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Quiescent cancer cells are resistant to cytotoxic agents which target only proliferating cancer cells. Time-lapse imaging
demonstrated that tumor-targeting Salmonella typhimurium A1-R (A1-R) decoyed cancer cells in monolayer culture and in
tumor spheres to cycle from G0/G1 to S/G2/M, as demonstrated by fluorescence ubiquitination-based cell cycle indicator
(FUCCI) imaging. A1-R infection of FUCCI-expressing subcutaneous tumors growing in nude mice also decoyed quiescent
cancer cells, which were the majority of the cells in the tumors, to cycle from G0/G1 to S/G2/M, thereby making them
sensitive to cytotoxic agents. The combination of A1-R and cisplatinum or paclitaxel reduced tumor size compared with
A1-R monotherapy or cisplatinum or paclitaxel alone. The results of this study demonstrate that A1-R can decoy quiescent
cancer cells to cycle to S/G2/M and sensitize them to cytotoxic chemotherapy. These results suggest a new paradigm of
bacterial-decoy chemotherapy of cancer.

Introduction

The phase of the cell cycle can determine whether a cancer cell
can respond to a given drug. Monitoring of real-time cell cycle
dynamics of cancer cells throughout a live tumor intravitally
using a fluorescence ubiquitination-based cell cycle indicator
(FUCCI),1 we previously demonstrated approximately 90% of
cancer cells in the center and 80% of total cells of an established
tumor are in G0/G1 phase. Longitudinal real-time imaging dem-
onstrated that cytotoxic agents killed only proliferating cancer
cells at the surface or near blood vessels and, in contrast, had little
effect on quiescent cancer cells.2

With FUCCI imaging, we also previously observed that can-
cer cells in G0/G1 phase in Gelfoam histoculture migrated more
rapidly and further than cancer cells in S/G2/M phases. Cancer
cells ceased migrating when they entered S/G2/M phases and
restarted migrating after cell division when the cells re-entered
G0/G1. Migrating cancer cells also were resistant to cytotoxic che-
motherapy, since they were preponderantly in G0/G1.

3

The OBP-301 telomerase-dependent adenovirus decoyed qui-
escent cancer cells to S/G2/M phases where they became

chemosensitive in tumors in vivo and tumor spheres in vivo, visu-
alized with FUCCI imaging.4

Records for >200 y have documented cancer patients going
into remission after a bacterial infection.5 In the late 19th century
and early 20th century, William B. Coley at New York Cancer
Hospital, the precursor of Sloan-Kettering Memorial Cancer
Center, treated cancer patients with Streptococcus pyogenes.6

S. typhimurium, is a facultative anaerobe which confers impor-
tant advantages, compared to obligate anaerobes, in that a facul-
tative anaerobe can grow in the oxic viable region of tumors as
well as necrotic regions.7 Attenuated auxotrophic mutants of
S. typhimurium retained their tumor-targeting capabilities.8

In a Phase I clinical trial on patients with metastatic mela-
noma and renal carcinoma, the S. typhimurium strain tested
(VNP20009), attenuated by msbB, amino-acid, and purI muta-
tions, was safely administered to patients, but did not sufficiently
colonize the patients’ tumors, perhaps because this strain was
overattenuated.9

The S. typhimurium A1-R strain developed by our laboratory
has high tumor colonization efficacy and antitumor efficacy.
S. typhimurium A1-R is auxotrophic for Leu-Arg, which prevents
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it from mounting a continuous infection in normal tissues.
S. typhimurium A1-R has no other apparent attenuating muta-
tions in contrast to VNP20009 and, therefore, has very high
tumor-targeting capability. S. typhimurium A1-R was able to
eradicate primary and metastatic tumors as monotherapy in nude
mouse models of prostate,10,11 breast,12 lung,13,14 pancreatic15,16

and ovarian17 cancers, as well as sarcoma18,19 and glioma,20 all of
which are highly aggressive tumor models. S. typhimurium A1-R
also targeted pancreatic cancer stem-like cells21 and pancreatic
cancer patient-like orthotopic xenograft (PDOX) models.22

In the present report, we demonstrate that S. typhimurium A1-
R can decoy quiescent G0/G1 cancer cells to cycle to S/G2/M and
become chemosensitive.

Results and Discussion

S. typhimurium A1-R stimulates cell cycle transit of
quiescent cancer cells in monolayer culture

Time-lapse imaging of S. typhimurium A1-R interacting with
quiescent FUCCI-expressing MKN45 cancer cells in monolayer
culture demonstrated that S. typhimurium A1-R targets quiescent
cancer cells and induces their cell cycle transit from G0/G1 to S/
G2/M phase (Fig. 1). Before S. typhimurium A1-R treatment,
approximately 95% of the cancer cells were in G0/G1 (Fig. 1).
After S. typhimurium A1-R treatment, the percentage of cancer
cells in G0/G1 was reduced to less than 40% with approximately
60% in S/G2/M.

S. typhimurium A1-R stimulates cell cycle transit in
quiescent tumor spheres

Time-lapse imaging of quiescent FUCCI-expressing MKN45
tumor spheres on agar demonstrated that S. typhimurium A1-R
targeted quiescent tumor spheres and stimulated cell cycle transit,
of the cancer cells within the spheres, from G0/G1 to S/G2/M
phases (Fig. 2). Before S. typhimurium A1-R treatment, approxi-
mately 95% of the cancer cells were in G0/G1. After

S. typhimurium A1-R treatment, approximately 30% of the can-
cer cells were in G0/G1 and 70% in S/G2/M (Fig. 2).

S. typhimurium A1-R mobilizes the cell cycle transit of
quiescent cancer cells in tumors in vivo

Before S. typhimurium A1-R treatment, FUCCI-expressing
MKN45 tumors had approximately 95% of the cancer cells in
G0/G1 after 35 d growth in nude mice. Thirty-five d after treat-
ment with S. typhimurium A1-R, approximately 30% of the can-
cer cells were in G0/G1 and 70% in S/G2/M (Fig. 3).

S. typhimurium-decoyed tumors became sensitive to
chemotherapy

FUCCI-expressing MKN45 cells were injected subcutane-
ously into the left flanks of mice. When the subcutaneous tumors
reached approximately 8 mm in diameter (tumor volume,
300 mm3), mice were administered S. typhimurium A1-R (iv)
alone, or in combination with cisplatinum (4 mg/kg) or in com-
bination with paclitaxel (5 mg/kg, ip) for 5 cycles every 3 d S.
typhimurium A1-R sensitized the tumors to chemotherapy due to
cell-cycle decoy of the cancer cells within the tumor (Fig. 4). Cis-
platinum or paclitaxel alone had only modest growth inhibition
on the MKN45 tumor. S. typhimurium had a larger growth inhi-
bition effect than the chemotherapy drugs. The greatest effect
was the combination of by S. typhimurium A1-R with either of
the chemotherapy drugs (Fig. 4).

FUCCI cell cycle imaging showed that in tumors treated with
cisplatinum or paclitaxel, the percentage of cancer cells in G0/G1

increased to over 95% from approximately 80% before treat-
ment. In contrast, S. typhimurium treatment reduced the percent-
age of cancer cells in G0/G1 to approximately 30%. The
combination of S. typhimurium A1-R and chemotherapy
decreased the percentage of cancer cells in G0/G1 to 15% or less.
The percentage of S/G2/M cells in tumors treated in combina-
tion with S. typhimurium A1-R and either cisplatin or paclitaxel
approached 90% (Fig. 4).

ControlA S. typhimurium A1-R

Figure 1. S. typhimurium A1-R stimulates cell cycle transit of quiescent cancer cells in monolayer culture. S. typhimurium A1-R targeted quiescent cancer
cells and stimulates cell cycle transit from G0/G1 to S/G2/M phases. (A) Representative images of control cancer cells and cancer cells treated with
S. typhimurium A1-R. (B) Histogram shows cell cycle distribution in control and S. typhimuriam A1-R-treated cultures. Scale bar: 500 mm.
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FUCCI imaging demonstrated that the combination of
S. typhimurium A1-R decoy therapy and chemotherapy can effec-
tively kill quiescent cancer cells that are resistant to conventional
chemotherapy. The combination of S. typhimurium A1-R and
either cisplatinum or paclitaxel decoyed almost all the cancer cells
to cycle, greatly enhancing their sensitivity.

We previously compared the cell cycle dynamics of invading
and non-invading cancer cells in 3-dimensional Gelfoam histo-
culture, where cancer cells have in vivo-like behavior. We demon-
strated with FUCCI imaging that cancer cells in G0/G1 phase can
migrate faster and further than cancer cells in S/G2/M phases.
When cancer cells in G0/G1 cycled into S/G2/M phases, they
ceased movement and then only restarted migration after re-entry
into G0/G1 phase after cell division. Chemotherapy had little
effect on G0/G1 invading cancer cells. Decoy chemotherapy may
also be useful to target invasive cancer cells, which may otherwise
be highly chemoresistant.3

We previously showed with FUCCI imaging that the vast
majority of cancer cells in a tumor was in G0/G1. We demon-
strated that cytotoxic chemotherapy kills only cancer cells in
S/G2/M phases, which are in a minority in an established tumor,
and had little effect on cancer cells in G0/G1 phase. Moreover,
we showed the efficacy of chemotherapy depends not on tumor
size, but the cell cycle phase of each cancer cell, which depends
on the location in the tumor. We spatially and temporally dem-
onstrated the cell cycle dynamics of individual cancer cells during
tumor growth before, as well as during and after treatment with
cytotoxic agents, within the same tumors. Our results explained
why temporary regression may be often seen in the clinic after
chemotherapy, as the drugs are effective only on cells in the outer
layer of the tumor or near blood vessels, where cancer cells prolif-
erate. Recurrence takes place when some of the quiescent cells re-
enter the cell cycle as they replace the cycling cells killed by che-
motherapy at the surface or near blood vessels.2

We previously demonstrated, using FUCCI imaging, that a
genetically-engineered telomerase-specific adenovirus, OBP-301,
could decoy the cell cycle of cancer cells in tumor spheres and
tumors thereby sensitizing them to chemotherapy.4

The present study demonstrated that S. typhimurium A1-R
can decoy the cell-cycle transit of quiescent cancer cells and sensi-
tize the cancer cells to chemotherapy.

Previously developed concepts and strategies of highly selec-
tive tumor-targeting23-34 can take advantage of spatial–temporal
cell cycle imaging of a tumor described in the present report.

Future studies will focus on optimizing decoy chemotherapy
with S. typhimurium A1-R and to screen for other decoy agents.
Decoy chemotherapy is a promising approach to overcome the
problem that the majority of cancer cells in most tumors are qui-
escent and are thereby chemoresistant.

Materials and Methods

FUCCI (Fluorescence ubiquitination cell cycle indicater)
The FUCCI probe was generated by fusing mKO2 (mono-

meric kusabira orange2) and mAG (monomeric azami green) to
the ubiquitination domains of human Cdt1 and geminin, respec-
tively. These 2 chimeric proteins, mKO2-hCdt1and mAG-
hGem, accumulate reciprocally in the nuclei of transfected cells
during the cell cycle, labeling the nuclei of G1 phase cells orange
and nuclei of cells in S/G2/M phase green.1 Plasmids expressing
mKO2-hCdt1 (green fluorescent protein) or mAG-hGem
(orange fluorescent protein) were obtained from the Medical and
Biological Laboratory. Plasmids expressing mKO2-hCdt1 were
transfected into MKN45 cells using LipofectamineTM LTX (Invi-
trogen). The cells were incubated for 48 h after transfection and
were then trypsinized and seeded in 96-well plates at a density of
10 cells/well. In the first step, cells were sorted into green (S, G2,
and M phase) cells using a FACSAria cell sorter (Becton Dickin-
son). The first-step-sorted green-fluorescent cells were then re-
transfected with mAG-hGem (orange) and then sorted by orange
fluorescence.4

Cells
MKN45 is a radio-resistant poorly differentiated stomach adeno-

carcinoma cell line derived from a liver metastasis of a patient.4

ControlA S. typhimurium A1-R

Figure 2. S. typhimurium A1-R stimulates cell cycle transit in quiescent tumor spheres in vitro. S. typhimurium A1-R stimulated cell cycle transit from G0/G1

to S/G2/M phase. (A) Representative images of control tumor spheres and tumor spheres treated with S. typhimurium A1-R. (B) Histogram shows cell cycle
distribution in control and S. typhimurium A1-R-treated tumor spheres. Scale bar: 500 mm.
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Animal experiments
Athymic nu/nu nude mice (AntiCancer, Inc.) were maintained

in a barrier facility under HEPA filtration and fed with autoclaved
laboratory rodent diet (Teklad LM-485; Harlan). All animal stud-
ies were conducted in accordance with the principles and proce-
dures outlined in the National Institute of Health Guide for the
Care and Use of Animals under Assurance Number A3873–1.

Tumor model
All animal procedures were performed under anesthesia using

s.c. administration of a ketamine mixture (10 ml ketamine HCl,

7.6 ml xylazine, 2.4 ml acepromazine maleate, and 10 ml PBS)
(Henry-Schein). FUCCI-expressing MKN45 cells were harvested
from monolayer culture by brief trypsinization. Single-cell sus-
pensions were prepared at a final concentration of 5 £ 106 cells
and injected subcutaneously in the left flank of nude mice.

Decoy chemotherapy
When the tumors reached approximately 8 mm in diameter

(tumor volume, 300 mm3), mice were administered iv S. typhi-
murium A1-R, alone or in combination with cisplatinum (4 mg/
kg ip) or paclitaxel (5 mg/kg ip) for 5 cycles every 3 d.
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Figure 3. S. typhimurium A1-R mobilizes the cell cycle transit of quiescent cancer cells in tumors in vivo. (A) Representative images of cross sections of
FUCCI-expressing MKN45 tumor xenografts treated with S. typhimurium A1-R or untreated control. (B) Histograms show the cell cycle phase distribution
of FUCCI-expressing cells within the tumor treated with S. typhimurium A1-R or untreated control. Scale bars: 500 mm.
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Statistical analysis
Data are shown as means § SD. For comparison between 2

groups, significant differences were determined using the Student
t test. For comparison of more than 2 groups, statistical signifi-
cance was determined with a one-way ANOVA followed by a
Bonferroni multiple-group comparison test. P < 0.05 was con-
sidered significant.
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