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Protein synthesis is one of the most
energy consuming processes in the

cell. The mammalian/mechanistic target
of rapamycin (mTOR) is a serine/threo-
nine kinase that integrates a multitude of
extracellular signals and intracellular cues
to drive growth and proliferation.
mTOR activity is altered in numerous
pathological conditions, including meta-
bolic syndrome and cancer. In addition
to its well-established role in regulating
mRNA translation, emerging studies
indicate that mTOR modulates mito-
chondrial functions. In mammals,
mTOR coordinates energy consumption
by the mRNA translation machinery and
mitochondrial energy production by
stimulating synthesis of nucleus-encoded
mitochondria-related proteins including
TFAM, mitochondrial ribosomal pro-
teins and components of complexes I and
V. In this review, we highlight findings
that link mTOR, mRNA translation and
mitochondrial functions.

Background

Protein synthesis positively correlates
with cell proliferation rates.1 It is therefore
not surprising that upregulated mRNA
translation is a common feature of patho-
logical states that are characterized by
aberrant proliferation including malignan-
cies.2-5 In addition to playing an integral
role in gene expression pathway, protein

synthesis is one of the most energy con-
suming processes in the cell, and thus
must be closely coordinated with cellular
energy production.4,6,7 Similarly to pro-
tein synthesis, perturbations in energy
metabolism are a frequent feature of can-
cer.8 These alterations in metabolic pro-
grams of cancer cells accommodate their
elevated energy demand and provide
building blocks (e.g. lipids, nucleotides)
for continuous proliferation.9 Nonethe-
less, the mechanisms that coordinate
mRNA translation and ATP production
in mammals are still largely unknown.

The mechanistic/mammalian target of
rapamycin (mTOR) is an evolutionarily
conserved serine/threonine kinase that
responds to a number of stimuli including
hormones (insulin), growth factors (e.g.,
insulin-like growth factors [IGFs]),
nutrients (amino acids), energy status, and
oxygen levels to regulate cellular prolifera-
tion and growth rates.10,11 To bolster cel-
lular proliferation and growth, mTOR
stimulates anabolic processes including
protein synthesis, and, as recent data
show, acts as a major regulator of energy
production in mitochondria.10-12 In turn,
mTOR inhibits autophagy, which is a
process that can eliminate mitochon-
dria.13-16 As a consequence of inactivating
mutations in tumor suppressor genes (e.g.
PTEN, TSC1/2, NF1, LKB1) or hyperac-
tivation of oncogenes (e.g., AKT, PI3K)
mTOR signaling is upregulated in a
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plethora of malignancies.17 Recently,
numerous mTOR mutations that lead to
its hyperactivation have been described in
cancer.18 Upregulated mTOR activity is
thought to play a central role in tumori-
genesis and progression of a wide variety
of cancers.17 Taken together, these find-
ings suggest that mTOR is well positioned
to act as a central node of cellular net-
works that coordinate mRNA translation
and cellular energy production. Indeed,
we have recently uncovered that mTOR
coordinates protein synthesis and mito-
chondrial functions by selectively modu-
lating synthesis of nuclear-encoded
mitochondrial proteins.12

mTOR signaling pathway
mTOR forms 2 distinct complexes,

mTOR complex 1 (mTORC1) and 2
(mTORC2), which differ in their compo-
sition, downstream targets, and sensitivity
to naturally occurring allosteric mTOR
inhibitor rapamycin.19-21 mTORC1 stim-
ulates protein synthesis and other anabolic
processes to fuel cellular growth and pro-
liferation, and is sensitive to acute rapamy-
cin treatment.11,22 In most cell types,
mTORC2 is insensitive to acute rapamy-
cin treatment, regulates cytoskeletal orga-
nization, phosphorylates AGC kinases
such as SGK1 and AKT, and has been
implicated in the degradation of newly
synthesized polypeptides.23

A multitude of extracellular signals and
intracellular cues have been implicated in
the modulation of mTORC1 signaling. In
response to growth factors, mTORC1 is
activated via the PI3K/AKT pathway.11

AKT phosphorylates and inactivates tuber-
ous sclerosis complex (TSC1/2), which acts
as a GTPase-activating protein (GAP)
toward the small GTPase RAS homolog
enriched in brain (RHEB).24,25 Inhibition
of TSC complex increases levels of GTP-
bound RHEB leading to activation of
mTORC1. In addition, amino acids (in par-
ticular those with branched chains) signal to
mTORC1 through the RAS-related GTP
binding proteins (RAG) family of
GTPases.26 RAG GTPases recruit
mTORC1 to lysosomes where mTORC1 is
stimulated by RHEB.27,28 A decrease in
ATP/AMP ratio activates AMP kinase
(AMPK) to suppress mTORC1 in a TSC
complex-dependent or independent

manner.29,30 Furthermore, hypoxia induces
the expression of REDD1 that binds to
TSC2 to stabilize the TSC complex, leading
to inhibition of mTORC1.31-33 mTORC1
activation leads to phosphorylation of a
number of substrates including eukaryotic
translation initiation factor 4E (eIF4E)-
binding proteins (4E-BPs), ribosomal pro-
tein S6 kinases (S6Ks), LARP1, Atg13,
ULK1/2, which results in the upregulation
of anabolic processes such as protein and
lipid synthesis and inhibition of autophagy
(reviewed in11).

Compared to mTORC1, upstream
regulation of mTORC2 is less well under-
stood.23 mTORC2 kinase activity is
stimulated by growth factors, seemingly
through a PI3K-dependent association of
mTORC2 with ribosomes.34 Growth fac-
tors (e.g. insulin) also induce mTORC2
localization to the mitochondria-associated
ER membrane (MAM), a sub-compart-
ment of the ER.35 There, mTORC2 con-
trols MAM integrity and mitochondrial
function in an AKT-dependent manner
(see below).

mTOR: a master regulator of mRNA
translation

mTORC1 stimulates protein synthesis
by phosphorylating a plethora of sub-
strates.11,22 The 2 best established effectors
of mTORC1 signaling on protein synthe-
sis are the eukaryotic translation initiation
factor 4E (eIF4E)-binding proteins (4E-
BPs) and ribosomal protein S6 kinases
(S6Ks) (Fig. 1).36 eIF4E is a cap binding
subunit of the eIF4F translation initiation
complex that also comprises large scaffold-
ing protein eIF4G and DEAD box helicase
eIF4A and facilitates recruitment of
mRNA to the ribosome.37 Phosphoryla-
tion of 4E-BPs by mTORC1 stimulates
their release from eIF4E, which allows
eIF4E:eIF4G association and the assembly
of the eIF4F complex, thereby increasing
translation initiation rates.36,38-42 S6Ks
phosphorylate a number of components of
the translational machinery and related
regulators such as ribosomal protein S6,43

eIF4B,44 and PDCD4.45 mTORC1 has
also been shown to phosphorylate addi-
tional components of the translation initia-
tion machinery (e.g., eIF4G46) and the
eukaryotic translation elongation factor 2
kinase (eEF2K).47,48 Finally, mTORC1 is

thought to increase translation by stimulat-
ing rRNA and tRNA synthesis, via activa-
tion of TIF-IA49 and inhibition of Maf1,50

respectively.
In addition to stimulating global pro-

tein synthesis, a large body of data indicate
that mTOR selectively stimulates transla-
tion of a subset of transcripts including
TOP mRNAs, which harbour a stretch of
4-14 pyrimidines following the cap struc-
ture, referred to as 50 terminal oligopyri-
midine (50 TOP) motif.51 The vast
majority of TOP mRNAs encode ribo-
somal proteins and other components of
the protein synthesis machinery (e.g.
eEF2). Albeit it has been initially thought
that S6Ks mediate the effects of mTOR
signaling on the synthesis of proteins
encoded by TOP mRNAs, subsequent
studies revealed that neither S6Ks nor
phosphorylation of ribosomal protein S6
play a major role in regulating TOP
mRNA translation.52,53 Two recent stud-
ies deployed high resolution translational
profiling based on deep sequencing of
ribosome-protected fragments to show
that the effects of mTOR inhibitors on
TOP mRNA translation are mediated by
4E-BPs.54,55 However, these results were
challenged by a study showing that 4E-
BPs are dispensable for the regulation of
TOP mRNA translation under a variety
of physiological stimuli including oxygen
availability, amino acids and growth fac-
tors.56 These findings are consistent with
a previous observation that eIF4E activity
does not have a major influence on trans-
lation of TOP mRNAs.57 Therefore, the
effectors of mTOR signaling on TOP
mRNA translation appear to be context
dependent. To this end, additional factors
including TIA/TIAR-156,58 and LARP159

have been proposed to act as modulators
of TOP mRNA translation.

In addition to regulating TOP mRNA
translation, mTOR has been implicated in
the regulation of synthesis of a number of
cancer promoting proteins via inactivation
of 4E-BPs and consequent increase in
eIF4E activity. eIF4E exhibits oncogenic
properties in vitro and in vivo and is over-
expressed in the vast majority of can-
cers.3,60-66 These tumorigenic functions of
eIF4E are a consequence of the selective
upregulation of translation of mRNAs
encoding cell cycle regulators (e.g., cyclins,
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ODC), survival promoting proteins (Bcl-
xL, survivin, osteopontin), pro-angiogenic
factors (e.g. VEGF) and oncogenes (e.g.,
Myc, Pim1).60,67 These mRNAs are
thought to be “eIF4E-sensitive,” as a
majority of them bear long and highly
structured 50UTRs,3,60,68 rendering them
more dependent on the unwinding activity
of eIF4A helicase69 than those mRNAs
that are characterized by short, unstruc-
tured 50UTRs such as those encoding
housekeeping proteins. eIF4A is recruited
to mRNA as a part of the eIF4F complex,
and its activity is significantly higher when
it is part of the eIF4F complex than as a
single protein.70 Therefore, increase in
eIF4E availability is thought to selectively

stimulate translation of those mRNAs that
critically depend on the dissolution of
50UTR secondary structures by eIF4A.70-73

Using transcriptome-wide polysome
profiling in conjunction with DNA
microarrays, we demonstrated that, in
addition to components of the transla-
tional machinery encoded by TOP
mRNAs, mTOR inhibitors suppress the
translation of transcripts encoding cell
cycle and survival regulating proteins.74

Intriguingly, the most enriched mRNAs
were those encoding for proteins impli-
cated in the regulation of mitochondrial
functions (Fig. 1).74

Notwithstanding the fact that the precise
mechanisms by which mTOR regulates

protein synthesis are still being debated,
these findings demonstrate that changes in
mTOR activity are paralleled not only by
quantitative, but also by qualitative changes
in the pools of mRNAs that are being trans-
lated. Moreover, the effects of mTOR on
selective changes in pools of translating
mRNAs are likely to be dependent on the
nature of the stimulus and mediated by dif-
ferent downstream effectors.

mTOR regulates mitochondrial mass
and functions by coordinating multiple
levels of gene expression

Emerging data indicate that, in eukar-
yotes, coordinated expression of genes
that are involved in the same biochemical

Figure 1. mTOR coordinates protein synthesis, mitochondrial energy production, lipid and nucleotide synthesis and autophagy to fuel cell growth and
proliferation. Proliferating cells have heightened requirement of building blocks (nucleotides, lipids and proteins) and energy as compared to quiescent
cells. mTOR complex 1 (mTORC1) stimulates mitochondrial functions and biogenesis through the 4E-BP-mediated control of translation of nuclear-
encoded mitochondrial mRNAs such as TFAM, mitochondrial ribosomal proteins and components of complex I and V. In addition, mTORC1 regulates
mitochondrial function by modulating transcription of mitochondrial nuclear-encoded genes via Yin Yang 1 (YY1) and peroxisome proliferator-activated
receptor-gamma coactivator 1 a (PGC-1a). Finally, mTORC1 modulates glycolysis through the 4E-BP1-dependent translational activation of the hypoxia-
inducible factor 1 a (HIF1a) and glutaminolysis by inhibiting SIRT4. mTORC1 increases nucleotide synthesis through S6K dependent phosphorylation of
carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase (CAD) and induction of translation of phosphoribosyl-pyrophosphate
synthetase 2 (PRPS2) mRNA mTORC1 also stimulates lipid synthesis by activating sterol regulatory element-binding proteins (SREBPs) via LIPIN1 and sup-
presses autophagy by inhibiting ULK1 (directly or via ATG13), and impeding nuclear translocation of transcription factor EB (TFEB). In contrast to
mTORC1, following recruitment to the mitochondria-associated ER membrane (MAM) mTOR complex 2 (mTORC2) suppresses mitochondrial ATP produc-
tion, membrane potential, and calcium uptake by phosphorylating MAM resident proteins. mTORC2 also regulates lipid metabolism by activating Akt
and SREBP1c and stimulates glycolysis though the activity of Akt-stimulated glucokinase (GK). Arrows depict activation, and T-bars inhibition.
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processes is achieved via orchestration of
different layers of gene expression machin-
ery.75-77 Short-term (i.e. 12 h) mTOR
inhibition does not induce major changes
in the transcription of nuclear-encoded
mitochondria-related genes.12 However,
prolonged treatment with rapamycin
downregulates the expression of pivotal
transcriptional regulators of mitochon-
drial functions including PGC-1a, and
ERR-a.78 This is paralleled by a decrease
in mitochondrial respiration in skeletal
muscle tissue and cell lines. The effect of
mTOR on PGC-1a is mediated by ying-
yang 1 (YY1), which belongs to the GLI-
Kruppel class of zinc finger proteins and
acts as a multifunctional transcriptional
regulator.78 Depletion of YY1 results in
downregulated expression of a number of
nuclear encoded mitochondrial genes and
decreased oxygen consumption.78 These
findings suggest that, in addition to regu-
lating the translation of nuclear-encoded
mitochondria-related mRNAs, mTOR
also regulates the transcription of nuclear
encoded mitochondrial genes. Therefore,
it appears that mTOR regulates the
expression of nuclear-encoded mitochon-
drial genes by orchestrating their tran-
scriptional and translational programs
(Fig. 1). Moreover, it has been shown that
mTOR directly governs the transcription
of ERRa-target genes involved in energy
metabolism including citric acid cycle and
lipogenesis,79 further illustrating the coor-
dination of transcriptional and transla-
tional energy homeostasis programs via
mTOR.

mTOR links protein synthesis,
mitochondrial function,
and proliferation

Protein synthesis rates positively corre-
late with proliferation rates.1 In turn,
mitochondrial ATP production is
required to fuel protein synthesis and pro-
liferation.6,7 These findings suggest that
mitochondrial energy production, protein
synthesis and proliferation are co-regu-
lated, but the factors that orchestrate coor-
dination of these processes are still largely
unknown.

Experiments carried out in the model
organism D. Melanogaster revealed that
regulation of the expression of nuclear-
encoded mitochondrial regulators at the

level of translation plays a major role in
lifespan extension by caloric restriction.80

Caloric restriction induces expression of
d4E-BP (in contrast to mammals, flies
express only one 4E-BP), which is paral-
leled by decreased phosphorylation of
d4E-BP via downregulation of TOR sig-
naling. Increased levels and decreased
phosphorylation of d4E-BP resulted in
suppression of global protein synthesis,
but increased the translational efficacy of
mRNAs encoding factors implicated in
mitochondrial respiration.80 Although the
precise mechanism underpinning the
upregulation of the translation of mito-
chondria-regulating mRNAs under die-
tary restriction is unknown, these findings
put forward a model whereby nutrient
deprivation selectively induces the synthe-
sis of mitochondrial regulators that impact
the function of the electron transport
chain via downregultion of TOR and acti-
vation of d4E-BP.

In mammalian cells, however,
mTORC1 stimulates the synthesis of a
number of nuclear-encoded mitochon-
drial regulators such as TFAM, mitochon-
drial ribosomal proteins and components
of complex I and V by upregulating the
translation of corresponding mRNAs12

(Fig. 1). Inhibition of mTOR signaling
strongly decreases mitochondrial biogene-
sis and respiration in 4E-BP proficient
cells, but not in those lacking 4E-BPs.12

The elevated mitochondrial respiratory
capacity observed in cells where
mTORC1 is hyperactivated by PTEN loss
also appears to be mediated by the selec-
tive upregulation of expression of compo-
nents of the electron transport chain via
inactivation of 4E-BPs.81 In wild-type
mice, mTOR inhibitors cause reduced sys-
temic oxygen consumption and decreased
locomotor activity and heat production.
Mice lacking 4E-BPs were resistant to the
systemic effects of mTOR inhibitors.12

Notwithstanding the apparent differences
in the effects of the TOR/4E-BP pathway
on translation of mRNAs encoding mito-
chondrial regulators in flies and mammals
that likely stem from their different meta-
bolic requirements, these findings indicate
that TOR and 4E-BPs play a major role
in coupling mitochondrial functions and
translation. Moreover, it seems that trans-
lational control may play an even broader

role in the regulation of mitochondrial
functions, in as much as Largen, which is
an important regulator of cells size,
impacts mitochondrial activity by induc-
ing selective perturbations in the transla-
tion of nuclear-encoded mitochondria-
related mRNAs in a mTOR-independent
manner.82 Collectively, these studies
show that translational activity in the
cell influences mitochondrial functions.

In addition to regulating synthesis of
nuclear-encoded mitochondrial regulators,
the mTORC1/4E-BP pathway regulates
translation of mRNAs that encode pro-
teins that promote proliferation such as
cyclins, ODC, and Myc.74 Accordingly,
4E-BP status in the cell is a major deter-
minant of the effects of mTOR on prolif-
eration, inasmuch as cells lacking 4E-BPs
maintain their proliferation under circum-
stances where mTORC1 signaling is
inhibited by pharmacological (e.g. active-
site mTOR inhibitors) or genetic (deple-
tion of raptor) means or by nutrient depri-
vation (e.g., serum or amino-acid
depletion).83 These results suggest that
mTOR coordinates mitochondrial func-
tions and proliferation, at least in part by
modulating translation programs (Fig. 1).

In addition to mTORC1, mTORC2
appears to be an important regulator of
mitochondrial functions (Fig. 1). Upon
growth factor stimulation mTORC2 is
recruited to the mitochondria-associated
ER membrane (MAM), where it main-
tains MAM integrity via AKT dependent
phosphorylation of MAM resident pro-
teins including IP3 receptor and hexoki-
nase 2.35 Loss of mTORC2 activity leads
to disruption of MAM, paralleled by
increase in mitochondrial membrane
potential, and calcium uptake.35 This sug-
gests that mTORC1 and mTORC2 play
distinct, non-overlapping roles in regulat-
ing mitochondrial functions.

mTOR coordinates mRNA
translation, availability of cellular
building blocks and autophagy

mTORC1 promotes synthesis of build-
ing blocks that are required for cell prolif-
eration (Fig. 1). To this end, mTORC1
stimulates lipid and sterol synthesis by
activating sterol regulatory element-bind-
ing proteins (SREBPs),84 whereas it nega-
tively regulates b-oxidation of free fatty
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acids.85 In vivo, depletion of raptor in adi-
pose tissue of mice induces a lean pheno-
type, paralleled by increased energy
expenditure and increased levels of mito-
chondrial uncoupling proteins.86 In addi-
tion, mTORC1 stimulates nucleotide
synthesis via induction of the pentose
phosphate pathway and S6K-mediated
activation of carbamoyl-phosphate synthe-
tase 2, aspartate transcarbamylase, dihy-
droorotase (CAD).87,88 Analogous to
enhancing mitochondrial functions by
selectively increasing mRNA translation,
mTORC1 appears to link protein synthe-
sis and nucleotide availability inasmuch as
eIF4E stimulates nucleotide synthesis via
increased translation of phosphoribosyl-
pyrophosphate synthetase 2 (PRPS2)
mRNA.89 Increased aerobic glycolysis and
glutaminolysis are hallmarks of energy
metabolism reprogramming in cancer.9

mTORC1 increases glucose uptake and
glycolysis through induction of the hyp-
oxia-inducible factor 1 a (HIF1a).84,90,91

In addition, mTORC1 pathway stimu-
lates glutamine anaplerosis and cell prolif-
eration by repressing SIRT4 and thus
promoting the activity of glutamate dehy-
drogenase.92 mTORC2 has also been
shown to play a major role in the regula-
tion of energy metabolism. For instance,
liver-specific inhibition of mTORC2 sig-
naling in conditional rictor knock-out
mice revealed that mTORC2 regulates
glycolysis and lipid metabolism through
the Akt-dependent activation of glucoki-
nase and SREBP1c, respectively93 (Fig. 1).

In parallel to stimulating anabolic pro-
cesses, mTOR also inhibits autophagy
(Fig. 1), which is a major catabolic process
in the cell.94 mTORC1 inhibits autopha-
gosome formation by phosphorylating the
pro-autophagic kinase ULK1 and thus
preventing its activation by AMPK,16 and
by phosphorylating and inhibiting
ATG13, a positive regulator of ULK1.13-
15 mTORC1 also inhibits autophagy indi-
rectly by blocking lysosome biogenesis
through the phosphorylation and inhibi-
tion of the nuclear translocation of tran-
scription factor EB (TFEB).95-97

mTORC1 inhibition by asTORi reduces
mitochondrial mass by induction of
autophagy, and these effects were allevi-
ated by suppressing autophagy via deple-
tion of ATG5.12 Therefore, mTORC1

induces mitochondrial biogenesis and
functions by orchestrating synthesis of
nuclear-encoded mitochondrial regulators
and inhibiting autophagy.

Conclusions

mTOR activity is central to energy
homeostasis, inasmuch as it coordinates
protein synthesis, cell growth and prolifer-
ation, generation of metabolic intermedi-
ates, and mitochondrial biogenesis and
functions (Fig. 1). Accordingly, dysregula-
tion of mTOR signaling and mitochon-
drial dysfunction underpin aging and
diseases such as cancer, diabetes, and neu-
rodegeneration (reviewed in98,99). For
instance, increased life span of female
transgenic mice expressing non-steroidal
anti-inflammatory drug-activated gene
(NAG-1)/GDF15 is paralleled by down-
regulation of mTOR activity.100 Interest-
ingly, many components of the electron
transport chain (ETC) complexes that
show alteration in expression in the pro-
cess of aging,101 such as NDUFS6,
ATP5D, ATP5L and ATP5O, were
shown to be translationally controlled by
mTOR.12 Cancer is characterized by aber-
rant proliferation, increased protein syn-
thesis and perturbations in cellular energy
metabolism.8 In turn, mTOR signaling is
dysergulated in a vast majority of cancers,
while low expression and high phosphory-
lation status of 4E-BPs, as well as upregu-
lation in eIF4E levels, are also common in
neoplasia.102 Notably, increase in eIF4E/
4E-BP ratio appears to be a major mecha-
nism of resistance to PI3K and mTOR-
targeted therapies.103-107 This raises an
intriguing possibility that cancer cells
highjack mechanisms by which the hyper-
activation of the mTOR/4E-BP/eIF4E
pathway coordinates mitochondrial func-
tions, nucleotide and lipid synthesis and
translational programs to fuel neoplastic
growth. A recent study established a
mTOR-independent link between protein
synthesis and mitochondrial functions,
whereby Largen appears to regulate cell
growth at least in part by modulating
translation of nuclear-encoded mRNAs
that code mitochondrial proteins in rapa-
mycin-insensitive manner.82 Although the
underlining mechanisms of this

phenomenon remain to be established,
these findings suggest that multiple path-
ways evolved to maintain cellular energy
balance by coordinating mitochondrial
functions, translational activity, cellular
growth and proliferation. Therefore, the
identification of specific translational pro-
grams mediated by mTOR-dependent
and -independent pathways, their effec-
tors, and the mechanisms by which they
modify mitochondrial functions represent
a promising avenue to improve the under-
standing of the molecular mechanisms of
cellular energy homeostasis that contrast
normal and malignant cells.
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