticed qualitative differ-
ences in the staining patterns of Rad51,
53BP1, and phospho-gH2AX. Parental
BxPC3 cells form discrete punctate phos-
pho-gH2AX foci compared to the
VDRkd cells that displayed a diffuse, pan
nuclear phospho-gH2AX staining pat-
tern (Fig. 3B). The punctate pattern is
indicative of damage recognition and
subsequent repair complex formation
near the sites of damage.67-69 In contrast,
the diffuse pattern is indicative of damage
recognition, but is believed to reflect a
failure to retain repair complexes distal to
damage sites which leads to further accu-
mulation of DNA damage that eventually
leads to catastrophic cell death.67-69 phos-
pho-gH2AX formed punctate foci
18 hours after gemcitabine treatment in
94% of the parental BxPC3 cells. By con-
trast, punctate foci were seen in only
18% of the VDRkd cells and the remain-
ing 82% of the cells exhibited a diffuse
pattern (Fig. 3B). Although the kinetics
of foci formation by 53BP1 was not
affected by VDR knockdown (Fig. 3A),
it also exhibited a more diffuse 53BP1
staining pattern as seen for phospho-

gH2AX (Fig. 3B). After 18 hours of gemcitabine treatment,
90% of the parental cells formed punctate 53BP1 foci and 10%
expressed the diffuse pattern. This contrasts with only 31% of
the VDRkd cells formed punctate foci while 69% expressed the
diffuse pattern. Similarly, Rad51 foci formation was also com-
promised in the VDRkd cells. After 18 hours of gemcitabine
treatment, 92% of the parental BxPC3 cells exhibited clear
Rad51 foci as compared to 28% of the VDRkd cells. 72% of
VDRkd cells (which were also phospho-gH2AX positive) exhib-
ited diffuse Rad51 staining as compared to only 8% that were

Figure 2. Gemcitabine sensitization after VDR
knockdown is not due to override of the DNA
damage checkpoint. Select frames from a 48
hr timelapse of Panc1 cells transfected with
control, Chk1, and VDR siRNAs that were
treated with vehicle or gemcitabine. Chk1
siRNA of gemcitabine treated samples show
increased mitotic cells at later timepoints.
Enlarged images show brightfield and gfpH2B
images of Chk1 siRNA cells prematurely enter-
ing mitosis and undergoing mitotic catastro-
phe. VDR siRNA transfected cells remain in
interphase and die without ever entering
mitosis.
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Figure 3. For figure legend, see page 3846.
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seen in the parental cells (Fig. 3B). Therefore, VDR knockdown
not only delays the kinetics of foci formation of phospho-
gH2AX and Rad51, but also compromises the ability of phos-
pho-gH2AX, 53BP1, and Rad51 to form punctate foci.

The reduction in Rad51 foci formation in gemcitabine treated
cells depleted of VDR suggested an impairment in HR. To func-
tionally test whether HR has been compromised after VDR
knockdown, we compared the sensitivity of parental and VDR
knockdown cells to the PARP inhibitor Rucaparib. This is based
on the observation that PARP inhibitors selectively kill BRCA1
defective cells because of their HR deficiency.70-72 Furthermore,
PARP inhibition has been shown to increase Rad51 foci,73 and
depletion of Rad51 sensitized cells to PARP inhibition.40 BxPC3
and Panc1 cells were transfected with control, VDR, and
BRCA1 siRNAs and their sensitivity to Rucaparib treatment was
compared by clonogenic survival. The results clearly showed that
VDR knockdown rendered both cell lines more sensitive to
Rucaparib than the controls. For BXPC3 cells, the IC50s after
knockdown of BRCA1 and VDR were 1 and 5 uM, respectively
(Fig. 6A) compared to the control IC50 of 9 mM. For Panc1
cells, the IC50s after knockdown of BRCA1 and VDR were 3.5
and 400 nM, respectively (Fig. 4A) compared to the control
(IC50 D 4 mM). The difference in sensitivities to Rucaparib
between VDR and BRCA1 knockdown was due to the fact that
Rad51 foci formation was more efficiently inhibited in BRCA1
depleted cells (Figure S6). The increased sensitivity of cells
depleted of VDR to Rucaparib supports the data that suggests
Rad51 mediated HR functions are impaired.

As VDR is a transcription factor, it may regulate the expres-
sion of DNA repair genes such as Rad51 and gH2AX. Compari-
son of the levels of these 2 proteins between parental and after
VDR knockdown did not show a significant difference that
would account for the reduced ability to form DNA damage foci
induced by gemcitabine. Western blots were performed to assay
VDR’s role in regulating the expression of gH2AX, 53BP1, and
Rad51 after DNA damage induction. Parental and BxPC3
VDRkd cells treated with gemcitabine for 18 hours expressed
equivalent amounts of Rad51 and H2AX in whole cell extracts
(supernatants) (Fig. 6B). However, analysis of the chromatin
fractions showed very low amounts of Rad51 and phospho-
gH2AX in VDRkd cells compared to the parental BxPC3 cells
(Fig. 6B). This supported our staining data that Rad51 and phos-
pho-gH2AX foci formation were impaired in VDR depleted cells
treated with gemcitabine. To further examine if VDR might be
regulating the expression of these and other DNA damage
response genes, we used RNAseq to compare the transcriptomes
of BXPC3 parental and VDRkd cells of Rad51 and H2AX. This
analysis did not identify significant differences in their mRNA
levels though the transcript numbers were slightly (<2 fold)

reduced in the BxPC3 VDRkd cells compared to the parental
BxPC3 cells (Table S2). We argue that this is not a significant
difference as it did not noticeably affect the amount of the
proteins.

Rad51 foci formation has been shown to depend on histone
acetylation. The histone acetyltransferases TIP48, 49, and 60
have been shown to modulate Rad51 foci formation in
response to DNA damage through histone acetylation.74,75

Given that VDR forms complexes with coactivators that con-
tain histone acetylases and corepressors that contain
HDACs,76 it may use this activity to specify Rad51 foci for-
mation. We therefore treated VDRkd cells with the HDAC
inhibitor, Trichostain A (TSA) (500 nM), and monitored
Rad51 foci formation after gemcitabine treatment (50 nM)
(Fig. 6C) In the absence of TSA, 11% of the VDRkd cells
exhibited Rad51 foci after 4 hrs in gemcitabine as compared
to 89% positive cells after TSA treatment. This increase was
comparable to parental cells where 92% of the cells exhibited
Rad51 foci within 4 hours of gemcitabine treatment.

To test the functional relevance of the TSA mediated Rad51
foci formation in the VDR knockdown cells, we tested if TSA
altered the sensitivity to gemcitabine. Using the same concentra-
tion of TSA (500 nM) that restored the kinetics of Rad51 foci
formation, it did not render the VDRkd cells more sensitive to
gemcitabine than cells without TSA treatment (both treatments
had an IC50 of 50 nM of gemcitabine) (Fig. 6D). Interestingly,
parental cell sensitivity to gemcitabine was increased by TSA
treatments at the concentrations tested (p D 0.02). The IC50 for
the gemcitabine plus TSA treated cells was 100 nM compared to
cells treated with gemcitabine alone which had an IC50 of
»200 nM (Fig. 6D).

We next wanted to test the contribution of the p300 HAT
(histone acetyltransferase)77 in Rad51 foci formation given that
p300 interacts with VDR to activate transcription of specific tar-
get genes.78 p300 also has been shown to directly promote
Rad51 transcription following DSB induction in lung cancer cell
lines.79 First, we depleted p300 from BxPC3 and Panc1 cells
using shRNAs, and treated cells with gemcitabine and monitored
Rad51 foci formation over time. The number of Rad51 foci and
overall intensity was reduced in the p300 shRNA transfected cells
compared to control cells (Fig. 7A). Of the BxPC3 cells trans-
fected with p300 shRNA, »22% were positive for Rad51 foci
(>5 foci/nucleus) compared to »84% of the control cells 18 hrs
post gemcitabine treatment. Overall Rad51 focal intensity was
also reduced by »35% in the p300 knockdown cells compared
to control cells. We also tested for gemcitabine sensitivity after
p300 knockdown (Fig. 7B). Consistent with the decreased
Rad51 foci, p300 knockdown effectively sensitized BxPC3 cells
to gemcitabine. The control shRNA treated cells had an IC50 of

Figure 3 (See previous page). VDR knockdwon reduces gemcitabine induced gH2AX and Rad51 foci formation in BXPC3 and Panc1 cells. (A) Cells were
treated with 50 nM gemcitabine, fixed at 0, 2 hrs, 3 hrs, 4 hrs, 6 hrs, 8 hrs, and 18 hrs and stained for Rad51, gH2AX, and 53BP1. Representative images
(40X) from 0, 4, 8 and 18 hrs post drug treatments are shown. (B) Higher magnification (90x) confocal images of individual nuclei displaying the different
staining patterns of Rad51, gH2AX, and 53BP1 after VDR knockdown compared to controls. Percentages of each pattern from 500 cells/sample analyzed
are presented.
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»80 nM while the p300 shRNA treated cells had an IC50 of
»40 nM (p D 0.0489). Panc1 cells also did not exhibit increased
sensitivity to gemcitabine following p300 knockdown with the
IC50s of p300 knockdown cells and control cells being similar at

»16 nM and »19 nM, respectively. This lack of sensitivity
maybe due to the fact that Panc1 cells express high basal levels of
p300, so RNAi was not sufficient to deplete p300 to levels that
altered drug sensitivity.

Figure 4. Quantification of Rad51, gH2AX, and 53BP1 staining of BxPC3 cells. Individual nuclei from images in Figure 3 were separately analyzed for foci
number and focal intensity. Quantitation was performed on cells treated with gemcitabine for 0, 2 hrs, 3 hrs, 4 hrs, 6 hrs, 8 hrs, and 18 hrs. 500 cells from
each timepoint was examined for Rad51, gH2AX, and 53BP1.
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Discussion

Our synthetic lethal screen identified 27 target genes that
contributed to gemcitabine survival in Panc1 cells. Analysis by
STRING and Ingenuity identified 2 networks that specified
gemcitabine survival. One was the DNA damage response

network that consisted of CHK1, Wee1, PIAS4, and 53BP1.
These genes validated our screen as they have previously been
shown to be important for gemcitabine sensitivity as well as
other genotoxic drugs.42-45,65,80 VDR was part of a second
network that also included SRF, and MMP13. Interestingly,
Runx2, a VDR binding partner and transcription factor,

Figure 5. Quantification of Rad51, gH2AX, and 53BP1 staining of Panc 1 cells. Individual nuclei from images in Figure 3 were separately analyzed for foci
number and focal intensity. Quantitation was performed on cells treated with gemcitabine for 0, 2 hrs, 3 hrs, 4 hrs, 6 hrs, 8 hrs, and 18 hrs. 500 cells from
each timepoint was examined for Rad51, gH2AX, and 53BP1.
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Figure 6. For figure legend, see page 3850.
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activates the MMP13 gene during prostate cancer invasion and
metastasis.81 Similarly, RXRa, a major VDR binding partner,
directly interacts with SRF and has been shown to compete
with SRF for other binding partners like SRC-1 and p300.82

We were unable to identify relationships among the remainder
21 genes and these were not assigned to any networks using
String DB or Ingenuity. We identified an acetylcholinestarase
(ACHE), a dehydrogenase (BCKDHB), phosphatases
(DUSP23 and EPM2A), a transferase (GSTM3), a member of
the pyruvate dehydrogenase complex (PDHA1), serine/threo-
nine kinase (STK39), a cysteine peptidase (APG4D), a trans-
porter (TNPO2), and transcriptional regulators (TBX4,
TBX5, and KLF10). The roles of these genes in gemcitabine
sensitization remains to be further investigated.

We focused on VDR because it is a novel target for gemcita-
bine sensitization, and its knockdown enhanced gemcitabine kill-
ing as effectively as with Chk1 knockdown. However, the
mechanism of sensitization is not via checkpoint override but
rather to a previously unknown role of VDR in Rad51 mediated
DNA repair. Our studies showed that VDR is required for the
recruitment of Rad51, a key protein in error-free homologous
recombination (HR)83 and is a critical determinant of gemcita-
bine sensitivity because of its importance to repairing stalled rep-
lication forks.64,65

We showed that the levels of VDR varied among Panc1,
BXPC3 and CFPAC cells, and cells with higher levels were more
resistant to gemcitabine. For all the cell lines, knockdown of
VDR increased their sensitivity to gemcitabine. BXPC3 cells
which were most resistant to gemcitabine (IC50 »200 nM)
showed the greatest reduction (»3-fold) in IC50 after depletion
of VDR. Transfection of wild type VDR into the VDR depleted
BXPC3 cells increased the IC50 »6-fold over vector controls,
and to levels seen for the parental BXPC3 cells. Consistent with
this observation, increasing VDR levels in Panc1 cells (which has
less VDR than BXPC3 cells) increased their IC50 to gemcitabine
by »10-fold over controls.

The effects of VDR on gemcitabine sensitivity is ligand and
dimerization dependent as VDR mutants lacking these activities
failed to rescue the gemcitabine sensitivity of cells depleted of
VDR. Furthermore, dominant negative mutants such as VDR
S237M and the AML1/ETO oncogene fusion, both of which
have been shown to sequester VDR from its partners such as
RXR and Runx258,59,84 failed to rescue gemcitabine sensitivity.
Despite the ligand dependence for gemcitabine survival, it is
unclear if VD3 (1,25 dihydroxyvitamin D) is the ligand. Our
studies were conducted using charcoal stripped and dialyzed

serum that does not support VDR dependent transcription in
the absence of an exogenous source of ligand.85 It is known that
VDR can bind other ligands such as curcumin86 and lithocholic
acid,87 the latter which is a toxic bile acid that activates VDR-
dependent transcription of the CYP3A detoxifying gene that is
independent of VD3. However, it remains formally possible that
trace amounts of VD3 in our medium is sufficient to facilitate
VDR dependent repair functions.

We showed that VDR was essential for pancreatic cancer cells
to form Rad51 and foci in response to gemcitabine. In BxPC3
cells that expressed the highest levels of VDR, Rad51 and phos-
pho-gH2AX foci form 8 and 4 hours respectively, after addition
of gemcitabine and the number and intensity of foci increase for
up to 18 hours. In Panc1 cells which have lower VDR levels, or
when VDR was experimentally depleted from BXPC3 cells, the
kinetics of Rad51 and phospho-gH2AX foci formation was
delayed by 4 and 6 hours respectively, and the intensity of the
foci was reduced 1.5 and 2 fold respectively, and never reached
the levels seen in control cells. Furthermore, the diffuse staining
pattern of Rad51 and phospho-gH2AX that is seen in the nuclei
of VDR depleted cells has been interpreted to reflect cata-
strophic amounts of DNA damage.67 In support of our hypoth-
esis that VDR facilitates Rad51 dependent homologous
recombination, both BxPC3 and Panc1 cells were sensitized to
the PARP inhibitor Rucaparib after VDR knockdown when
compared to control cells. We also observed that the levels of
VDR negatively correlated with Rucaparib sensitivity as Panc1
cells (which has less VDR) were more sensitive to Rucaparib
than BxPC3 cells. Our data suggest that the level of VDR
expression maybe a critical determinant of HR repair efficiency
in PCa cells and thus maybe used as a predictive marker for
PARP inhibitors.

The mechanism by which VDR facilitates Rad51 foci forma-
tion does not appear to be at the level of transcription. Cells
depleted of VDR expressed Rad51 protein at levels comparable
to control cells. This was corroborated by RNAseq data which
showed no significant difference in mRNA levels of not only
Rad51 but many of the proteins that are known to be important
for Rad51 foci formation (Table S3). The defect lies at the level
of recruitment of Rad51 to sites of damage. The defect may be at
the level of histone acetylation which is known to be important
for Rad51 formation.88,89 Indeed, we can rescue Rad51 foci for-
mation in VDR depleted cells with an HDAC inhibitor (TSA) as
has been reported by others.75,90-92 However, TSA did not
increase gemcitabine resistance as it may exert other effects that
are toxic to cells. Conversely, when the p300 HAT was depleted

Figure 6 (See previous page). VDR knockdown sensitizes BXPC3 and Panc1 cells to the PARP inhibitor, Rucaparib. blocks gemcitabine induced DSB HR
repair by reducing Rad51 foci formation at DSBs. (A) Rucaparib kill curves generated from clonogenic assays of cells transfected with control, BRCA1 and
VDR siRNAs. (B) Western blot comparing Rad51 and gH2AX protein levels of BxPC3 and BxPC3 VDRkd cells. 40mg of protein loaded. Lane 1 D BxPC3 C
vehicle (18 hrs) (supernatant fraction); Lane 2 D BxPC3 C gemcitabine (50 nM) (18 hrs) (supernatant fraction); Lane 3 D BxPC3 VDRkd C vehicle (18 hrs)
(supernatant fraction); Lane 4 D BxPC3 VDRkd C gemcitabine (50 nM) (18 hrs) (supernatant fraction); Lane 5 D BxPC3 C vehicle (18 hrs) (pellet fraction);
Lane 6 D BxPC3 C gemcitabine (50 nM) (18 hrs) (pellet fraction); Lane 7 D BxPC3 VDRkd C vehicle (18 hrs) (pellet fraction); Lane 8 D BxPC3 VDRkd C
gemcitabine (50 nM) (18 hrs) (pellet fraction). (C) Comparison of Rad51 and gH2AX staining of BxPC3 and BxPC3kd cells following TSA (500 nM)C gemci-
tabine (50 nM) treatments. (D) Colony survival of BxPC3 VDRkd and BxPC3 parental cells treated with TSA (500 nM) C gemcitabine (n D 3). p values:
BxPC3 VDRkdD 0.289, BxPC3 controlD 0.02.

3850 Volume 13 Issue 24Cell Cycle



Figure 7. p300 knockdown reduces gemcitabine induced Rad51 foci formation. (A) Rad51 and yH2AX staining of BxPC3 or Panc1 cells treated with con-
trol and p300 shRNA’s, and treated with vehicle or gemcitabine. (B) Clonogenic survival assay of BxPC3 and Panc1 cells transfected with p300 shRNA and
treated with different doses of gemcitabine (n D 3). p values: BxPC3D 0.0489, Panc1D 0.192.
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from VDR expressing cells, they failed to form Rad51 foci after
gemcitabine treatment. This can explain the increased sensitivity
of the p300 knockdown cells to gemcitabine.

We have not tested if VDR plays a similar role in other cancer
cells and thus do not know if the relationship between VDR and
DNA repair is unique to pancreatic cancer cells. Given that VDR
is not an essential gene, we speculate that its role in DNA damage
may have evolved in response to increased levels of genomic stress
that cells experienced during tumorogenesis.93 In this regard, we
cannot say that VDR acts solely in DNA repair because it may
also dictate the expression of genes that specify other survival
pathways in the cancer cell. As a consequence, VDR became
essential for the survival of rapidly dividing PCa cells. This may
explain why we were not able to recover stable VDR knockdown
cells from Panc1, CFPAC1, and MiaPaca2 cell lines. Thus, tar-
geting VDR alone may be an effective strategy to enhance killing
of pancreatic tumor cells in addition to VDR being a chemosen-
sitization target.

Materials and Methods

Cell culture and chemicals
Panc1, BxPC3, and CFPAC1 cells were purchased from

American Type Culture Collection (ATCC) and banked at Fox
Chase Cancer Center (FCCC) until use. Cell lines were cultured
in DMEM/10%FBS supplemented with 2 mM glutamine and
1% penicillin, streptomycin, and kanamycin (PSK) and were
maintained at 37�C in 5% CO2. Charcoal stripped (FCCC cell
culture facility) and dialyzed FBS (Life Technologies; 26400–
036) were used. Gemcitabine was obtained from the FCCC
pharmacy. Rucaparib was a generous gift from N. Johnson
(FCCC). Trichostatin A was a generous gift from R. Katz
(FCCC).

Plasmids

pLKO.1-VDRshRNA was purchased from Thermo Scientific
(TRCN0000019504). pCMV-WT-VDR and pCMV-AML1/
ETO plasmids were made from backbones obtained from Addg-
ene. The VDR-S237M mutant was a generous gift from M.
Makashima (Nihon University School of Medicine, Tokyo). To
create the RNAi resistant allele, pCMV-WT-VDR was mutated
at the VDR shRNA target sequence with conservative mutations
at the wobble position of 4 consecutive codons. VDR-C288G,
K246G, and L254G mutants were created by Quick Change II
mutagenesis (Agilent Technologies; 200521).

Synthetic lethal RNAi screen

High throughput RNAi was performed using the validated
human genome-wide siRNA library version 2.0 obtained from
Dharmacon. This is a SMARTPool (4 siRNAs per gene) library
that targeted »23,500 of the annotated genes, and has been

validated to deplete mRNA by 75%. Stock siRNA was diluted
in siRNA buffer (Dharmacon; B-002000-UB-100) and 10 ng
of siRNA was reverse transfected into Panc1 cells seeded into
white Corning 384-well plates (Fisher Scientific; 07–201–320)
in quadruplicates on day 0. Briefly, diluted Dharmafect1
reagent (Dharmacon; T-2001–01) in OptiMEM (Life Technol-
ogies; 51985091) was added to the wells and allowed to com-
plex with siRNA for 20 minutes at room temperature. Panc1
cells in 100 ml of DMEM/10%FBS media without PSK were
mixed with 100ml of transfection mix at 1000 cells/well. Plates
were incubated at 37�C with 5% CO2. After 48 hours, either
vehicle or gemcitabine (50 nM) was added and plates were fur-
ther incubated for 48 hours. Total viable cell number was deter-
mined by the addition of Cell Titer Glo (Promega; G7573) and
relative luminescence units (RLU) were measured using an
EnVision plate reader (Perkin Elmer). Raw RLU data was nor-
malized to the mean siRNA control on each plate. The effect of
gemcitabine treatment on viability was measured based on the
normalized viabilities in the drug treated and vehicle wells using
Limma.94 Statistical significance was measured by p-values con-
trolled for the false discovery rate (FDR) using the Benjamini-
Hochberg step-up method95 to account for multiple testing.
Hits showing an FDR of less than 20% and also a change of at
least 15% in viability relative to vehicle treated cells were
selected for validation.

RNAseq data analysis
Raw sequence reads were aligned to the human hg19 genome

using the Tophat algorithm96; Cufflinks algorithm97 was imple-
mented to assemble transcripts and estimate their abundance.
Cuffdiff98 was used to statistically assess expression changes in
quantified genes in different conditions.

Cell viability assays
For clonogenic assays, 1000 cells per well were seeded into 6

well plates on day 0. Cells were treated with gemcitabine at vari-
ous doses on day 1 for 24 hours. Gemcitabine was washed out
on day 2, and cells were allowed to grow for a subsequent 10 d
before being fixed (10% methanol C 10% acetic acid) and
stained with crystal violet (0.4% in 20% ethanol) for colony
counting and quantitation as previously described.99 For Ruca-
parib clonogenic assays, the drug was added at various doses
24 hours after cell plating, and cells were allowed to grow for a
subsequent 10 d in the presence of Rucaparib. For TSA clono-
genic assays, the drug was added for 4 hours prior to addition of
gemcitabine or vehicle for another 18 hours before drugs were
washed away, and cells were allowed to grow in drug-free
medium for 10 d

Microscopy
For timelapse studies, Panc1 cells with stable expression of

Histone H2B fused at its C-terminus to GFP were seeded into 6-
well plates. Twenty-four hours post cell plating, gemcitabine
(50 nM) was added before timelapse was commenced. The plate
was placed in a 37C chamber; bright-field and fluorescent images
were taken every 5 minutes for 48 hours using a Nikon
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TE2000S microscope controlled by Metamorph (Molecular
Devices). Three independent movies were conducted for each
condition. Movies were allowed to commence for 48 hours for
each independent experiment.

For Immunofluorescence, cells were plated onto coverslips
24 hours pre gemcitabine treatment. At different timepoints post
gemcitabine treatment, cells were permeabolized, fixed (4% para-
formaldehyde) and stained as previously described.99 Antibodies
to gH2AX (Millipore; 05–636), Rad51 (a generous gift from
G. Ghosal and J. Chen (MD Anderson Cancer Center, Houston,
TX), and 53BP1100 were used. Alexa Fluor-conjugated (488,
555, and 647 nm) secondary antibodies (Molecular probes; A-
11029, A-21428, A-21247) were used at a final concentration of
1 mg/ml and nuclei counterstained with DAPI. Images were cap-
tured using a 40X or 63X high NA objective mounted on a semi-
automated inverted microscope (Nikon TEi) with a charge-cou-
pled device camera (Photometrics1394) using Nikon Elements
2.0. Exposure times for antibodies were optimized for control
samples and identical exposure times used for the experimental
samples. Images were quantitated and analyzed using Nikon Ele-
ments 2.0. Confocal images were taken using a Leica TCS-SP8
microscope controlled by LAS software (Leica Microsystems).

Western Blotting

BxPC3, Panc1, and CFPAC1 cells were treated with vehicle
or gemcitabine (50 nM) for 18 hrs. Cells were harvested,
washed in PBS and lysed in NP40 lysis buffer (1% NP40/
PBS/10% glycerol) with protease and phosphatase inhibitors.
Protein concentrations were determined with MicroBCA Assay
(Pierce Biotechnology; 23224 and 23228) and then SDS sam-
ple buffer was added to the lysates. 40mg of boiled lysates was
separated by SDS-PAGE and then transferred onto Immobilon

P membrane (Millipore; IPVH00010). Antibodies used for
immunoblotting were obtained from: VDR (Epitomics; 3277–
1), gH2AX (Upstate Biotechnologies, now Millipore; 05–
636), Rad51 (Genetex; GTX70230, gift from J. Chen), p300
(Santa Cruz Biotechnologies; SC-584), and TAO1 kinase
(Bethyl Labs; A300–524A). TAO1 was used as a loading con-
trol since its expression did not vary in any cell lines or drug
treatments.
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