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Defective DNA damage response (DDR) is frequently associated with carcinogenesis. Abrogation of DDR leads to
chromosomal instability, a most common characteristic of tumors. However, the molecular mechanisms underlying
regulation of DDR are still elusive. The ubiquitin ligase RNF8 mediates the ubiquitination of gH2AX and recruits 53BP1
and BRCA1 to DNA damage sites which promotes DDR and inhibits chromosomal instability. Though RNF8 is a key
player involved in DDR, regulation of its expression is still poorly understood. Here, we show that miR-214 could
abrogate DDR by repressing RNF8 expression through direct binding to 30-untranslated region (30 UTR) of RNF8 mRNA
in human ovarian cancer cells. Antagonizing miR-214 by expressing its inhibitors in A2780 cells significantly increased
RNF8 expression and thus promoted DNA damage repair. Consistent with the role of miR-214 in regulating RNF8
expression, the impaired DNA repair induced by miR-214 overexpression can be rescued by overexpressing RNF8
mRNA lacking the 30 UTR. Together, our results indicate that down-regulation of RNF8 mediated by miR-214 impedes
DNA damage response to induce chromosomal instability in ovarian cancers, which may facilitate the understanding of
mechanisms underlying chromosomal instability.

Introduction

Chromosomal instability (CIN) are gross chromosomal
abnormalities involving gain or loss of whole or fractions of
chromosomes that can lead to tumor formation.1 To ensure
genomic integrity, cells apply several mechanisms including
the DDR pathway.2 RNF8, a RING-finger E3 ubiquitin
ligase, ubiquitylate histone H2A and H2AX, which mediates
the recruitments of 53BP1 and BRCA1 at sites of DNA dam-
age to promote the transduction of DDR.4,5 Decreased
expression of RNF8 can significantly block DDR and induce
CIN. Many types of cancers with specific defects in the DNA
damage response (DDR) have the characteristic of genomic
instability.6 RNF8¡/¡ mice exhibit increased genomic insta-
bility and have an elevated risk of tumorigenesis, indicating
that RNF8 is a tumor suppressor gene.7 Consistent with this
finding, it has been observed that RNF8 expression is lower
in many types of cancer cell lines than in normal cell lines.8

Although the regulations and functions of many genes in
DDR have been studied, the mechanism by which RNF8
expression is regulated remains unknown.

MicroRNAs (miRNAs) are small noncoding RNAs (20–22
nucleotides), which can cause mRNA degradation or a post-tran-
scriptional repression of target genes by complementary binding
to their 30 UTR.9 Several genes involved in DDR are regulated by
specific miRNAs, such as BRCA1,10 BRCA2,11 Rad51,12,13

NBS1,14 H2AX,15,16 SNF2H,17 ATM18 and DNA-PKcs.18

RNF8 mRNA has less than 2 K bp of coding sequence, with
about 4 K bp of 30 UTR sequence. This suggests a high possibility
that specific miRNAs could directly suppress RNF8 expression by
targeting its long 30 UTR leading to chromosomal instability.

In ovarian cancer, gross chromosomal instability such as struc-
tural rearrangements are frequently reported.19,20 Germline-asso-
ciated BRCA1 or BRCA2 mutations can only be found in a
small proportion of ovarian cancers.21-24 Even loss of BRCA1 or
BRCA2 function due to genetic or epigenetic processes only
accounted for a small proportion of ovarian cancers.25 Somatic
mutations or epigenetic alterations in genes for chromosomal
instability need to be further discovered. Over-expression of
miR-214 has been reported in many types of cancers, such
as melanoma,26 pancreatic cancer,27 lung cancer,28 oral carci-
noma,29 gastric cancer30 and especially in ovarian cancer.31-34 It
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has been documented that both miR-214 overexpression34,35 and
chromosomal instability36-39 are individually associated with the
development of ovarian cancer. Here, for the first time we inves-
tigated the relationship between miR-214 overexpression and
chromosomal instability in ovarian cell lines and are reporting
that miR-214 negatively regulates RNF8 expression and can
induce chromosomal instability leading to ovarian cancer.

Results

MiR-214 overexpression increases CIN after ionizing
radiation (IR) treatment

To find potential miRNAs that can directly target human
RNF8, 3 online computational softwares: Targetscan (http://www.
targetscan.org), Miranda (http://www.microrna.org) and miRDB
(http://mirdb.org/miRDB) were used to perform an “in silico”
search for putative miRNA binding-sites in the 30 UTR of RNF8.
Only miR-214 was predicted by all 3 software packages (Fig. S1A)
and it was found to be evolutionarily conserved throughout the ver-
tebrates (Fig. S1B). The Cancer Genome Atlas (TCGA) database
was used to explore further, the relationship between miR-214 and
the expression of RNF8 mRNA. It was observed that miR-214

expression was inversely corre-
lated with RNF8 mRNA
expression in grade 1 and 2
ovarian cancer (Fig. S2). Next,
we examined the relative miR-
214 and RNF8 mRNA levels
in several ovarian cancer cell
lines. Cell lines with relatively
lower endogenous miR-214
(SKOV3, OV2008) showed
higher concentrations of RNF8
mRNA and those with higher
endogenous miR-214 (ES-2,
A2780) had lower levels of
RNF8 mRNA (Fig. S3). To
study whether miR-214 overex-
pression can disturb DDR to
induce chromosomal instabil-
ity, miR-214 mimics were
transfected into SKOV3 and
OV2008 cell lines. About 66 h
after transfection, cells were
exposed to IR and then the
micronucleus frequency was
analyzed 20 h post IR treat-
ment. The results showed that
miR-214 overexpression in
OV2008 and SKOV3 cells did
not significantly increase the
percentage of cells with non-
centromeric micronuclei as
compared with control cells
without IR treatment, but this

frequency was significantly increased after IR treatment in both cell
lines (Fig. 1A–C). The other types of cells with micronuclei in
OV2008 and SKOV3 cell lines did not showed a significant
increase either with or without IR treatment (Supplementary
Table). These results indicated that miR-214 overexpression can
increase CIN after IR treatment, suggesting that miR-214 may dis-
turb some genes involved in DDR. As RNF8 was a predicted target
for miR-214, we focused on this interaction.

MiR-214 directly down regulates RNF8 expression by
binding to 30 UTR of its mRNA

To test whether miR-214 can regulate RNF8 expression, miR-
214 mimics were overexpressed in SKOV3 and OV2008 cells,
then Western blotting or real-time PCR were performed at 48 or
72 h post transfection respectively. The results indicated that
miR-214 had highest expression 48 h post transfection, while the
mRNA and protein levels of RNF8 were significantly reduced
(Fig. 2A–D). Computational analysis suggested that there are 3
putative binding sites for miR-214 in the 30 UTR of human RNF8
mRNA. Every site is the 7-mer-m8 seed CCAGCAG, which
means Watson-Crick base-pairing from positions 2 to 8 at posi-
tions 172–178, 2436–2442 and 3916–3922 from the start of the

Figure 1. MiR-214 increases DNA damage-induced chromosomal instability. Cells were treated with 5 Gy IR 66 h
after transfection and micronuclei were detected 20 h later. (A) Four types of SKOV3 cells were observed on the
basis of micronuclei: without micronucleus, with centromeric micronucleus, with non-centromeric micronucleus
and with both types of micronuclei. Green, Human centromeres; Red, DNA; Bars D 10 mm. Non-centromeric
(white arrows) or centromeric (yellow arrows) micronucleus. (B and C) The percentage of cells with non-
centromeric micronuclei in SKOV3 (B) or OV2008 (C) cells. n D the number of cells counted. Mean § SD, from
two independent experiments. *P < 0.05, chi-square test.
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30 UTR (Fig. 2E). To exam-
ine whether miR-214
directly binds to the RNF8
30 UTR at these putative
binding sites, a dual-lucifer-
ase reporter vector was con-
structed by inserting the
wild-type 30 UTR of human
RNF8 gene into the 30 end
of the renilla luciferase gene.
Human kidney 293T cells
were transfected with this
vector together with either
miR-214 or negative con-
trol (NC) oligonucleotides.
These results showed that
the luciferase activity was
greatly repressed by miR-
214 compared to NC at
24 h post transfection
(Fig. 2F). We prepared
equivalent luciferase con-
structs with mutations in
individual putative binding sites as well as in all 3 binding sites.
Mutation in each putative binding site had a different influence on
luciferase activity. Mutation in site 2 had no significant effect on
luciferase activity, while mutation in sites 1 or 3 significantly
reduced the suppression by miR-214. Mutation in all 3 putative
sites further decreased this suppression (Fig. 2E-F). Taken
together, these results confirm that RNF8 is the target of miR-214.

MiR-214 disturbs DNA damage response via
downregulation of RNF8

To study whether miR-214 can increase the IR-induced chro-
mosomal instability by down regulation of RNF8, SKOV3 cells
were transfected with miR-214 mimics or RNF8 siRNA individ-
ually or together in a combination. We found that miR-214 did
not change the protein level of 53BP1, BRCA1 and Rad51, while

Figure 2. MiR-214 directly
regulates RNF8 expression.
Relative expression levels of
miR-214 (A), RNF8 mRNAs
(B) or protein (C and D) were
detected at 48 h or 72 h post
transfection by real-time PCR
or Western blotting, respec-
tively. (E) Mature miR-214
sequence and its putative
binding sites in the 30 UTR of
human RNF8 mRNA. Dual
luciferase reporter constructs
contain a DNA sequence
encoding wild-type (E1) or
mutant RNF8mRNA 30 UTR for
each individual (E2-4) or all
(E5) putative binding sites,
respectively. Mean § SD, from
3 independent experiments.
(F) Relative luciferase activity
was measured 24 h after co-
transfection of each luciferase
vectors (100 ng) together with
miR-214 mimics (50 nM) or
controls in 293T cells. *P <

0.05, ***P < 0.001, 2-tailed
t-test (B and D), chi-square
test (F).
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RNF8 expression at mRNA and protein levels was significantly
decreased (Fig. 3A–C). Furthermore, co-transfection of miR-214
mimics and RNF8 siRNA did not further alter the expression of
53BP1, BRCA1, Rad51 and RNF8 compared with transfection
of RNF8 siRNA in SKOV3 cells. However, miR-214 inhibited
the recruitment of 53BP1, BRCA1 and Rad51 to DNA damage
sites after IR treatment (Fig. 3D–E, Fig. S4). Co-transfection of
miR-214 mimics together with RNF8 siRNA did not further dis-
turb the recruitment of these proteins (Fig. 3E). A neutral comet
assay showed that miR-214 mimic-transfected cells displayed

significantly higher residual level of DNA damage as compared
to the control cells 2 h after IR-treatment, and there was no sig-
nificant difference in the presence of DNA damage in cells
between co-transfection of miR-214 with RNF8 siRNA and
RNF8 siRNA alone (Fig. 3F–G).

Inhibition of miR-214 facilitates IR-induced DNA damage
repair

Our next focus was whether inhibition of miR-214 in A2780
cells, which had the high level of endogenous miR-214

Figure 3.MiR-214 disturbs DNA damage response by downregulating RNF8 expression. A hundred nM MiR-214 mimics or RNF8 siRNAs were transfected
individually or together into SKOV3 cells. Forty 8 or 72 h later, relative RNF8 mRNA (A) or protein (B) expression was detected by real-time PCR or West-
ern blotting. The expression of downstream proteins 53BP1, BRCA1 or Rad51 in DNA damage response was also detected by Western blotting (C). Cells
were treated with 5 Gy IR 72 h after transfection and then fixed for immunofluorescent staining for RAD51 and gH2AX. Representative images (D) and
quantitative results (E) of RAD51 and gH2AX staining. Green,gH2AX; RAD51, Red; Blue, DNA; Bars D 10 mm. One-2 hours following treatment of cells
with 5 Gy IR 72 h after transfection, neutral comet assay was performed to detect DNA damage. (F) Quantitative results were calculated by olive moment.
n D the number of cells counted. ***P < 0.001, chi-square test (D), two-tailed t-test (A and F).
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expression as compared to the other ovarian cancer cell lines
(Fig. S3), can rescue RNF8 expression and facilitate DNA dam-
age repair or not. Our results revealed that overexpression of
miR-214 inhibitor significantly increased the expression of
RNF8 protein (Fig. 4A–B). To determine whether inhibition of
endogenous miR-214 can affect DNA repair or not, the persis-
tence of DNA damage was measured by neutral comet assay 2 h
after 5 Gy IR treatment. Results indicated that inhibition of
endogenous miR-214 significantly facilitated DNA repair after
IR treatment (Fig. 4C–D). We also analyzed the percentage of
cells with >10 gH2AX foci in a time course after 5 Gy IR treat-
ment in both control and miR-214-inhibitor overexpressing cells.
We observed that the percentage of cells with >10 gH2AX foci
deceased more rapidly in miR-214-inhibitor overexpressing cells
than controls (Fig. 4E–F). Inhibition of endogenous miR-214
also facilitated clone formation after 5 Gy IR treatment
(Fig. 4G–H), while in treatment without IR there was no signifi-
cant change clone formation (Fig. S5). These results indicated
that inhibition of endogenous miR-214 results in increased
RNF8 expression which facilitates DNA damage repair.

Overexpression of RNF8 mRNA lacking 30 UTR rescues the
disturbance of DNA repair induced by miR-214

To further validate whether miR-214 disturbs the ability of
DNA damage repair through downregulation of RNF8, we
tested whether overexpression of RNF8 without 30 UTR can res-
cue the ability of DNA repair after miR-214 overexpression.
miR-214 mimics or negative control were transfected respec-
tively; at 36 h after the first transfection, RNF8-GFP cDNA
(lacking the 30 UTR with putative miR-214 binding sites) or
backbone vector were subsequently transfected. Cells were irradi-
ated 34 hours after the final transfection and comet assays or
immunofluorescence staining was performed one or two hours
after irradiation to measure DNA damage (Fig. 5A). The results
indicated that overexpression of RNF8 without 30 UTR signifi-
cantly reduced IR-induced DNA damage (Fig. 5B–D). The
results of immunofluorescent staining revealed that after IR treat-
ment, the 53BP1, BRCA1 and Rad51 foci formation was signifi-
cantly rescued in RNF8-GFP expressing cells (Fig. 5E–F,
Fig. S6). Taken together, these results indicated that miR-214-
mediated RNF8 downregulation disturbs DNA damage response
by binding at 30 UTR of RNF8 mRNA.

Discussion

Many cancers are characterized by CIN.1 The DNA damage
response acts as a barrier to inhibit CIN by sensing DNA lesions,
signal transduction and promoting damage repair which is com-
monly defective in many cancers.2,6 In this process, mutations in
several genes such as ATM,40,41 BRCA1,21,22,42 BRCA2,21,42 or
NBS143 predispose to carcinogenesis. Apart from mutations,
many recent studies have suggested that repair is also impaired by
overexpression of several specific miRNAs in different cancers;
for example, in breast cancer, low BRCA2 expression is induced
by overexpressed miR-1245.11 Similarly down regulation of

BRCA1 by overexpression of miR-182 is observed in ovarian
cancer10 and decreased NBS1 expression by miR-629 overexpres-
sion has been documented in lung cancer.14 miR-214 was also
found up-regulated in human pancreatic cancer27 or gastric can-
cer,30 melanoma,26 lung cancer,28 pediatric osteosarcoma48 and
oral carcinoma,29 and therefore has been considered to be an
oncogene. In the present study, we have found that miR-214
overexpression can lead to CIN by disturbing RNF8-mediated
DNA damage response in ovarian cancer.

Gross chromosomal instability such as structural rearrange-
ments are frequently identified in ovarian cancer.19,20 However,
the underlying mechanism leading to CIN in ovarian cancer is
still poorly understood except that germ line associated BRCA1
or BRCA2 mutations can cause a variety of cancer-prone chro-
mosomal instability syndromes.21,22 Recently, miR-214 overex-
pression has been reported in many ovarian cancer tissues.31-33

The magnitude of miR-214 overexpression correlates with ovar-
ian cancer progression34,35 and CIN is considered to be an early
event that drives this progression.1,44,45 Here for the first time we
have studied the role of miR-214 in CIN of ovarian cancer and
found that chromosomal integrity is significantly disturbed by
miR-214 overexpression after IR treatment, suggesting that miR-
214 is associated with DDR in ovarian cancer cell lines (Fig. 1).

RNF8 is a RING-finger E3 ubiquitin ligase and it is a key
protein in DDR that mediates ubiquitin conjugation to help the
recruitment of 53BP1 and BRCA1 to the sites of DNA lesions.
Here for the first time we have reported that miR-214 inhibited
RNF8 expression and disturbed DDR by impeding recruitment
of 53BP1, Rad51 and BRCA1 at DNA damage sites (Figs. 2A–
D and 3A–E). MiR-214 reduces RNF8 levels by directly binding
to 3 seeds in 30 UTR of human RNF8 (Fig. 2E and F). Our
results indicated that miR-214 overexpression causes CIN by dis-
turbing DNA damage response in ovarian cancer cell lines. Addi-
tionally, miR-214 overexpression also facilitated the stemness of
ovarian cancer stem cells,46 suggesting that miR-214 contributes
to ovarian carcinogenesis through more than one mechanism.

Most prevalent radiotherapy or chemotherapy for anticancer
relies on the generation of DNA damage, because most cancer
cells are DDR-impaired and rapidly proliferating as compared to
normal cells.2,6 The inhibition of DDR could increase the effec-
tiveness of radiotherapy or chemotherapy.6 In previous reports,
miR-214 has been reported to induce sensitivity against DNA-
damage agent cisplatin in cervical cancer cells49 and inhibit can-
cer cells growth in hepatocellular carcinoma,50 breast cancer51

and oesophageal squamous cell carcinoma.52 Furthermore, miR-
214 also inhibits cancer metastasis in intrahepatic cholangiocarci-
noma.53 These analyses implied that overexpression miR-214 in
cancer cells might benefit cancer therapy. However, other reports
showed that miR-214 has the negative effects on cancer therapy.
MiR-214 can increase its ability of radio-resistance in non-small-
cell lung cancer54 and facilitate cell proliferation in nasopharyn-
geal carcinoma.55 Several other studies have shown that miR-214
also contributes to metastasis in melanoma26 or gastric cancer.56

Furthermore, in cisplatin-resistant ovarian cancers, miR-214 can
increase cell survival after cisplatin treatment. The contradicting
effects of miR-214 on cancer therapy need more detailed studies
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Figure 4. Inhibition of endogenous miR-214 increases RNF8-mediated DNA damage response. Representative image (A) and quantitation (B) of RNF8
expression at 72 h after miR-214 inhibitor transfection detected by Western blotting. (C) At 72 h after transfection, neutral comet assay was performed
to detect DNA damage and representative images were shown, Bars D 20 mm. (D) Quantitative results were calculated by olive moment. n D the num-
ber of cells counted. Seventy-2 hours post transfection, the percentage of cells with >10 gH2AX foci were analyzed at different time points after IR treat-
ment. (E) Representative images of gH2AX staining, Bars D 10 mm and (F) quantitative results of gH2AX staining. More than 100 cells were analyzed for
each category. Seventy-2 hours post transfection, 1 £ 103 A2780 cells transfected with miR-214 inhibitors or controls were treated with 5 Gy IR and fol-
lowed by clone formation assay, respectively. Representative image (G) and quantitative analysis (H) of clone formation assay 7 days after IR. A2780 cells
were transfected with or without miR-214 inhibitors for 72 h and followed by 5 Gy IR treatment. *P < 0.05, ***P < 0.001, chi-square test (F and H), two-
tailed t-test (B and D). Mean§ SD, from two independent experiments.
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to find exact relationships to
cancer development. In the
current study, we found that
miR-214 disturbs DNA
damage response through
RNF8 down regulation,
which can induce gross CIN.
CIN can randomly activate
large amounts of oncogenes
and ensue DNA replication
stress leading to cancer het-
erogeneity6,57 which may be
the underlying reason for
these differing miR-214 phe-
notypes in different types of
cancers. Resistance to DDR-
associated cancer therapy can
be due to many factors and
miR-214 is one of them.
Our results may broaden the
knowledge of cancer detec-
tion and therapy. Detection
of carcinogenesis can be
improved by analysis of
miR-214 expression, while
the management of radio- or
drug- resistant cancers needs
more clinical studies on
DNA damage response in
different cancers.

Materials and Methods

Cell culture
Human SKOV3 cell line

was gifted by Professor
Dr. Jing Liu (University of
Science and Technology of
China; City Hefei), human
OV2008, ES-2 and A2780
cell lines were gifted by Pro-
fessor Dr. HengYu Fan (Zhe
Jiang University, City Hang-
zhou, China) and 293T cell
line was purchased from
ATCC. These cell lines were
cultured in Dulbecco´s modified Eagle´s medium (Gibco 12800
-017) supplemented with 10% fetal bovine serum (HyClone
SV30087), 100 U/ml penicillin and 100 U/ml streptomycin
(Gibco 15140-122).

Cell transfection
RNF8 specific siRNA (50-AGAAUGAGCUCCAAU-

GUAUUUTT -30) was used as previously reported.58 Transfec-
tion of RNF8 siRNA, miRNA mimics or inhibitors and miRNA

mimic negative control or siRNA negative control (100 nM,
Genepharma, Shanghai, China) were carried out using Metafec-
tene (Biontex) according to the manufacturers´ protocols. MiR-
214 inhibitors are chemically modified, single stranded nucleic
acids designed to specifically bind and to inhibit endogenous
miR-214 (Genepharma, Shanghai, China). SiRNA and miRNA
mimics negative control (50-TTCTCCGAACGTGTCACG-30,
Genepharma) or miR-214 inhibitor negative control (50-
CAGUACUUUUGUGUAGUACAA-30, Genepharma) are

Figure 5. Overexpression of RNF8 mRNAs without 30 UTR can antagonize the effects of miR-214 on DNA damage
response. (A) Experimental scheme for cell transfection. Thirty-6 hours after transfection either with negative con-
trol or miR-214 mimics, SKOV3 cells were transfected with plasmids with or without RNF8-GFP cDNA lacking the
30 UTR. Western blotting was performed 36 h later after plasmids transfection to detect RNF8 expression (B). Cells
were then treated with 5 Gy IR and followed by recovery for about 1 or 2 h followed by immunofluorescent stain-
ing or neutral comet assay to detect DNA damage. Representative images (C) and Quantitative analysis (D) of
comet assay. nD the number of cells counted. BarsD 20 mm. (E) Representative images and (F) quantitative results
of RAD51 and gH2AX staining in various experimental treatments. Bars D 10 mm, Mean § SD, from two indepen-
dent experiments. *P < 0.05, ***P< 0.001, 2-tailed t-test (D) and chi-square test (F).
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random double- or single-stranded sequence molecules which can
mimic and were validated not to produce identifiable effects on
the known RNAs expression. 400 ng/ml RNF8-GFP or back-
bone plasmids was transfected by lipofectamine 2000 transfec-
tion reagent, according to the manufacturers´ protocols.

Construction of luciferase reporter vectors
The human wild type (WT) RNF8 30 UTR sequences

(1–3980 nt from the start of 30 UTR) containing the 3 putative
miR-214 binding sites were cloned in psiCHECKTM-2 lucifer-
ase reporter vector (Promega) using the following set of primers:
forward primer (F) 50-AATCTCGAGAGACCGTGCTCTAA
GGGCATT TGAA-30 and reverse primer (R) 50-AGTGCG
GCCGCAACTATTGCTGAATTGAA TTTATT-30. These
two primers contain Xho I and Not I recognition sites at the
50end of the primers, respectively. The sequence encoding the 30

UTR of mutant RNF8 mRNA that lacks the putative miR-214
binding site, was synthesized by PCR. The detail of these meth-
ods can be found elsewhere.59 For mutation of each putative
binding site, the following pairs of primers were employed with
the pairs of primers used for amplification of wild-type 30 UTR:
mut1, 50-GTGCCACCGGTCGCCTC TCGGTAGTAACC-
GAC-30; mut2, 50-AAACTTAGAACCGCCTGCTCAATCAT
TGACACA-30; mut3, 50-CACTTATGAAGTTCCTGCTCAC-
TAAACCCCGGC-30. The enzymes for cDNA amplification
were purchased by PrimeSTAR (Takara, R044A). The sequences
of inserted DNA fragments were verified by DNA sequencing.

Luciferase reporter transfection and dual luciferase assay
5 £ 104 HEK 293T cells were plated in a 24-well cell culture

plate a day before transfection. In 30 UTR luciferase reporter
assay, the luciferase reporter constructs (100 ng), together with
miR-214 mimics (50 nM) (GenePharma) were incubated with
1.5 ml of Lipofectamine 2000. Cells were then transfected using
Lipofectamine 2000 (Invitrogen, 11668) according to the manu-
facturer´s instructions. Twenty-four hours later, cell lysates were
harvested and each reporter activity was measured by Dual Lucif-
erase Assay (Promega E1910) as previously described.60 The rela-
tive Renilla luciferase activity was normalized to that of the firefly
luciferase.

Real-time PCR
Total RNAs were extracted using Trizol reagent (Takara) and

reverse-transcribed using the the prime ScriptTM 1st Strand
cDNA Synthesis Kit (Tiangen, Beijing, China). To detect the rel-
ative level of RNF8 mRNA, GAPDH mRNA was used as inter-
nal normalization control. The following primers were used:
RNF8 Forward (F), CAGG CTCTGCAGGAGCATTGGG;
Reverse (R) GTGGGCACAGTTCAAGGTGACA, GCGAP
DH (F) GTCAAGGCTGAGAACGGGAA; and (R) AAAT-
GAGCCCCA GCCTTCTC. To detect the relative level of
miR-214 expression, U6 was used as internal normalization con-
trol. microRNAs were reverse transcribed to cDNAs using
miR-214 specific reversal primer (F) GTCGTATC-
CAGTGCGTGTCGTGGAG TCGGCAATTGCACTGGA-
TACGACACTGCCT and U6 specific reversal primer

CGCTTCACGAATTTGCGTGTCAT. The real-time PCR for
miRNA was performed using the follow primers. miR-214 (F)
AGGACAGCAGGCACAGAC; (R) CAGT GCGTGTCGT
GGAGT; U6 (F) GCTTCGGCAGCACATATACTAAAAT
and (R) CGCTTCACGAATTTGCGTGTCAT. All real-time
PCRs were performed by Applied Biosystems StepOneTM real-
time PCR System (Applied Bio systems, USA) using Faststart
universal SYBR Green Master (Roche), according to our previous
report.61

Clone formation assay
5 £ 104 A2780 cells were seeded in 24-well plate and 24 h

after transfection, 1000 or 150 cells were seeded in each 6-well
plate and treated with or without 5 Gy IR at 72 h after transfec-
tion, respectively. The detail protocol for clone formation assay
was performed following previous report.62

Western blotting analysis
SDS-PAGE was performed with whole-cell extracts as our

previously described.37 Primary antibodies included mouse anti-
GAPDH (MAB374, 1:1000; Millipore) and BRCA1 (D-9,1:
200; Santa Cruz), and rabbit anti-53BP1 (NB100–926, 1:500;
Novus Biologicals), RNF8 (H-300, 1:100; Santa Cruz), RAD51
(H-92, 1:200; Santa Cruz). Secondary primary antibodies were
alkaline phosphatase (AP)-conjugated anti-mouse IgG (H&L) or
anti-Rabbit IgG(Fc) (S3721 or S3731, 1:500; Promega). The
protein levels were visualized with a Lumi-Phos kit (Thermo,
34150), and band intensity on Western blotting was quantified
by Image-Pro Plus software 6.0 and normalized to GAPDH.

Immunofluorescence staining
Immunofluorescence staining was performed as our previous

described.63 Cells grown on coverslips were permeabilized with
PBS containing 0.25% Triton X-100 for 5 min. The primary
antibodies included rabbit anti-53BP1 (NB100–305, 1:200;
Novus Biologicals), Mouse anti-g-H2AX (05–636,1:250; Milli-
pore), rabbit anti-Rad51 (H-92, 1:200; Santa Cruz), goat anti-
Brca1 (M20, 1:200; Santa Cruz) and human auto-antibody
against centromere antibody (HCT-0100, 1:100; Immunovi-
sion). Secondary antibodies as goat anti-rabbit IgG or anti-mouse
IgG conjugated with Alexa Fluor 647 or Alexa Fluor 568 (Invi-
trogen), donkey anti-goat IgG conjugated with Dylight 649
(Jackson ImmunoResearch) or with Alexa Fluor 555 (Invitro-
gen),or donkey anti-rabbit IgG or anti-human IgG or sheep anti-
mouse conjugated with AMCA (Jakson ImmunoResearch) were
diluted 1:100 for immunofluorescence staining assay. DNA was
stained by Propidium Iodine (537059, 20ug/ml; calbiochem),
and all slides were examined by Olympus BX-61 fluorescence
microscope.

Statistical Analysis
Differences among various treatments were analyzed for statis-

tical significance using chi-square or two-tailed t-test by using
Microsoft Office Excel 2007 or Graphpad 5 software, respec-
tively. All quantitative data presented are the Mean § SD from
at least 2 independent experiments. The correlation between
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miR-214 expression and RNF8 mRNA was analyzed by The
Pearson’s product-moment correlation coefficient (Pearson’s r)
using SPSS version 12.0 software. Significance level was set at
P < 0.05.
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