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Cell differentiation relies on tissue-
specific transcription factors (TFs)

that cooperate to establish unique tran-
scriptomes and phenotypes. However,
the role of ubiquitous TFs in these pro-
cesses remains poorly defined. Recently,
we have shown that the CCCTC-binding
factor (CTCF) is required for adipocyte
differentiation through epigenomic
remodelling of adipose tissue-specific
enhancers and transcriptional activation
of Peroxisome proliferator-activated
receptor gamma (PPARG), the main
driver of the adipogenic program
(PPARG), and its target genes. Here, we
discuss how these findings, together with
the recent literature, illuminate a func-
tional role for ubiquitous TFs in lineage-
determining transcriptional networks.

Transcriptional Control of Cell
Differentiation

Cell differentiation is a highly dynamic
process, which allows the establishment of
defined phenotypes. This is accomplished
through specification of unique transcrip-
tomes, a process that heavily relies on
usage of cell type-specific enhancers.1,2

Enhancer activation can be achieved
through sequential TF recruitment to the
chromatin following initial binding of
pioneer TFs or involve a concomitant and
cooperative binding of multiple TFs.3-5

Cooperative binding may involve assisted
loading where TF binding to close or
overlapping motifs may facilitate each
other’s binding because of the very
dynamic nature of TF-chromatin

interactions.6,7 Either way, enhancer acti-
vation requires chromatin/epigenomic
remodelling, which has now been widely
used as a surrogate to monitor enhancer
activities during cell differentiation,
including adipocyte differentiation.8-10 In
this context, we have contributed to the
identification of DNA methylation as a
novel epigenetic mark actively controlled
by TFs at enhancers.11,12 Moreover, using
adipocyte differentiation as a model sys-
tem, we have shown that loss of DNA
methylation at activated enhancers is
reciprocally linked to a gain in DNA
hydroxymethylation (Fig. 1).13,14 The
mechanistic connection between these
observations is underlined by Ten-eleven
translocation methylcytosine dioxygenase
(TET)-mediated DNA hydroxymethyla-
tion being an intermediate in the DNA
demethylation process.15 Importantly, a
recent study functionally linked DNA
hydroxymethylation to DNA demethyla-
tion, enhancer activation and gene induc-
tion during cell differentiation.16

However, DNA hydroxymethylation is
relatively stable17 and can also modulate
TF or chromatin modifier DNA recogni-
tion18 suggesting that cytosine hydroxy-
methylation may represent a novel
epigenetic mark per se.19 Fujiki et al. sub-
sequently ascribed to the adipocyte line-
age-determining TF Peroxisome
proliferator-activated receptor gamma
(PPARG) the function of promoting
DNA hydroxymethylation through chro-
matin recruitment of TET.20

In addition to lineage-determining fac-
tors such as PPARG, which are expressed
in specific tissues, the TF repertoire
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comprises ubiquitous TFs with similar
expression in almost all tissues.21 How-
ever, with the exception of general TFs
involved in the pre-initiation complex
(PIC), the role of ubiquitous TFs in cell
differentiation has long remained elusive.
Here, we discuss the general implications
for our most recent findings showing a
requirement for ubiquitous CCCTC-
binding factor (CTCF) in defining the
adipocyte-specific epigenome and tran-
scriptome (Fig. 1).22

CTCF As a Driver of Cell Type-
Specific Enhancer Activities

CTCF, initially identified as a TF
binding to insulators,23 was latter revealed
to harbour pleiotropic activities including
transcriptional activator/repressor, nucleo-
some positioning and chromatin 3-dimen-
sional organizer activities.2,23,24 Based on
this latter function and on the

identification of conserved CTCF binding
events across various cell-types and tis-
sues,25-27 this TF was proposed to fulfil a
general chromatin organization role.28 At
the same time, specific roles for CTCF in
neuronal and haematopoietic cell differen-
tiation had been defined.29 In this context,
detailed analyses of CTCF cistromic stud-
ies revealed the existence of cell type-spe-
cific chromatin binding sites.30 Indeed,
thorough comparison of the CTCF bind-
ing landscape in 19 human cell-types
revealed that 64% of identified CTCF
binding sites are not conserved.30 This
may have been previously overlooked
owing to a more limited number of ana-
lyzed cell types or to the use of stringent
criteria to call bound regions. Indeed, con-
served binding sites show stronger CTCF
recruitment and show less degenerate
CTCF binding motifs compared to cell
type-specific CTCF bound regions.22,30,31

We have now shown that the CTCF cis-
trome is highly dynamic during the course

of adipogenesis since we found that more
than half of the CTCF binding sites
(>30,000 sites) identified across 4 stages
of the differentiation process were not
constitutively bound.22 Moreover, our
study provides evidence that this dynamic
CTCF chromatin binding occurs at line-
age-specific enhancers, which promote
adipocyte differentiation (Fig. 1).22

CTCF binding at these enhancers is not
detected in preadipocytes and occurs
upon differentiation when these regula-
tory sites are activated. As discussed here-
after, CTCF is necessary for DNA
hydroxymethylation22 of enhancers, a pro-
cess required for cell differentiation.16,20

Interestingly, another recent study has
uncovered a similar role for another ubiq-
uitous TF, the NF-Y complex, in activa-
tion of cell type-specific enhancers.32 How
these ubiquitous TFs are targeted to cell
type-specific regulatory sites remains to be
defined. Regarding CTCF, post-transla-
tional modifications and the existence of
different modes of DNA recognition
might help to modulate target sequence
recognition.33,34 Alternatively, combina-
torial TF binding to enhancers, which
now arises as a prevalent mechanism,
could shape the CTCF cistrome. Direct
CTCF interaction with TFs may, for
instance, be involved in this process.23,35

Of note, differentially active enhancers in
mast cell and multipotent haematopoietic
progenitors require TFs which are both
specific and shared between the 2 cell-
types to regulate transcription, further
indicating that commonly expressed TFs
are instrumental in regulating cell type-
specific enhancer activities.27,36

Involvement of CTCF in
Chromatin Remodelling at Cell

Type-Specific Enhancers

Multiple mechanisms may explain the
requirement for combinatorial TF bind-
ing to enhancers. For instance, combina-
torial TF binding to enhancers during
adipocyte differentiation allows for
cooperative coactivator recruitment and
induction of histone acetylation.5 In this
context, in addition to PPARG, we have
found that CTCF promotes TET-medi-
ated DNA hydroxymethylation of
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Figure 1. Involvement of ubiquitous TFs in the transcriptional regulation of cell differentiation. The
main concepts discussed in the manuscript are summarized (see text for details). The absence or
presence of histone modifications that characterize active enhancers (H3K4me1 and H3K27ac) is
indicated together with DNA methylation (5mC) and DNA hydroxymethylation (5hmC). H3K4me1,
monomethylation of histone H3 lysine 4; H3K27ac, acetylation of histone H3 lysine 27; 5mC, 5-meth-
ylcytosine; 5hmC, 5-hydroxymethylcytosine.
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enhancers driving adipocyte differentia-
tion.22 In addition to such
”quantitative” effects where multiple
TFs cooperate to reinforce or amplify a
given chromatin modification, individ-
ual contributions of different TFs to dif-
ferent enhancer functionalities may
occur. TF binding to enhancers is not
always simultaneous and can rather
involve different kinetics implying a
sequential or even a mutually exclusive
recruitment.5,37 This may in part be
driven by the cyclic nature of transcrip-
tional regulatory events that require
instructed and sequential TF/cofactor
chromatin binding and dissmisal.38,39 In
this context, it will be of great interest
to better define whether and how the
different functionalities of CTCF on the
chromatin structure are involved at
enhancers and how they relate to those
of collaborating TFs. Indeed, CTCF is
able to control local epigenetic modifica-
tions of DNA and histones.22,40 It is
also able to position surrounding nucle-
osomes24 and to act on chromatin 3-
dimentional folding41. Regarding NF-Y,
it was hypothesized that this factor pro-
motes chromatin opening at enhancers
(potentially through nucleosome dis-
placement) to favor recruitment of mas-
ter lineage-determining TFs.32

An important aspect of this research
area will be to better define the relative
influence of DNA methylation/hydroxy-
methylation on chromatin binding of
ubiquitous and cell-specific TF. For
instance, CTCF DNA binding can be
inhibited by DNA methylation36 while,
reciprocally, CTCF is able to promote
DNA demethylation suggesting a mutual
influence.12,35,42 Importantly, this rela-
tionship may be strongly linked to the
genomic environnment as, for example,
convertion of methylated DNA into
hydroxymethylated DNA correlates with
CTCF binding mostly outside of CpG
islands (CGIs).43

Finally, cell-specific CTCF binding has
been shown to influence chromatin loop-
ing to promote interaction between Ubx
enhancers and promoter to trigger gene
transcriptional activation in Drosophila.41

Therefore, CTCF emerges as a crucial
chromatin remodeler at cell-type specific
enhancers.

Ubiquitous TFs and Lineage-
Determining TF Networks

We identified the adipose lineage-
determining factor PPARG as one main
target gene dynamically bound and tran-
scriptionally regulated by CTCF during
adipocyte differentiation, (Fig. 1).22 Rem-
iniscent of the establishment of specialized
transcriptomes in other cell types such as
hepatocytes,44 adipocyte differentiation
involves the build-up of a TF network,
which includes, in addition to PPARG,
members of the Kr€uppel-like factor (KLF)
and CCAAT/enhancer binding protein
(CEBP) families. These TFs show cross-
regulation of their expression and cooper-
ate to regulate important adipose-specific
target genes.45,46 Our study therefore
shows that CTCF is part of this network
through the regulation of both PPARG
expression and activities (Fig. 1). These
findings are reminiscent of those of Del-
gado-Olgu�ın et al. regarding myogenesis
during which CTCF both regulates the
expression of, and cooperates with MyoD
47. These studies functionally validate pre-
dictions made from the analyses of DNA-
seI footprints from 41 cell and tissue-types
indicating that CTCF was surprisingly
involved in most cell type-specific TF net-
works. Interestingly, a similar prediction
was made for additional ubiquitous TFs
including SP1, NFYA, and MAX suggest-
ing that this could be a general organiza-
tion scheme of lineage-determining
transcriptional networks.48

Concluding Remarks

Our recent study provides an impor-
tant new contribution to the recent littera-
ture describing how ubiquitously
expressed TFs functionally contribute to
establishing cell-specific transcriptomes
and phenotypes. However, important
questions still remain to be answered. For
instance, CTCF is characterized by an
uncommonly large number of potential
activities when bound to chromatin, mak-
ing it central to the regulation of the func-
tional genomic landscape. However, a
major challenge arising is to better under-
stand how CTCF’s multiple functionali-
ties are specified in space and time. With

this aim, it will be instrumental to better
understand how cues provided by the local
chromatin environment and collaborating
TF/cofactors allow for region and cell-spe-
cific CTCF binding and functions. This
will undoubtly significantly improve our
understanding of the functional connec-
tion between ubiquitous and cell type-spe-
cific TFs in lineage-determining
transcriptional networks.
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